![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elovimad | Structured version Visualization version GIF version |
Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.) |
Ref | Expression |
---|---|
elovimad.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
elovimad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
elovimad.3 | ⊢ (𝜑 → Fun 𝐹) |
elovimad.4 | ⊢ (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹) |
Ref | Expression |
---|---|
elovimad | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7429 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | elovimad.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
3 | elovimad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
4 | 2, 3 | opelxpd 5721 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
5 | elovimad.3 | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
6 | elovimad.4 | . . . . 5 ⊢ (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹) | |
7 | 6, 4 | sseldd 3983 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
8 | funfvima 7248 | . . . 4 ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷)))) | |
9 | 5, 7, 8 | syl2anc 582 | . . 3 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷)))) |
10 | 4, 9 | mpd 15 | . 2 ⊢ (𝜑 → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷))) |
11 | 1, 10 | eqeltrid 2833 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ⊆ wss 3949 〈cop 4638 × cxp 5680 dom cdm 5682 “ cima 5685 Fun wfun 6547 ‘cfv 6553 (class class class)co 7426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-fv 6561 df-ov 7429 |
This theorem is referenced by: psdmul 22097 ltgov 28421 xrofsup 32558 icoreelrn 36873 |
Copyright terms: Public domain | W3C validator |