Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfgtd Structured version   Visualization version   GIF version

Theorem issmfgtd 46778
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfgtd.a 𝑎𝜑
issmfgtd.s (𝜑𝑆 ∈ SAlg)
issmfgtd.d (𝜑𝐷 𝑆)
issmfgtd.f (𝜑𝐹:𝐷⟶ℝ)
issmfgtd.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfgtd (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐷   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐷(𝑎)   𝑆(𝑥)

Proof of Theorem issmfgtd
StepHypRef Expression
1 issmfgtd.f . . . . 5 (𝜑𝐹:𝐷⟶ℝ)
21fdmd 6657 . . . 4 (𝜑 → dom 𝐹 = 𝐷)
3 issmfgtd.d . . . 4 (𝜑𝐷 𝑆)
42, 3eqsstrd 3967 . . 3 (𝜑 → dom 𝐹 𝑆)
51ffdmd 6677 . . 3 (𝜑𝐹:dom 𝐹⟶ℝ)
6 issmfgtd.a . . . 4 𝑎𝜑
7 issmfgtd.p . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
82rabeqdv 3408 . . . . . . . 8 (𝜑 → {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
98adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
102oveq2d 7357 . . . . . . . 8 (𝜑 → (𝑆t dom 𝐹) = (𝑆t 𝐷))
1110adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑆t dom 𝐹) = (𝑆t 𝐷))
129, 11eleq12d 2823 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹) ↔ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷)))
137, 12mpbird 257 . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹))
1413ex 412 . . . 4 (𝜑 → (𝑎 ∈ ℝ → {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹)))
156, 14ralrimi 3228 . . 3 (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹))
164, 5, 153jca 1128 . 2 (𝜑 → (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹)))
17 issmfgtd.s . . 3 (𝜑𝑆 ∈ SAlg)
18 eqid 2730 . . 3 dom 𝐹 = dom 𝐹
1917, 18issmfgt 46773 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹))))
2016, 19mpbird 257 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2110  wral 3045  {crab 3393  wss 3900   cuni 4857   class class class wbr 5089  dom cdm 5614  wf 6473  cfv 6477  (class class class)co 7341  cr 10997   < clt 11138  t crest 17316  SAlgcsalg 46325  SMblFncsmblfn 46712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cc 10318  ax-ac2 10346  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-card 9824  df-acn 9827  df-ac 9999  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-ioo 13241  df-ico 13243  df-fl 13688  df-rest 17318  df-salg 46326  df-smblfn 46713
This theorem is referenced by:  decsmf  46784
  Copyright terms: Public domain W3C validator