MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3a Structured version   Visualization version   GIF version

Theorem gsumval3a 19782
Description: Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by AV, 29-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3a.t (𝜑𝑊 ∈ Fin)
gsumval3a.n (𝜑𝑊 ≠ ∅)
gsumval3a.w 𝑊 = (𝐹 supp 0 )
gsumval3a.i (𝜑 → ¬ 𝐴 ∈ ran ...)
Assertion
Ref Expression
gsumval3a (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
Distinct variable groups:   𝑥,𝑓, +   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥   𝑥, 0   𝑓,𝐺,𝑥   𝑥,𝑉   𝐵,𝑓,𝑥   𝑓,𝐹,𝑥   𝑓,𝑊,𝑥
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem gsumval3a
Dummy variables 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.b . . 3 𝐵 = (Base‘𝐺)
2 gsumval3.0 . . 3 0 = (0g𝐺)
3 gsumval3.p . . 3 + = (+g𝐺)
4 eqid 2729 . . 3 {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}
5 gsumval3a.w . . . . 5 𝑊 = (𝐹 supp 0 )
65a1i 11 . . . 4 (𝜑𝑊 = (𝐹 supp 0 ))
7 gsumval3.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
8 gsumval3.a . . . . . 6 (𝜑𝐴𝑉)
97, 8fexd 7163 . . . . 5 (𝜑𝐹 ∈ V)
102fvexi 6836 . . . . 5 0 ∈ V
11 suppimacnv 8107 . . . . 5 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
129, 10, 11sylancl 586 . . . 4 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
13 gsumval3.g . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
141, 2, 3, 4gsumvallem2 18708 . . . . . . . 8 (𝐺 ∈ Mnd → {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 })
1513, 14syl 17 . . . . . . 7 (𝜑 → {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 })
1615eqcomd 2735 . . . . . 6 (𝜑 → { 0 } = {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})
1716difeq2d 4077 . . . . 5 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))
1817imaeq2d 6011 . . . 4 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})))
196, 12, 183eqtrd 2768 . . 3 (𝜑𝑊 = (𝐹 “ (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})))
201, 2, 3, 4, 19, 13, 8, 7gsumval 18551 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))))
21 gsumval3a.n . . . 4 (𝜑𝑊 ≠ ∅)
2215sseq2d 3968 . . . . . 6 (𝜑 → (ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} ↔ ran 𝐹 ⊆ { 0 }))
235a1i 11 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = (𝐹 supp 0 ))
247, 8jca 511 . . . . . . . . . . 11 (𝜑 → (𝐹:𝐴𝐵𝐴𝑉))
2524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹:𝐴𝐵𝐴𝑉))
26 fex 7162 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
2725, 26syl 17 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 ∈ V)
2827, 10, 11sylancl 586 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
297ffnd 6653 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐴)
3029adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 Fn 𝐴)
31 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → ran 𝐹 ⊆ { 0 })
32 df-f 6486 . . . . . . . . . 10 (𝐹:𝐴⟶{ 0 } ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ { 0 }))
3330, 31, 32sylanbrc 583 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹:𝐴⟶{ 0 })
34 disjdif 4423 . . . . . . . . 9 ({ 0 } ∩ (V ∖ { 0 })) = ∅
35 fimacnvdisj 6702 . . . . . . . . 9 ((𝐹:𝐴⟶{ 0 } ∧ ({ 0 } ∩ (V ∖ { 0 })) = ∅) → (𝐹 “ (V ∖ { 0 })) = ∅)
3633, 34, 35sylancl 586 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹 “ (V ∖ { 0 })) = ∅)
3723, 28, 363eqtrd 2768 . . . . . . 7 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = ∅)
3837ex 412 . . . . . 6 (𝜑 → (ran 𝐹 ⊆ { 0 } → 𝑊 = ∅))
3922, 38sylbid 240 . . . . 5 (𝜑 → (ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} → 𝑊 = ∅))
4039necon3ad 2938 . . . 4 (𝜑 → (𝑊 ≠ ∅ → ¬ ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))
4121, 40mpd 15 . . 3 (𝜑 → ¬ ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})
4241iffalsed 4487 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))) = if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))))
43 gsumval3a.i . . 3 (𝜑 → ¬ 𝐴 ∈ ran ...)
4443iffalsed 4487 . 2 (𝜑 → if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
4520, 42, 443eqtrd 2768 1 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  cin 3902  wss 3903  c0 4284  ifcif 4476  {csn 4577  ccnv 5618  ran crn 5620  cima 5622  ccom 5623  cio 6436   Fn wfn 6477  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349   supp csupp 8093  Fincfn 8872  1c1 11010  cuz 12735  ...cfz 13410  seqcseq 13908  chash 14237  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  Cntzccntz 19194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seq 13909  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609
This theorem is referenced by:  gsumval3lem2  19785
  Copyright terms: Public domain W3C validator