MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovimad Structured version   Visualization version   GIF version

Theorem elovimad 7474
Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.)
Hypotheses
Ref Expression
elovimad.1 (𝜑𝐴𝐶)
elovimad.2 (𝜑𝐵𝐷)
elovimad.3 (𝜑 → Fun 𝐹)
elovimad.4 (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹)
Assertion
Ref Expression
elovimad (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷)))

Proof of Theorem elovimad
StepHypRef Expression
1 df-ov 7429 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 elovimad.1 . . . 4 (𝜑𝐴𝐶)
3 elovimad.2 . . . 4 (𝜑𝐵𝐷)
42, 3opelxpd 5721 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
5 elovimad.3 . . . 4 (𝜑 → Fun 𝐹)
6 elovimad.4 . . . . 5 (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹)
76, 4sseldd 3983 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
8 funfvima 7248 . . . 4 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷))))
95, 7, 8syl2anc 582 . . 3 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷))))
104, 9mpd 15 . 2 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷)))
111, 10eqeltrid 2833 1 (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wss 3949  cop 4638   × cxp 5680  dom cdm 5682  cima 5685  Fun wfun 6547  cfv 6553  (class class class)co 7426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-fv 6561  df-ov 7429
This theorem is referenced by:  psdmul  22097  ltgov  28421  xrofsup  32558  icoreelrn  36873
  Copyright terms: Public domain W3C validator