| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfgtd | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| issmfgtd.a | ⊢ Ⅎ𝑎𝜑 |
| issmfgtd.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| issmfgtd.d | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| issmfgtd.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| issmfgtd.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) |
| Ref | Expression |
|---|---|
| issmfgtd | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issmfgtd.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
| 2 | 1 | fdmd 6669 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
| 3 | issmfgtd.d | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
| 4 | 2, 3 | eqsstrd 3966 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 5 | 1 | ffdmd 6689 | . . 3 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 6 | issmfgtd.a | . . . 4 ⊢ Ⅎ𝑎𝜑 | |
| 7 | issmfgtd.p | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷)) | |
| 8 | 2 | rabeqdv 3412 | . . . . . . . 8 ⊢ (𝜑 → {𝑥 ∈ dom 𝐹 ∣ 𝑎 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)}) |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ 𝑎 < (𝐹‘𝑥)} = {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)}) |
| 10 | 2 | oveq2d 7371 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ↾t dom 𝐹) = (𝑆 ↾t 𝐷)) |
| 11 | 10 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑆 ↾t dom 𝐹) = (𝑆 ↾t 𝐷)) |
| 12 | 9, 11 | eleq12d 2827 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t dom 𝐹) ↔ {𝑥 ∈ 𝐷 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t 𝐷))) |
| 13 | 7, 12 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t dom 𝐹)) |
| 14 | 13 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ℝ → {𝑥 ∈ dom 𝐹 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t dom 𝐹))) |
| 15 | 6, 14 | ralrimi 3232 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t dom 𝐹)) |
| 16 | 4, 5, 15 | 3jca 1128 | . 2 ⊢ (𝜑 → (dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t dom 𝐹))) |
| 17 | issmfgtd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 18 | eqid 2733 | . . 3 ⊢ dom 𝐹 = dom 𝐹 | |
| 19 | 17, 18 | issmfgt 46868 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ 𝑎 < (𝐹‘𝑥)} ∈ (𝑆 ↾t dom 𝐹)))) |
| 20 | 16, 19 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 ∀wral 3049 {crab 3397 ⊆ wss 3899 ∪ cuni 4860 class class class wbr 5095 dom cdm 5621 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℝcr 11015 < clt 11156 ↾t crest 17334 SAlgcsalg 46420 SMblFncsmblfn 46807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cc 10336 ax-ac2 10364 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-pm 8762 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-inf 9337 df-card 9842 df-acn 9845 df-ac 10017 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-q 12857 df-rp 12901 df-ioo 13259 df-ico 13261 df-fl 13706 df-rest 17336 df-salg 46421 df-smblfn 46808 |
| This theorem is referenced by: decsmf 46879 |
| Copyright terms: Public domain | W3C validator |