![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fliftrel | Structured version Visualization version GIF version |
Description: 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftrel | ⊢ (𝜑 → 𝐹 ⊆ (𝑅 × 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flift.1 | . 2 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
2 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
3 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
4 | 2, 3 | opelxpd 5721 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) |
5 | 4 | fmpttd 7130 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩):𝑋⟶(𝑅 × 𝑆)) |
6 | 5 | frnd 6735 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) ⊆ (𝑅 × 𝑆)) |
7 | 1, 6 | eqsstrid 4030 | 1 ⊢ (𝜑 → 𝐹 ⊆ (𝑅 × 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3949 ⟨cop 4638 ↦ cmpt 5235 × cxp 5680 ran crn 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-fun 6555 df-fn 6556 df-f 6557 |
This theorem is referenced by: fliftcnv 7325 fliftfun 7326 fliftf 7329 qliftrel 8826 fmucndlem 24224 pi1xfrcnv 25012 |
Copyright terms: Public domain | W3C validator |