![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fliftval | Structured version Visualization version GIF version |
Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
fliftval.4 | ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐶) |
fliftval.5 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
fliftval.6 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
fliftval | ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐹‘𝐶) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fliftval.6 | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → Fun 𝐹) |
3 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝑋) | |
4 | eqidd 2734 | . . . . 5 ⊢ (𝜑 → 𝐷 = 𝐷) | |
5 | eqidd 2734 | . . . . 5 ⊢ (𝑌 ∈ 𝑋 → 𝐶 = 𝐶) | |
6 | 4, 5 | anim12ci 615 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐶 = 𝐶 ∧ 𝐷 = 𝐷)) |
7 | fliftval.4 | . . . . . . 7 ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐶) | |
8 | 7 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑥 = 𝑌 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐶)) |
9 | fliftval.5 | . . . . . . 7 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
10 | 9 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑥 = 𝑌 → (𝐷 = 𝐵 ↔ 𝐷 = 𝐷)) |
11 | 8, 10 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝑌 → ((𝐶 = 𝐴 ∧ 𝐷 = 𝐵) ↔ (𝐶 = 𝐶 ∧ 𝐷 = 𝐷))) |
12 | 11 | rspcev 3613 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ (𝐶 = 𝐶 ∧ 𝐷 = 𝐷)) → ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
13 | 3, 6, 12 | syl2anc 585 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
14 | flift.1 | . . . . 5 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
15 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
16 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
17 | 14, 15, 16 | fliftel 7306 | . . . 4 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
18 | 17 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
19 | 13, 18 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → 𝐶𝐹𝐷) |
20 | funbrfv 6943 | . 2 ⊢ (Fun 𝐹 → (𝐶𝐹𝐷 → (𝐹‘𝐶) = 𝐷)) | |
21 | 2, 19, 20 | sylc 65 | 1 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑋) → (𝐹‘𝐶) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ⟨cop 4635 class class class wbr 5149 ↦ cmpt 5232 ran crn 5678 Fun wfun 6538 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 |
This theorem is referenced by: qliftval 8800 cygznlem2 21124 pi1xfrval 24570 pi1coval 24576 |
Copyright terms: Public domain | W3C validator |