Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfgtd Structured version   Visualization version   GIF version

Theorem issmfgtd 44183
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfgtd.a 𝑎𝜑
issmfgtd.s (𝜑𝑆 ∈ SAlg)
issmfgtd.d (𝜑𝐷 𝑆)
issmfgtd.f (𝜑𝐹:𝐷⟶ℝ)
issmfgtd.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfgtd (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐷   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐷(𝑎)   𝑆(𝑥)

Proof of Theorem issmfgtd
StepHypRef Expression
1 issmfgtd.f . . . . 5 (𝜑𝐹:𝐷⟶ℝ)
21fdmd 6595 . . . 4 (𝜑 → dom 𝐹 = 𝐷)
3 issmfgtd.d . . . 4 (𝜑𝐷 𝑆)
42, 3eqsstrd 3955 . . 3 (𝜑 → dom 𝐹 𝑆)
51ffdmd 6615 . . 3 (𝜑𝐹:dom 𝐹⟶ℝ)
6 issmfgtd.a . . . 4 𝑎𝜑
7 issmfgtd.p . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
82rabeqdv 3409 . . . . . . . 8 (𝜑 → {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
98adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} = {𝑥𝐷𝑎 < (𝐹𝑥)})
102oveq2d 7271 . . . . . . . 8 (𝜑 → (𝑆t dom 𝐹) = (𝑆t 𝐷))
1110adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑆t dom 𝐹) = (𝑆t 𝐷))
129, 11eleq12d 2833 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹) ↔ {𝑥𝐷𝑎 < (𝐹𝑥)} ∈ (𝑆t 𝐷)))
137, 12mpbird 256 . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹))
1413ex 412 . . . 4 (𝜑 → (𝑎 ∈ ℝ → {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹)))
156, 14ralrimi 3139 . . 3 (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹))
164, 5, 153jca 1126 . 2 (𝜑 → (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹)))
17 issmfgtd.s . . 3 (𝜑𝑆 ∈ SAlg)
18 eqid 2738 . . 3 dom 𝐹 = dom 𝐹
1917, 18issmfgt 44179 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹𝑎 < (𝐹𝑥)} ∈ (𝑆t dom 𝐹))))
2016, 19mpbird 256 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wnf 1787  wcel 2108  wral 3063  {crab 3067  wss 3883   cuni 4836   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cr 10801   < clt 10940  t crest 17048  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-fl 13440  df-rest 17050  df-salg 43740  df-smblfn 44124
This theorem is referenced by:  decsmf  44189
  Copyright terms: Public domain W3C validator