MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftval Structured version   Visualization version   GIF version

Theorem fliftval 7048
Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
fliftval.4 (𝑥 = 𝑌𝐴 = 𝐶)
fliftval.5 (𝑥 = 𝑌𝐵 = 𝐷)
fliftval.6 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
fliftval ((𝜑𝑌𝑋) → (𝐹𝐶) = 𝐷)
Distinct variable groups:   𝑥,𝐶   𝑥,𝑅   𝑥,𝑌   𝑥,𝐷   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftval
StepHypRef Expression
1 fliftval.6 . . 3 (𝜑 → Fun 𝐹)
21adantr 484 . 2 ((𝜑𝑌𝑋) → Fun 𝐹)
3 simpr 488 . . . 4 ((𝜑𝑌𝑋) → 𝑌𝑋)
4 eqidd 2799 . . . . 5 (𝜑𝐷 = 𝐷)
5 eqidd 2799 . . . . 5 (𝑌𝑋𝐶 = 𝐶)
64, 5anim12ci 616 . . . 4 ((𝜑𝑌𝑋) → (𝐶 = 𝐶𝐷 = 𝐷))
7 fliftval.4 . . . . . . 7 (𝑥 = 𝑌𝐴 = 𝐶)
87eqeq2d 2809 . . . . . 6 (𝑥 = 𝑌 → (𝐶 = 𝐴𝐶 = 𝐶))
9 fliftval.5 . . . . . . 7 (𝑥 = 𝑌𝐵 = 𝐷)
109eqeq2d 2809 . . . . . 6 (𝑥 = 𝑌 → (𝐷 = 𝐵𝐷 = 𝐷))
118, 10anbi12d 633 . . . . 5 (𝑥 = 𝑌 → ((𝐶 = 𝐴𝐷 = 𝐵) ↔ (𝐶 = 𝐶𝐷 = 𝐷)))
1211rspcev 3571 . . . 4 ((𝑌𝑋 ∧ (𝐶 = 𝐶𝐷 = 𝐷)) → ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵))
133, 6, 12syl2anc 587 . . 3 ((𝜑𝑌𝑋) → ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵))
14 flift.1 . . . . 5 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
15 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
16 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
1714, 15, 16fliftel 7041 . . . 4 (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
1817adantr 484 . . 3 ((𝜑𝑌𝑋) → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
1913, 18mpbird 260 . 2 ((𝜑𝑌𝑋) → 𝐶𝐹𝐷)
20 funbrfv 6691 . 2 (Fun 𝐹 → (𝐶𝐹𝐷 → (𝐹𝐶) = 𝐷))
212, 19, 20sylc 65 1 ((𝜑𝑌𝑋) → (𝐹𝐶) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  cop 4531   class class class wbr 5030  cmpt 5110  ran crn 5520  Fun wfun 6318  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fv 6332
This theorem is referenced by:  qliftval  8369  cygznlem2  20260  pi1xfrval  23659  pi1coval  23665
  Copyright terms: Public domain W3C validator