| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfconstlem | Structured version Visualization version GIF version | ||
| Description: Lemma for mbfconst 25559 and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfconstlem | ⊢ ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass 6031 | . . . . . 6 ⊢ (◡(𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶}) | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶})) |
| 3 | cnvimarndm 6032 | . . . . . 6 ⊢ (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) = dom (𝐴 × {𝐶}) | |
| 4 | fconst6g 6712 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝐵 → (𝐴 × {𝐶}):𝐴⟶𝐵) | |
| 5 | 4 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶𝐵) |
| 6 | frn 6658 | . . . . . . 7 ⊢ ((𝐴 × {𝐶}):𝐴⟶𝐵 → ran (𝐴 × {𝐶}) ⊆ 𝐵) | |
| 7 | imass2 6051 | . . . . . . 7 ⊢ (ran (𝐴 × {𝐶}) ⊆ 𝐵 → (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) | |
| 8 | 5, 6, 7 | 3syl 18 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) |
| 9 | 3, 8 | eqsstrrid 3974 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → dom (𝐴 × {𝐶}) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) |
| 10 | 2, 9 | eqssd 3952 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = dom (𝐴 × {𝐶})) |
| 11 | fconstg 6710 | . . . . . 6 ⊢ (𝐶 ∈ ℝ → (𝐴 × {𝐶}):𝐴⟶{𝐶}) | |
| 12 | 11 | ad2antlr 727 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶}) |
| 13 | 12 | fdmd 6661 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → dom (𝐴 × {𝐶}) = 𝐴) |
| 14 | 10, 13 | eqtrd 2766 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = 𝐴) |
| 15 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → 𝐴 ∈ dom vol) | |
| 16 | 14, 15 | eqeltrd 2831 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
| 17 | 11 | ad2antlr 727 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶}) |
| 18 | incom 4159 | . . . . 5 ⊢ ({𝐶} ∩ 𝐵) = (𝐵 ∩ {𝐶}) | |
| 19 | simpr 484 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ 𝐵) | |
| 20 | disjsn 4664 | . . . . . 6 ⊢ ((𝐵 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ 𝐵) | |
| 21 | 19, 20 | sylibr 234 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (𝐵 ∩ {𝐶}) = ∅) |
| 22 | 18, 21 | eqtrid 2778 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → ({𝐶} ∩ 𝐵) = ∅) |
| 23 | fimacnvdisj 6701 | . . . 4 ⊢ (((𝐴 × {𝐶}):𝐴⟶{𝐶} ∧ ({𝐶} ∩ 𝐵) = ∅) → (◡(𝐴 × {𝐶}) “ 𝐵) = ∅) | |
| 24 | 17, 22, 23 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = ∅) |
| 25 | 0mbl 25465 | . . 3 ⊢ ∅ ∈ dom vol | |
| 26 | 24, 25 | eqeltrdi 2839 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
| 27 | 16, 26 | pm2.61dan 812 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 {csn 4576 × cxp 5614 ◡ccnv 5615 dom cdm 5616 ran crn 5617 “ cima 5619 ⟶wf 6477 ℝcr 11002 volcvol 25389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xadd 13009 df-ioo 13246 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-xmet 21282 df-met 21283 df-ovol 25390 df-vol 25391 |
| This theorem is referenced by: ismbf 25554 mbfconst 25559 |
| Copyright terms: Public domain | W3C validator |