![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elovimad | Structured version Visualization version GIF version |
Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.) |
Ref | Expression |
---|---|
elovimad.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
elovimad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
elovimad.3 | ⊢ (𝜑 → Fun 𝐹) |
elovimad.4 | ⊢ (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹) |
Ref | Expression |
---|---|
elovimad | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6881 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | elovimad.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
3 | elovimad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
4 | opelxpi 5349 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
5 | 2, 3, 4 | syl2anc 580 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
6 | elovimad.3 | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
7 | elovimad.4 | . . . . 5 ⊢ (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹) | |
8 | 7, 5 | sseldd 3799 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
9 | funfvima 6721 | . . . 4 ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷)))) | |
10 | 6, 8, 9 | syl2anc 580 | . . 3 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷)))) |
11 | 5, 10 | mpd 15 | . 2 ⊢ (𝜑 → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷))) |
12 | 1, 11 | syl5eqel 2882 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ⊆ wss 3769 〈cop 4374 × cxp 5310 dom cdm 5312 “ cima 5315 Fun wfun 6095 ‘cfv 6101 (class class class)co 6878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-fv 6109 df-ov 6881 |
This theorem is referenced by: ltgov 25848 xrofsup 30051 icoreelrn 33707 |
Copyright terms: Public domain | W3C validator |