![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfconstlem | Structured version Visualization version GIF version |
Description: Lemma for mbfconst 25682 and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
mbfconstlem | ⊢ ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 6102 | . . . . . 6 ⊢ (◡(𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶}) | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶})) |
3 | cnvimarndm 6103 | . . . . . 6 ⊢ (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) = dom (𝐴 × {𝐶}) | |
4 | fconst6g 6798 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝐵 → (𝐴 × {𝐶}):𝐴⟶𝐵) | |
5 | 4 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶𝐵) |
6 | frn 6744 | . . . . . . 7 ⊢ ((𝐴 × {𝐶}):𝐴⟶𝐵 → ran (𝐴 × {𝐶}) ⊆ 𝐵) | |
7 | imass2 6123 | . . . . . . 7 ⊢ (ran (𝐴 × {𝐶}) ⊆ 𝐵 → (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) | |
8 | 5, 6, 7 | 3syl 18 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) |
9 | 3, 8 | eqsstrrid 4045 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → dom (𝐴 × {𝐶}) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) |
10 | 2, 9 | eqssd 4013 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = dom (𝐴 × {𝐶})) |
11 | fconstg 6796 | . . . . . 6 ⊢ (𝐶 ∈ ℝ → (𝐴 × {𝐶}):𝐴⟶{𝐶}) | |
12 | 11 | ad2antlr 727 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶}) |
13 | 12 | fdmd 6747 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → dom (𝐴 × {𝐶}) = 𝐴) |
14 | 10, 13 | eqtrd 2775 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = 𝐴) |
15 | simpll 767 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → 𝐴 ∈ dom vol) | |
16 | 14, 15 | eqeltrd 2839 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
17 | 11 | ad2antlr 727 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶}) |
18 | incom 4217 | . . . . 5 ⊢ ({𝐶} ∩ 𝐵) = (𝐵 ∩ {𝐶}) | |
19 | simpr 484 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ 𝐵) | |
20 | disjsn 4716 | . . . . . 6 ⊢ ((𝐵 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ 𝐵) | |
21 | 19, 20 | sylibr 234 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (𝐵 ∩ {𝐶}) = ∅) |
22 | 18, 21 | eqtrid 2787 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → ({𝐶} ∩ 𝐵) = ∅) |
23 | fimacnvdisj 6787 | . . . 4 ⊢ (((𝐴 × {𝐶}):𝐴⟶{𝐶} ∧ ({𝐶} ∩ 𝐵) = ∅) → (◡(𝐴 × {𝐶}) “ 𝐵) = ∅) | |
24 | 17, 22, 23 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = ∅) |
25 | 0mbl 25588 | . . 3 ⊢ ∅ ∈ dom vol | |
26 | 24, 25 | eqeltrdi 2847 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
27 | 16, 26 | pm2.61dan 813 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 {csn 4631 × cxp 5687 ◡ccnv 5688 dom cdm 5689 ran crn 5690 “ cima 5692 ⟶wf 6559 ℝcr 11152 volcvol 25512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xadd 13153 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-xmet 21375 df-met 21376 df-ovol 25513 df-vol 25514 |
This theorem is referenced by: ismbf 25677 mbfconst 25682 |
Copyright terms: Public domain | W3C validator |