MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovimad Structured version   Visualization version   GIF version

Theorem elovimad 7455
Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.)
Hypotheses
Ref Expression
elovimad.1 (𝜑𝐴𝐶)
elovimad.2 (𝜑𝐵𝐷)
elovimad.3 (𝜑 → Fun 𝐹)
elovimad.4 (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹)
Assertion
Ref Expression
elovimad (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷)))

Proof of Theorem elovimad
StepHypRef Expression
1 df-ov 7408 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 elovimad.1 . . . 4 (𝜑𝐴𝐶)
3 elovimad.2 . . . 4 (𝜑𝐵𝐷)
42, 3opelxpd 5693 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
5 elovimad.3 . . . 4 (𝜑 → Fun 𝐹)
6 elovimad.4 . . . . 5 (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹)
76, 4sseldd 3959 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
8 funfvima 7222 . . . 4 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷))))
95, 7, 8syl2anc 584 . . 3 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷))))
104, 9mpd 15 . 2 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷)))
111, 10eqeltrid 2838 1 (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3926  cop 4607   × cxp 5652  dom cdm 5654  cima 5657  Fun wfun 6525  cfv 6531  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-ov 7408
This theorem is referenced by:  psdmul  22104  ltgov  28576  xrofsup  32744  icoreelrn  37379
  Copyright terms: Public domain W3C validator