MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovimad Structured version   Visualization version   GIF version

Theorem elovimad 7498
Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.)
Hypotheses
Ref Expression
elovimad.1 (𝜑𝐴𝐶)
elovimad.2 (𝜑𝐵𝐷)
elovimad.3 (𝜑 → Fun 𝐹)
elovimad.4 (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹)
Assertion
Ref Expression
elovimad (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷)))

Proof of Theorem elovimad
StepHypRef Expression
1 df-ov 7451 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 elovimad.1 . . . 4 (𝜑𝐴𝐶)
3 elovimad.2 . . . 4 (𝜑𝐵𝐷)
42, 3opelxpd 5739 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
5 elovimad.3 . . . 4 (𝜑 → Fun 𝐹)
6 elovimad.4 . . . . 5 (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹)
76, 4sseldd 4009 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
8 funfvima 7267 . . . 4 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷))))
95, 7, 8syl2anc 583 . . 3 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷))))
104, 9mpd 15 . 2 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷)))
111, 10eqeltrid 2848 1 (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3976  cop 4654   × cxp 5698  dom cdm 5700  cima 5703  Fun wfun 6567  cfv 6573  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-ov 7451
This theorem is referenced by:  psdmul  22193  ltgov  28623  xrofsup  32774  icoreelrn  37327
  Copyright terms: Public domain W3C validator