| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovimad | Structured version Visualization version GIF version | ||
| Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.) |
| Ref | Expression |
|---|---|
| elovimad.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| elovimad.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| elovimad.3 | ⊢ (𝜑 → Fun 𝐹) |
| elovimad.4 | ⊢ (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹) |
| Ref | Expression |
|---|---|
| elovimad | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7355 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | elovimad.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 3 | elovimad.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 4 | 2, 3 | opelxpd 5658 | . . 3 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| 5 | elovimad.3 | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
| 6 | elovimad.4 | . . . . 5 ⊢ (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹) | |
| 7 | 6, 4 | sseldd 3931 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ dom 𝐹) |
| 8 | funfvima 7170 | . . . 4 ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷)))) | |
| 9 | 5, 7, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷)))) |
| 10 | 4, 9 | mpd 15 | . 2 ⊢ (𝜑 → (𝐹‘〈𝐴, 𝐵〉) ∈ (𝐹 “ (𝐶 × 𝐷))) |
| 11 | 1, 10 | eqeltrid 2837 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 〈cop 4581 × cxp 5617 dom cdm 5619 “ cima 5622 Fun wfun 6480 ‘cfv 6486 (class class class)co 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: psdmul 22082 ltgov 28576 xrofsup 32754 icoreelrn 37426 |
| Copyright terms: Public domain | W3C validator |