Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrbag0 | Structured version Visualization version GIF version |
Description: The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
psrbag0.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
psrbag0 | ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12129 | . . . 4 ⊢ 0 ∈ ℕ0 | |
2 | 1 | fconst6 6627 | . . 3 ⊢ (𝐼 × {0}):𝐼⟶ℕ0 |
3 | c0ex 10851 | . . . . . 6 ⊢ 0 ∈ V | |
4 | 3 | fconst 6623 | . . . . 5 ⊢ (𝐼 × {0}):𝐼⟶{0} |
5 | incom 4129 | . . . . . 6 ⊢ ({0} ∩ ℕ) = (ℕ ∩ {0}) | |
6 | 0nnn 11890 | . . . . . . 7 ⊢ ¬ 0 ∈ ℕ | |
7 | disjsn 4641 | . . . . . . 7 ⊢ ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ) | |
8 | 6, 7 | mpbir 234 | . . . . . 6 ⊢ (ℕ ∩ {0}) = ∅ |
9 | 5, 8 | eqtri 2766 | . . . . 5 ⊢ ({0} ∩ ℕ) = ∅ |
10 | fimacnvdisj 6615 | . . . . 5 ⊢ (((𝐼 × {0}):𝐼⟶{0} ∧ ({0} ∩ ℕ) = ∅) → (◡(𝐼 × {0}) “ ℕ) = ∅) | |
11 | 4, 9, 10 | mp2an 692 | . . . 4 ⊢ (◡(𝐼 × {0}) “ ℕ) = ∅ |
12 | 0fin 8871 | . . . 4 ⊢ ∅ ∈ Fin | |
13 | 11, 12 | eqeltri 2835 | . . 3 ⊢ (◡(𝐼 × {0}) “ ℕ) ∈ Fin |
14 | 2, 13 | pm3.2i 474 | . 2 ⊢ ((𝐼 × {0}):𝐼⟶ℕ0 ∧ (◡(𝐼 × {0}) “ ℕ) ∈ Fin) |
15 | psrbag0.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
16 | 15 | psrbag 20900 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝐼 × {0}) ∈ 𝐷 ↔ ((𝐼 × {0}):𝐼⟶ℕ0 ∧ (◡(𝐼 × {0}) “ ℕ) ∈ Fin))) |
17 | 14, 16 | mpbiri 261 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 {crab 3066 ∩ cin 3879 ∅c0 4251 {csn 4555 × cxp 5563 ◡ccnv 5564 “ cima 5568 ⟶wf 6393 (class class class)co 7231 ↑m cmap 8528 Fincfn 8646 0cc0 10753 ℕcn 11854 ℕ0cn0 12114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-er 8411 df-map 8530 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-nn 11855 df-n0 12115 |
This theorem is referenced by: mplascl 21046 subrgasclcl 21049 evlslem1 21066 tdeglem4 24981 tdeglem4OLD 24982 mdegle0 24999 |
Copyright terms: Public domain | W3C validator |