| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version | ||
| Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab4 6523 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | df-mpt 5177 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 2 | funeqi 6507 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5157 ↦ cmpt 5176 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-fun 6488 |
| This theorem is referenced by: funmpt2 6525 resfunexg 7155 mptexg 7161 mptexgf 7162 mptexw 7895 brtpos2 8172 tposfun 8182 mptfi 9260 fsuppssov1 9293 sniffsupp 9309 cantnfrescl 9591 cantnflem1 9604 r0weon 9925 axcc2lem 10349 mptct 10451 negfi 12092 mptnn0fsupp 13922 ccatalpha 14518 mreacs 17582 acsfn 17583 isofval 17682 lubfun 18274 glbfun 18287 acsficl2d 18476 gsum2dlem2 19868 gsum2d 19869 dprdfinv 19918 dprdfadd 19919 dmdprdsplitlem 19936 dpjidcl 19957 mptscmfsupp0 20848 pjpm 21633 frlmphllem 21705 uvcff 21716 uvcresum 21718 psrass1lem 21857 psrlidm 21887 psrridm 21888 psrass1 21889 psrass23l 21892 psrcom 21893 psrass23 21894 mplsubrg 21930 mplmon 21958 mplmonmul 21959 mplcoe1 21960 mplcoe5 21963 mplbas2 21965 evlslem2 22002 evlslem6 22004 psdmplcl 22065 psdmul 22069 psropprmul 22138 coe1mul2 22171 evls1fpws 22272 oftpos 22355 pmatcollpw2lem 22680 tgrest 23062 cmpfi 23311 1stcrestlem 23355 ptcnplem 23524 xkoinjcn 23590 symgtgp 24009 eltsms 24036 rrxmval 25321 tdeglem4 25981 plypf1 26133 tayl0 26285 taylthlem1 26297 xrlimcnp 26894 nosupno 27631 noinfno 27646 abrexexd 32471 ofpreima 32622 fisuppov1 32639 mptiffisupp 32649 mptctf 32674 gsummptres2 33019 psgnfzto1stlem 33055 rmfsupp2 33188 elrspunidl 33375 elrspunsn 33376 locfinreflem 33806 measdivcstALTV 34191 sitgf 34314 imageval 35903 poimirlem30 37629 poimir 37632 evlsvvvallem2 42535 evlsvvval 42536 selvvvval 42558 evlselv 42560 mhphf 42570 choicefi 45178 rn1st 45251 fourierdlem80 46168 sge0tsms 46362 scmsuppss 48343 rmfsupp 48345 scmfsupp 48347 fdivval 48512 |
| Copyright terms: Public domain | W3C validator |