MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3a Structured version   Visualization version   GIF version

Theorem gsumval3a 19936
Description: Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by AV, 29-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3a.t (𝜑𝑊 ∈ Fin)
gsumval3a.n (𝜑𝑊 ≠ ∅)
gsumval3a.w 𝑊 = (𝐹 supp 0 )
gsumval3a.i (𝜑 → ¬ 𝐴 ∈ ran ...)
Assertion
Ref Expression
gsumval3a (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
Distinct variable groups:   𝑥,𝑓, +   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥   𝑥, 0   𝑓,𝐺,𝑥   𝑥,𝑉   𝐵,𝑓,𝑥   𝑓,𝐹,𝑥   𝑓,𝑊,𝑥
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem gsumval3a
Dummy variables 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.b . . 3 𝐵 = (Base‘𝐺)
2 gsumval3.0 . . 3 0 = (0g𝐺)
3 gsumval3.p . . 3 + = (+g𝐺)
4 eqid 2735 . . 3 {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}
5 gsumval3a.w . . . . 5 𝑊 = (𝐹 supp 0 )
65a1i 11 . . . 4 (𝜑𝑊 = (𝐹 supp 0 ))
7 gsumval3.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
8 gsumval3.a . . . . . 6 (𝜑𝐴𝑉)
97, 8fexd 7247 . . . . 5 (𝜑𝐹 ∈ V)
102fvexi 6921 . . . . 5 0 ∈ V
11 suppimacnv 8198 . . . . 5 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
129, 10, 11sylancl 586 . . . 4 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
13 gsumval3.g . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
141, 2, 3, 4gsumvallem2 18860 . . . . . . . 8 (𝐺 ∈ Mnd → {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 })
1513, 14syl 17 . . . . . . 7 (𝜑 → {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 })
1615eqcomd 2741 . . . . . 6 (𝜑 → { 0 } = {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})
1716difeq2d 4136 . . . . 5 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))
1817imaeq2d 6080 . . . 4 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})))
196, 12, 183eqtrd 2779 . . 3 (𝜑𝑊 = (𝐹 “ (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})))
201, 2, 3, 4, 19, 13, 8, 7gsumval 18703 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))))
21 gsumval3a.n . . . 4 (𝜑𝑊 ≠ ∅)
2215sseq2d 4028 . . . . . 6 (𝜑 → (ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} ↔ ran 𝐹 ⊆ { 0 }))
235a1i 11 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = (𝐹 supp 0 ))
247, 8jca 511 . . . . . . . . . . 11 (𝜑 → (𝐹:𝐴𝐵𝐴𝑉))
2524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹:𝐴𝐵𝐴𝑉))
26 fex 7246 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
2725, 26syl 17 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 ∈ V)
2827, 10, 11sylancl 586 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
297ffnd 6738 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐴)
3029adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 Fn 𝐴)
31 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → ran 𝐹 ⊆ { 0 })
32 df-f 6567 . . . . . . . . . 10 (𝐹:𝐴⟶{ 0 } ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ { 0 }))
3330, 31, 32sylanbrc 583 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹:𝐴⟶{ 0 })
34 disjdif 4478 . . . . . . . . 9 ({ 0 } ∩ (V ∖ { 0 })) = ∅
35 fimacnvdisj 6787 . . . . . . . . 9 ((𝐹:𝐴⟶{ 0 } ∧ ({ 0 } ∩ (V ∖ { 0 })) = ∅) → (𝐹 “ (V ∖ { 0 })) = ∅)
3633, 34, 35sylancl 586 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹 “ (V ∖ { 0 })) = ∅)
3723, 28, 363eqtrd 2779 . . . . . . 7 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = ∅)
3837ex 412 . . . . . 6 (𝜑 → (ran 𝐹 ⊆ { 0 } → 𝑊 = ∅))
3922, 38sylbid 240 . . . . 5 (𝜑 → (ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} → 𝑊 = ∅))
4039necon3ad 2951 . . . 4 (𝜑 → (𝑊 ≠ ∅ → ¬ ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))
4121, 40mpd 15 . . 3 (𝜑 → ¬ ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})
4241iffalsed 4542 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))) = if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))))
43 gsumval3a.i . . 3 (𝜑 → ¬ 𝐴 ∈ ran ...)
4443iffalsed 4542 . 2 (𝜑 → if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
4520, 42, 443eqtrd 2779 1 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cdif 3960  cin 3962  wss 3963  c0 4339  ifcif 4531  {csn 4631  ccnv 5688  ran crn 5690  cima 5692  ccom 5693  cio 6514   Fn wfn 6558  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431   supp csupp 8184  Fincfn 8984  1c1 11154  cuz 12876  ...cfz 13544  seqcseq 14039  chash 14366  Basecbs 17245  +gcplusg 17298  0gc0g 17486   Σg cgsu 17487  Mndcmnd 18760  Cntzccntz 19346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-seq 14040  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761
This theorem is referenced by:  gsumval3lem2  19939
  Copyright terms: Public domain W3C validator