Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version |
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab4 6455 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | df-mpt 5154 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 2 | funeqi 6439 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {copab 5132 ↦ cmpt 5153 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-fun 6420 |
This theorem is referenced by: funmpt2 6457 resfunexg 7073 mptexg 7079 mptexgf 7080 mptexw 7769 brtpos2 8019 tposfun 8029 mptfi 9048 sniffsupp 9089 cantnfrescl 9364 cantnflem1 9377 r0weon 9699 axcc2lem 10123 mptct 10225 negfi 11854 mptnn0fsupp 13645 ccatalpha 14226 mreacs 17284 acsfn 17285 isofval 17386 lubfun 17985 glbfun 17998 acsficl2d 18185 gsum2dlem2 19487 gsum2d 19488 dprdfinv 19537 dprdfadd 19538 dmdprdsplitlem 19555 dpjidcl 19576 mptscmfsupp0 20103 pjpm 20825 frlmphllem 20897 frlmphl 20898 uvcff 20908 uvcresum 20910 psrass1lemOLD 21053 psrass1lem 21056 psrlidm 21082 psrridm 21083 psrass1 21084 psrass23l 21087 psrcom 21088 psrass23 21089 mplsubrg 21121 mplmon 21146 mplmonmul 21147 mplcoe1 21148 mplcoe5 21151 mplbas2 21153 evlslem2 21199 evlslem6 21201 psropprmul 21319 coe1mul2 21350 oftpos 21509 pmatcollpw2lem 21834 tgrest 22218 cmpfi 22467 1stcrestlem 22511 ptcnplem 22680 xkoinjcn 22746 symgtgp 23165 eltsms 23192 rrxmval 24474 tdeglem4 25129 tdeglem4OLD 25130 plypf1 25278 tayl0 25426 taylthlem1 25437 xrlimcnp 26023 abrexexd 30755 ofpreima 30904 mptctf 30954 gsummptres2 31215 psgnfzto1stlem 31269 rmfsupp2 31394 elrspunidl 31508 locfinreflem 31692 measdivcstALTV 32093 sxbrsigalem0 32138 sitgf 32214 nosupno 33833 noinfno 33848 imageval 34159 poimirlem30 35734 poimir 35737 evlsbagval 40198 mhphf 40208 choicefi 42629 fourierdlem80 43617 sge0tsms 43808 scmsuppss 45596 rmfsupp 45598 scmfsupp 45602 fdivval 45773 |
Copyright terms: Public domain | W3C validator |