![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfconstlem | Structured version Visualization version GIF version |
Description: Lemma for mbfconst 25132 and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
mbfconstlem | ⊢ ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 6077 | . . . . . 6 ⊢ (◡(𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶}) | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶})) |
3 | cnvimarndm 6078 | . . . . . 6 ⊢ (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) = dom (𝐴 × {𝐶}) | |
4 | fconst6g 6777 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝐵 → (𝐴 × {𝐶}):𝐴⟶𝐵) | |
5 | 4 | adantl 483 | . . . . . . 7 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶𝐵) |
6 | frn 6721 | . . . . . . 7 ⊢ ((𝐴 × {𝐶}):𝐴⟶𝐵 → ran (𝐴 × {𝐶}) ⊆ 𝐵) | |
7 | imass2 6098 | . . . . . . 7 ⊢ (ran (𝐴 × {𝐶}) ⊆ 𝐵 → (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) | |
8 | 5, 6, 7 | 3syl 18 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) |
9 | 3, 8 | eqsstrrid 4030 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → dom (𝐴 × {𝐶}) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) |
10 | 2, 9 | eqssd 3998 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = dom (𝐴 × {𝐶})) |
11 | fconstg 6775 | . . . . . 6 ⊢ (𝐶 ∈ ℝ → (𝐴 × {𝐶}):𝐴⟶{𝐶}) | |
12 | 11 | ad2antlr 726 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶}) |
13 | 12 | fdmd 6725 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → dom (𝐴 × {𝐶}) = 𝐴) |
14 | 10, 13 | eqtrd 2773 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = 𝐴) |
15 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → 𝐴 ∈ dom vol) | |
16 | 14, 15 | eqeltrd 2834 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
17 | 11 | ad2antlr 726 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶}) |
18 | incom 4200 | . . . . 5 ⊢ ({𝐶} ∩ 𝐵) = (𝐵 ∩ {𝐶}) | |
19 | simpr 486 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ 𝐵) | |
20 | disjsn 4714 | . . . . . 6 ⊢ ((𝐵 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ 𝐵) | |
21 | 19, 20 | sylibr 233 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (𝐵 ∩ {𝐶}) = ∅) |
22 | 18, 21 | eqtrid 2785 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → ({𝐶} ∩ 𝐵) = ∅) |
23 | fimacnvdisj 6766 | . . . 4 ⊢ (((𝐴 × {𝐶}):𝐴⟶{𝐶} ∧ ({𝐶} ∩ 𝐵) = ∅) → (◡(𝐴 × {𝐶}) “ 𝐵) = ∅) | |
24 | 17, 22, 23 | syl2anc 585 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = ∅) |
25 | 0mbl 25038 | . . 3 ⊢ ∅ ∈ dom vol | |
26 | 24, 25 | eqeltrdi 2842 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
27 | 16, 26 | pm2.61dan 812 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 {csn 4627 × cxp 5673 ◡ccnv 5674 dom cdm 5675 ran crn 5676 “ cima 5678 ⟶wf 6536 ℝcr 11105 volcvol 24962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xadd 13089 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-xmet 20922 df-met 20923 df-ovol 24963 df-vol 24964 |
This theorem is referenced by: ismbf 25127 mbfconst 25132 |
Copyright terms: Public domain | W3C validator |