| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovimad | Structured version Visualization version GIF version | ||
| Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.) |
| Ref | Expression |
|---|---|
| elovimad.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| elovimad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| elovimad.3 | ⊢ (𝜑 → Fun 𝐹) |
| elovimad.4 | ⊢ (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹) |
| Ref | Expression |
|---|---|
| elovimad | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7349 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | elovimad.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 3 | elovimad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 4 | 2, 3 | opelxpd 5655 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| 5 | elovimad.3 | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
| 6 | elovimad.4 | . . . . 5 ⊢ (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹) | |
| 7 | 6, 4 | sseldd 3935 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 8 | funfvima 7164 | . . . 4 ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷)))) | |
| 9 | 5, 7, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷)))) |
| 10 | 4, 9 | mpd 15 | . 2 ⊢ (𝜑 → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷))) |
| 11 | 1, 10 | eqeltrid 2835 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3902 〈cop 4582 × cxp 5614 dom cdm 5616 “ cima 5619 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: psdmul 22079 ltgov 28573 xrofsup 32745 icoreelrn 37394 |
| Copyright terms: Public domain | W3C validator |