| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovimad | Structured version Visualization version GIF version | ||
| Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.) |
| Ref | Expression |
|---|---|
| elovimad.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| elovimad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| elovimad.3 | ⊢ (𝜑 → Fun 𝐹) |
| elovimad.4 | ⊢ (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹) |
| Ref | Expression |
|---|---|
| elovimad | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7390 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | elovimad.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 3 | elovimad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 4 | 2, 3 | opelxpd 5677 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| 5 | elovimad.3 | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
| 6 | elovimad.4 | . . . . 5 ⊢ (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹) | |
| 7 | 6, 4 | sseldd 3947 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 8 | funfvima 7204 | . . . 4 ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷)))) | |
| 9 | 5, 7, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷)))) |
| 10 | 4, 9 | mpd 15 | . 2 ⊢ (𝜑 → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷))) |
| 11 | 1, 10 | eqeltrid 2832 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 〈cop 4595 × cxp 5636 dom cdm 5638 “ cima 5641 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: psdmul 22053 ltgov 28524 xrofsup 32690 icoreelrn 37349 |
| Copyright terms: Public domain | W3C validator |