| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | gsumval3.b | . . 3
⊢ 𝐵 = (Base‘𝐺) | 
| 2 |  | gsumval3.0 | . . 3
⊢  0 =
(0g‘𝐺) | 
| 3 |  | gsumval3.p | . . 3
⊢  + =
(+g‘𝐺) | 
| 4 |  | eqid 2736 | . . 3
⊢ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} | 
| 5 |  | gsumval3a.w | . . . . 5
⊢ 𝑊 = (𝐹 supp 0 ) | 
| 6 | 5 | a1i 11 | . . . 4
⊢ (𝜑 → 𝑊 = (𝐹 supp 0 )) | 
| 7 |  | gsumval3.f | . . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| 8 |  | gsumval3.a | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 9 | 7, 8 | fexd 7248 | . . . . 5
⊢ (𝜑 → 𝐹 ∈ V) | 
| 10 | 2 | fvexi 6919 | . . . . 5
⊢  0 ∈
V | 
| 11 |  | suppimacnv 8200 | . . . . 5
⊢ ((𝐹 ∈ V ∧ 0 ∈ V)
→ (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) | 
| 12 | 9, 10, 11 | sylancl 586 | . . . 4
⊢ (𝜑 → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) | 
| 13 |  | gsumval3.g | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 14 | 1, 2, 3, 4 | gsumvallem2 18848 | . . . . . . . 8
⊢ (𝐺 ∈ Mnd → {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 }) | 
| 15 | 13, 14 | syl 17 | . . . . . . 7
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 }) | 
| 16 | 15 | eqcomd 2742 | . . . . . 6
⊢ (𝜑 → { 0 } = {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}) | 
| 17 | 16 | difeq2d 4125 | . . . . 5
⊢ (𝜑 → (V ∖ { 0 }) = (V
∖ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})) | 
| 18 | 17 | imaeq2d 6077 | . . . 4
⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) = (◡𝐹 “ (V ∖ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))) | 
| 19 | 6, 12, 18 | 3eqtrd 2780 | . . 3
⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))) | 
| 20 | 1, 2, 3, 4, 19, 13, 8, 7 | gsumval 18691 | . 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) | 
| 21 |  | gsumval3a.n | . . . 4
⊢ (𝜑 → 𝑊 ≠ ∅) | 
| 22 | 15 | sseq2d 4015 | . . . . . 6
⊢ (𝜑 → (ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} ↔ ran 𝐹 ⊆ { 0 })) | 
| 23 | 5 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = (𝐹 supp 0 )) | 
| 24 | 7, 8 | jca 511 | . . . . . . . . . . 11
⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉)) | 
| 25 | 24 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉)) | 
| 26 |  | fex 7247 | . . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | 
| 27 | 25, 26 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 ∈ V) | 
| 28 | 27, 10, 11 | sylancl 586 | . . . . . . . 8
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) | 
| 29 | 7 | ffnd 6736 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝐴) | 
| 30 | 29 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 Fn 𝐴) | 
| 31 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → ran 𝐹 ⊆ { 0 }) | 
| 32 |  | df-f 6564 | . . . . . . . . . 10
⊢ (𝐹:𝐴⟶{ 0 } ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ { 0 })) | 
| 33 | 30, 31, 32 | sylanbrc 583 | . . . . . . . . 9
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹:𝐴⟶{ 0 }) | 
| 34 |  | disjdif 4471 | . . . . . . . . 9
⊢ ({ 0 } ∩ (V
∖ { 0 })) =
∅ | 
| 35 |  | fimacnvdisj 6785 | . . . . . . . . 9
⊢ ((𝐹:𝐴⟶{ 0 } ∧ ({ 0 } ∩ (V
∖ { 0 })) = ∅) →
(◡𝐹 “ (V ∖ { 0 })) =
∅) | 
| 36 | 33, 34, 35 | sylancl 586 | . . . . . . . 8
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (◡𝐹 “ (V ∖ { 0 })) =
∅) | 
| 37 | 23, 28, 36 | 3eqtrd 2780 | . . . . . . 7
⊢ ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = ∅) | 
| 38 | 37 | ex 412 | . . . . . 6
⊢ (𝜑 → (ran 𝐹 ⊆ { 0 } → 𝑊 = ∅)) | 
| 39 | 22, 38 | sylbid 240 | . . . . 5
⊢ (𝜑 → (ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} → 𝑊 = ∅)) | 
| 40 | 39 | necon3ad 2952 | . . . 4
⊢ (𝜑 → (𝑊 ≠ ∅ → ¬ ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})) | 
| 41 | 21, 40 | mpd 15 | . . 3
⊢ (𝜑 → ¬ ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}) | 
| 42 | 41 | iffalsed 4535 | . 2
⊢ (𝜑 → if(ran 𝐹 ⊆ {𝑧 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))))) = if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)))))) | 
| 43 |  | gsumval3a.i | . . 3
⊢ (𝜑 → ¬ 𝐴 ∈ ran ...) | 
| 44 | 43 | iffalsed 4535 | . 2
⊢ (𝜑 → if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) = (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) | 
| 45 | 20, 42, 44 | 3eqtrd 2780 | 1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))) |