![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfconstlem | Structured version Visualization version GIF version |
Description: Lemma for mbfconst 23917 and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014.) |
Ref | Expression |
---|---|
mbfconstlem | ⊢ ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 5825 | . . . . . 6 ⊢ (◡(𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶}) | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶})) |
3 | cnvimarndm 5826 | . . . . . 6 ⊢ (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) = dom (𝐴 × {𝐶}) | |
4 | fconst6g 6436 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝐵 → (𝐴 × {𝐶}):𝐴⟶𝐵) | |
5 | 4 | adantl 482 | . . . . . . 7 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶𝐵) |
6 | frn 6388 | . . . . . . 7 ⊢ ((𝐴 × {𝐶}):𝐴⟶𝐵 → ran (𝐴 × {𝐶}) ⊆ 𝐵) | |
7 | imass2 5841 | . . . . . . 7 ⊢ (ran (𝐴 × {𝐶}) ⊆ 𝐵 → (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) | |
8 | 5, 6, 7 | 3syl 18 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) |
9 | 3, 8 | eqsstrrid 3937 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → dom (𝐴 × {𝐶}) ⊆ (◡(𝐴 × {𝐶}) “ 𝐵)) |
10 | 2, 9 | eqssd 3906 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = dom (𝐴 × {𝐶})) |
11 | fconstg 6434 | . . . . . 6 ⊢ (𝐶 ∈ ℝ → (𝐴 × {𝐶}):𝐴⟶{𝐶}) | |
12 | 11 | ad2antlr 723 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶}) |
13 | 12 | fdmd 6391 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → dom (𝐴 × {𝐶}) = 𝐴) |
14 | 10, 13 | eqtrd 2831 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = 𝐴) |
15 | simpll 763 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → 𝐴 ∈ dom vol) | |
16 | 14, 15 | eqeltrd 2883 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
17 | 11 | ad2antlr 723 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶}) |
18 | incom 4099 | . . . . 5 ⊢ ({𝐶} ∩ 𝐵) = (𝐵 ∩ {𝐶}) | |
19 | simpr 485 | . . . . . 6 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ 𝐵) | |
20 | disjsn 4554 | . . . . . 6 ⊢ ((𝐵 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ 𝐵) | |
21 | 19, 20 | sylibr 235 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (𝐵 ∩ {𝐶}) = ∅) |
22 | 18, 21 | syl5eq 2843 | . . . 4 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → ({𝐶} ∩ 𝐵) = ∅) |
23 | fimacnvdisj 6425 | . . . 4 ⊢ (((𝐴 × {𝐶}):𝐴⟶{𝐶} ∧ ({𝐶} ∩ 𝐵) = ∅) → (◡(𝐴 × {𝐶}) “ 𝐵) = ∅) | |
24 | 17, 22, 23 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) = ∅) |
25 | 0mbl 23823 | . . 3 ⊢ ∅ ∈ dom vol | |
26 | 24, 25 | syl6eqel 2891 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶 ∈ 𝐵) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
27 | 16, 26 | pm2.61dan 809 | 1 ⊢ ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∩ cin 3858 ⊆ wss 3859 ∅c0 4211 {csn 4472 × cxp 5441 ◡ccnv 5442 dom cdm 5443 ran crn 5444 “ cima 5446 ⟶wf 6221 ℝcr 10382 volcvol 23747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-of 7267 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-2o 7954 df-oadd 7957 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-sup 8752 df-inf 8753 df-oi 8820 df-dju 9176 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-n0 11746 df-z 11830 df-uz 12094 df-q 12198 df-rp 12240 df-xadd 12358 df-ioo 12592 df-ico 12594 df-icc 12595 df-fz 12743 df-fzo 12884 df-fl 13012 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-sum 14877 df-xmet 20220 df-met 20221 df-ovol 23748 df-vol 23749 |
This theorem is referenced by: ismbf 23912 mbfconst 23917 |
Copyright terms: Public domain | W3C validator |