MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3a Structured version   Visualization version   GIF version

Theorem gsumval3a 19023
Description: Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by AV, 29-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3a.t (𝜑𝑊 ∈ Fin)
gsumval3a.n (𝜑𝑊 ≠ ∅)
gsumval3a.w 𝑊 = (𝐹 supp 0 )
gsumval3a.i (𝜑 → ¬ 𝐴 ∈ ran ...)
Assertion
Ref Expression
gsumval3a (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
Distinct variable groups:   𝑥,𝑓, +   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥   𝑥, 0   𝑓,𝐺,𝑥   𝑥,𝑉   𝐵,𝑓,𝑥   𝑓,𝐹,𝑥   𝑓,𝑊,𝑥
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem gsumval3a
Dummy variables 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.b . . 3 𝐵 = (Base‘𝐺)
2 gsumval3.0 . . 3 0 = (0g𝐺)
3 gsumval3.p . . 3 + = (+g𝐺)
4 eqid 2821 . . 3 {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}
5 gsumval3a.w . . . . 5 𝑊 = (𝐹 supp 0 )
65a1i 11 . . . 4 (𝜑𝑊 = (𝐹 supp 0 ))
7 gsumval3.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
8 gsumval3.a . . . . . . 7 (𝜑𝐴𝑉)
97, 8jca 514 . . . . . 6 (𝜑 → (𝐹:𝐴𝐵𝐴𝑉))
10 fex 6989 . . . . . 6 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
119, 10syl 17 . . . . 5 (𝜑𝐹 ∈ V)
122fvexi 6684 . . . . 5 0 ∈ V
13 suppimacnv 7841 . . . . 5 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
1411, 12, 13sylancl 588 . . . 4 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
15 gsumval3.g . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
161, 2, 3, 4gsumvallem2 17998 . . . . . . . 8 (𝐺 ∈ Mnd → {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 })
1715, 16syl 17 . . . . . . 7 (𝜑 → {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 })
1817eqcomd 2827 . . . . . 6 (𝜑 → { 0 } = {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})
1918difeq2d 4099 . . . . 5 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))
2019imaeq2d 5929 . . . 4 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})))
216, 14, 203eqtrd 2860 . . 3 (𝜑𝑊 = (𝐹 “ (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})))
221, 2, 3, 4, 21, 15, 8, 7gsumval 17887 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))))
23 gsumval3a.n . . . 4 (𝜑𝑊 ≠ ∅)
2417sseq2d 3999 . . . . . 6 (𝜑 → (ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} ↔ ran 𝐹 ⊆ { 0 }))
255a1i 11 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = (𝐹 supp 0 ))
269adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹:𝐴𝐵𝐴𝑉))
2726, 10syl 17 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 ∈ V)
2827, 12, 13sylancl 588 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
297ffnd 6515 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐴)
3029adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 Fn 𝐴)
31 simpr 487 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → ran 𝐹 ⊆ { 0 })
32 df-f 6359 . . . . . . . . . 10 (𝐹:𝐴⟶{ 0 } ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ { 0 }))
3330, 31, 32sylanbrc 585 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹:𝐴⟶{ 0 })
34 disjdif 4421 . . . . . . . . 9 ({ 0 } ∩ (V ∖ { 0 })) = ∅
35 fimacnvdisj 6557 . . . . . . . . 9 ((𝐹:𝐴⟶{ 0 } ∧ ({ 0 } ∩ (V ∖ { 0 })) = ∅) → (𝐹 “ (V ∖ { 0 })) = ∅)
3633, 34, 35sylancl 588 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹 “ (V ∖ { 0 })) = ∅)
3725, 28, 363eqtrd 2860 . . . . . . 7 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = ∅)
3837ex 415 . . . . . 6 (𝜑 → (ran 𝐹 ⊆ { 0 } → 𝑊 = ∅))
3924, 38sylbid 242 . . . . 5 (𝜑 → (ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} → 𝑊 = ∅))
4039necon3ad 3029 . . . 4 (𝜑 → (𝑊 ≠ ∅ → ¬ ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))
4123, 40mpd 15 . . 3 (𝜑 → ¬ ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})
4241iffalsed 4478 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))) = if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))))
43 gsumval3a.i . . 3 (𝜑 → ¬ 𝐴 ∈ ran ...)
4443iffalsed 4478 . 2 (𝜑 → if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
4522, 42, 443eqtrd 2860 1 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cdif 3933  cin 3935  wss 3936  c0 4291  ifcif 4467  {csn 4567  ccnv 5554  ran crn 5556  cima 5558  ccom 5559  cio 6312   Fn wfn 6350  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156   supp csupp 7830  Fincfn 8509  1c1 10538  cuz 12244  ...cfz 12893  seqcseq 13370  chash 13691  Basecbs 16483  +gcplusg 16565  0gc0g 16713   Σg cgsu 16714  Mndcmnd 17911  Cntzccntz 18445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-seq 13371  df-0g 16715  df-gsum 16716  df-mgm 17852  df-sgrp 17901  df-mnd 17912
This theorem is referenced by:  gsumval3lem2  19026
  Copyright terms: Public domain W3C validator