MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftrel Structured version   Visualization version   GIF version

Theorem fliftrel 7172
Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftrel (𝜑𝐹 ⊆ (𝑅 × 𝑆))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftrel
StepHypRef Expression
1 flift.1 . 2 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
2 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
3 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
42, 3opelxpd 5626 . . . 4 ((𝜑𝑥𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
54fmpttd 6983 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑅 × 𝑆))
65frnd 6604 . 2 (𝜑 → ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ⊆ (𝑅 × 𝑆))
71, 6eqsstrid 3973 1 (𝜑𝐹 ⊆ (𝑅 × 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wss 3891  cop 4572  cmpt 5161   × cxp 5586  ran crn 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-fun 6432  df-fn 6433  df-f 6434
This theorem is referenced by:  fliftcnv  7175  fliftfun  7176  fliftf  7179  qliftrel  8562  fmucndlem  23424  pi1xfrcnv  24201
  Copyright terms: Public domain W3C validator