MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval3a Structured version   Visualization version   GIF version

Theorem gsumval3a 19849
Description: Value of the group sum operation over an index set with finite support. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by AV, 29-May-2019.)
Hypotheses
Ref Expression
gsumval3.b 𝐵 = (Base‘𝐺)
gsumval3.0 0 = (0g𝐺)
gsumval3.p + = (+g𝐺)
gsumval3.z 𝑍 = (Cntz‘𝐺)
gsumval3.g (𝜑𝐺 ∈ Mnd)
gsumval3.a (𝜑𝐴𝑉)
gsumval3.f (𝜑𝐹:𝐴𝐵)
gsumval3.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumval3a.t (𝜑𝑊 ∈ Fin)
gsumval3a.n (𝜑𝑊 ≠ ∅)
gsumval3a.w 𝑊 = (𝐹 supp 0 )
gsumval3a.i (𝜑 → ¬ 𝐴 ∈ ran ...)
Assertion
Ref Expression
gsumval3a (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
Distinct variable groups:   𝑥,𝑓, +   𝐴,𝑓,𝑥   𝜑,𝑓,𝑥   𝑥, 0   𝑓,𝐺,𝑥   𝑥,𝑉   𝐵,𝑓,𝑥   𝑓,𝐹,𝑥   𝑓,𝑊,𝑥
Allowed substitution hints:   𝑉(𝑓)   0 (𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem gsumval3a
Dummy variables 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval3.b . . 3 𝐵 = (Base‘𝐺)
2 gsumval3.0 . . 3 0 = (0g𝐺)
3 gsumval3.p . . 3 + = (+g𝐺)
4 eqid 2727 . . 3 {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}
5 gsumval3a.w . . . . 5 𝑊 = (𝐹 supp 0 )
65a1i 11 . . . 4 (𝜑𝑊 = (𝐹 supp 0 ))
7 gsumval3.f . . . . . 6 (𝜑𝐹:𝐴𝐵)
8 gsumval3.a . . . . . 6 (𝜑𝐴𝑉)
97, 8fexd 7233 . . . . 5 (𝜑𝐹 ∈ V)
102fvexi 6905 . . . . 5 0 ∈ V
11 suppimacnv 8172 . . . . 5 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
129, 10, 11sylancl 585 . . . 4 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
13 gsumval3.g . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
141, 2, 3, 4gsumvallem2 18777 . . . . . . . 8 (𝐺 ∈ Mnd → {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 })
1513, 14syl 17 . . . . . . 7 (𝜑 → {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} = { 0 })
1615eqcomd 2733 . . . . . 6 (𝜑 → { 0 } = {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})
1716difeq2d 4118 . . . . 5 (𝜑 → (V ∖ { 0 }) = (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))
1817imaeq2d 6057 . . . 4 (𝜑 → (𝐹 “ (V ∖ { 0 })) = (𝐹 “ (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})))
196, 12, 183eqtrd 2771 . . 3 (𝜑𝑊 = (𝐹 “ (V ∖ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})))
201, 2, 3, 4, 19, 13, 8, 7gsumval 18628 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))))
21 gsumval3a.n . . . 4 (𝜑𝑊 ≠ ∅)
2215sseq2d 4010 . . . . . 6 (𝜑 → (ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} ↔ ran 𝐹 ⊆ { 0 }))
235a1i 11 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = (𝐹 supp 0 ))
247, 8jca 511 . . . . . . . . . . 11 (𝜑 → (𝐹:𝐴𝐵𝐴𝑉))
2524adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹:𝐴𝐵𝐴𝑉))
26 fex 7232 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
2725, 26syl 17 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 ∈ V)
2827, 10, 11sylancl 585 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
297ffnd 6717 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐴)
3029adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹 Fn 𝐴)
31 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → ran 𝐹 ⊆ { 0 })
32 df-f 6546 . . . . . . . . . 10 (𝐹:𝐴⟶{ 0 } ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ { 0 }))
3330, 31, 32sylanbrc 582 . . . . . . . . 9 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝐹:𝐴⟶{ 0 })
34 disjdif 4467 . . . . . . . . 9 ({ 0 } ∩ (V ∖ { 0 })) = ∅
35 fimacnvdisj 6769 . . . . . . . . 9 ((𝐹:𝐴⟶{ 0 } ∧ ({ 0 } ∩ (V ∖ { 0 })) = ∅) → (𝐹 “ (V ∖ { 0 })) = ∅)
3633, 34, 35sylancl 585 . . . . . . . 8 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → (𝐹 “ (V ∖ { 0 })) = ∅)
3723, 28, 363eqtrd 2771 . . . . . . 7 ((𝜑 ∧ ran 𝐹 ⊆ { 0 }) → 𝑊 = ∅)
3837ex 412 . . . . . 6 (𝜑 → (ran 𝐹 ⊆ { 0 } → 𝑊 = ∅))
3922, 38sylbid 239 . . . . 5 (𝜑 → (ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)} → 𝑊 = ∅))
4039necon3ad 2948 . . . 4 (𝜑 → (𝑊 ≠ ∅ → ¬ ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}))
4121, 40mpd 15 . . 3 (𝜑 → ¬ ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)})
4241iffalsed 4535 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑧𝐵 ∣ ∀𝑦𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)}, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))) = if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))))
43 gsumval3a.i . . 3 (𝜑 → ¬ 𝐴 ∈ ran ...)
4443iffalsed 4535 . 2 (𝜑 → if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊))))) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
4520, 42, 443eqtrd 2771 1 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wex 1774  wcel 2099  wne 2935  wral 3056  wrex 3065  {crab 3427  Vcvv 3469  cdif 3941  cin 3943  wss 3944  c0 4318  ifcif 4524  {csn 4624  ccnv 5671  ran crn 5673  cima 5675  ccom 5676  cio 6492   Fn wfn 6537  wf 6538  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7414   supp csupp 8159  Fincfn 8955  1c1 11131  cuz 12844  ...cfz 13508  seqcseq 13990  chash 14313  Basecbs 17171  +gcplusg 17224  0gc0g 17412   Σg cgsu 17413  Mndcmnd 18685  Cntzccntz 19257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seq 13991  df-0g 17414  df-gsum 17415  df-mgm 18591  df-sgrp 18670  df-mnd 18686
This theorem is referenced by:  gsumval3lem2  19852
  Copyright terms: Public domain W3C validator