MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftval Structured version   Visualization version   GIF version

Theorem fliftval 7167
Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
fliftval.4 (𝑥 = 𝑌𝐴 = 𝐶)
fliftval.5 (𝑥 = 𝑌𝐵 = 𝐷)
fliftval.6 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
fliftval ((𝜑𝑌𝑋) → (𝐹𝐶) = 𝐷)
Distinct variable groups:   𝑥,𝐶   𝑥,𝑅   𝑥,𝑌   𝑥,𝐷   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftval
StepHypRef Expression
1 fliftval.6 . . 3 (𝜑 → Fun 𝐹)
21adantr 480 . 2 ((𝜑𝑌𝑋) → Fun 𝐹)
3 simpr 484 . . . 4 ((𝜑𝑌𝑋) → 𝑌𝑋)
4 eqidd 2739 . . . . 5 (𝜑𝐷 = 𝐷)
5 eqidd 2739 . . . . 5 (𝑌𝑋𝐶 = 𝐶)
64, 5anim12ci 613 . . . 4 ((𝜑𝑌𝑋) → (𝐶 = 𝐶𝐷 = 𝐷))
7 fliftval.4 . . . . . . 7 (𝑥 = 𝑌𝐴 = 𝐶)
87eqeq2d 2749 . . . . . 6 (𝑥 = 𝑌 → (𝐶 = 𝐴𝐶 = 𝐶))
9 fliftval.5 . . . . . . 7 (𝑥 = 𝑌𝐵 = 𝐷)
109eqeq2d 2749 . . . . . 6 (𝑥 = 𝑌 → (𝐷 = 𝐵𝐷 = 𝐷))
118, 10anbi12d 630 . . . . 5 (𝑥 = 𝑌 → ((𝐶 = 𝐴𝐷 = 𝐵) ↔ (𝐶 = 𝐶𝐷 = 𝐷)))
1211rspcev 3552 . . . 4 ((𝑌𝑋 ∧ (𝐶 = 𝐶𝐷 = 𝐷)) → ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵))
133, 6, 12syl2anc 583 . . 3 ((𝜑𝑌𝑋) → ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵))
14 flift.1 . . . . 5 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
15 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
16 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
1714, 15, 16fliftel 7160 . . . 4 (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
1817adantr 480 . . 3 ((𝜑𝑌𝑋) → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
1913, 18mpbird 256 . 2 ((𝜑𝑌𝑋) → 𝐶𝐹𝐷)
20 funbrfv 6802 . 2 (Fun 𝐹 → (𝐶𝐹𝐷 → (𝐹𝐶) = 𝐷))
212, 19, 20sylc 65 1 ((𝜑𝑌𝑋) → (𝐹𝐶) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  cop 4564   class class class wbr 5070  cmpt 5153  ran crn 5581  Fun wfun 6412  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  qliftval  8553  cygznlem2  20688  pi1xfrval  24123  pi1coval  24129
  Copyright terms: Public domain W3C validator