MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovimad Structured version   Visualization version   GIF version

Theorem elovimad 7396
Description: Elementhood of the image set of an operation value. (Contributed by Thierry Arnoux, 13-Mar-2017.)
Hypotheses
Ref Expression
elovimad.1 (𝜑𝐴𝐶)
elovimad.2 (𝜑𝐵𝐷)
elovimad.3 (𝜑 → Fun 𝐹)
elovimad.4 (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹)
Assertion
Ref Expression
elovimad (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷)))

Proof of Theorem elovimad
StepHypRef Expression
1 df-ov 7349 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 elovimad.1 . . . 4 (𝜑𝐴𝐶)
3 elovimad.2 . . . 4 (𝜑𝐵𝐷)
42, 3opelxpd 5655 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷))
5 elovimad.3 . . . 4 (𝜑 → Fun 𝐹)
6 elovimad.4 . . . . 5 (𝜑 → (𝐶 × 𝐷) ⊆ dom 𝐹)
76, 4sseldd 3935 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
8 funfvima 7164 . . . 4 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷))))
95, 7, 8syl2anc 584 . . 3 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷))))
104, 9mpd 15 . 2 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) ∈ (𝐹 “ (𝐶 × 𝐷)))
111, 10eqeltrid 2835 1 (𝜑 → (𝐴𝐹𝐵) ∈ (𝐹 “ (𝐶 × 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3902  cop 4582   × cxp 5614  dom cdm 5616  cima 5619  Fun wfun 6475  cfv 6481  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349
This theorem is referenced by:  psdmul  22079  ltgov  28573  xrofsup  32745  icoreelrn  37394
  Copyright terms: Public domain W3C validator