![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbag0 | Structured version Visualization version GIF version |
Description: The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
psrbag0.d | β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
Ref | Expression |
---|---|
psrbag0 | β’ (πΌ β π β (πΌ Γ {0}) β π·) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12494 | . . . 4 β’ 0 β β0 | |
2 | 1 | fconst6 6781 | . . 3 β’ (πΌ Γ {0}):πΌβΆβ0 |
3 | c0ex 11215 | . . . . . 6 β’ 0 β V | |
4 | 3 | fconst 6777 | . . . . 5 β’ (πΌ Γ {0}):πΌβΆ{0} |
5 | incom 4201 | . . . . . 6 β’ ({0} β© β) = (β β© {0}) | |
6 | 0nnn 12255 | . . . . . . 7 β’ Β¬ 0 β β | |
7 | disjsn 4715 | . . . . . . 7 β’ ((β β© {0}) = β β Β¬ 0 β β) | |
8 | 6, 7 | mpbir 230 | . . . . . 6 β’ (β β© {0}) = β |
9 | 5, 8 | eqtri 2759 | . . . . 5 β’ ({0} β© β) = β |
10 | fimacnvdisj 6769 | . . . . 5 β’ (((πΌ Γ {0}):πΌβΆ{0} β§ ({0} β© β) = β ) β (β‘(πΌ Γ {0}) β β) = β ) | |
11 | 4, 9, 10 | mp2an 689 | . . . 4 β’ (β‘(πΌ Γ {0}) β β) = β |
12 | 0fin 9177 | . . . 4 β’ β β Fin | |
13 | 11, 12 | eqeltri 2828 | . . 3 β’ (β‘(πΌ Γ {0}) β β) β Fin |
14 | 2, 13 | pm3.2i 470 | . 2 β’ ((πΌ Γ {0}):πΌβΆβ0 β§ (β‘(πΌ Γ {0}) β β) β Fin) |
15 | psrbag0.d | . . 3 β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
16 | 15 | psrbag 21781 | . 2 β’ (πΌ β π β ((πΌ Γ {0}) β π· β ((πΌ Γ {0}):πΌβΆβ0 β§ (β‘(πΌ Γ {0}) β β) β Fin))) |
17 | 14, 16 | mpbiri 258 | 1 β’ (πΌ β π β (πΌ Γ {0}) β π·) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 {crab 3431 β© cin 3947 β c0 4322 {csn 4628 Γ cxp 5674 β‘ccnv 5675 β cima 5679 βΆwf 6539 (class class class)co 7412 βm cmap 8826 Fincfn 8945 0cc0 11116 βcn 12219 β0cn0 12479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-nn 12220 df-n0 12480 |
This theorem is referenced by: mplascl 21937 subrgasclcl 21940 evlslem1 21957 tdeglem4 25916 tdeglem4OLD 25917 mdegle0 25934 |
Copyright terms: Public domain | W3C validator |