![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version |
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab4 6262 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | df-mpt 5042 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 2 | funeqi 6246 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
4 | 1, 3 | mpbir 232 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1522 ∈ wcel 2081 {copab 5024 ↦ cmpt 5041 Fun wfun 6219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-fun 6227 |
This theorem is referenced by: funmpt2 6264 resfunexg 6844 mptexg 6850 mptexgf 6851 mptexw 7510 brtpos2 7749 tposfun 7759 mptfi 8669 sniffsupp 8719 cantnfrescl 8985 cantnflem1 8998 r0weon 9284 axcc2lem 9704 mptct 9806 negfi 11437 mptnn0fsupp 13215 ccatalpha 13791 mreacs 16758 acsfn 16759 isofval 16856 lubfun 17419 glbfun 17432 acsficl2d 17615 gsum2dlem2 18811 gsum2d 18812 dprdfinv 18858 dprdfadd 18859 dmdprdsplitlem 18876 dpjidcl 18897 mptscmfsupp0 19389 psrass1lem 19845 psrlidm 19871 psrridm 19872 psrass1 19873 psrass23l 19876 psrcom 19877 psrass23 19878 mplsubrg 19908 mplmon 19931 mplmonmul 19932 mplcoe1 19933 mplcoe5 19936 mplbas2 19938 evlslem2 19979 evlslem6 19980 psropprmul 20089 coe1mul2 20120 pjpm 20534 frlmphllem 20606 frlmphl 20607 uvcff 20617 uvcresum 20619 oftpos 20745 pmatcollpw2lem 21069 tgrest 21451 cmpfi 21700 1stcrestlem 21744 ptcnplem 21913 xkoinjcn 21979 symgtgp 22393 eltsms 22424 rrxmval 23691 tdeglem4 24337 plypf1 24485 tayl0 24633 taylthlem1 24644 xrlimcnp 25228 abrexexd 29961 ofpreima 30100 mptctf 30141 rmfsupp2 30520 psgnfzto1stlem 30664 locfinreflem 30721 measdivcstALTV 31101 sxbrsigalem0 31146 sitgf 31222 nosupno 32812 imageval 33000 poimirlem30 34453 poimir 34456 choicefi 41003 fourierdlem80 42013 sge0tsms 42204 scmsuppss 43900 rmfsupp 43902 scmfsupp 43906 fdivval 44080 |
Copyright terms: Public domain | W3C validator |