| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version | ||
| Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab4 6526 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | df-mpt 5177 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 2 | funeqi 6510 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 {copab 5157 ↦ cmpt 5176 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-fun 6491 |
| This theorem is referenced by: funmpt2 6528 resfunexg 7158 mptexg 7164 mptexgf 7165 mptexw 7894 brtpos2 8171 tposfun 8181 mptfi 9245 fsuppssov1 9278 sniffsupp 9294 cantnfrescl 9576 cantnflem1 9589 r0weon 9913 axcc2lem 10337 mptct 10439 negfi 12081 mptnn0fsupp 13914 ccatalpha 14511 mreacs 17574 acsfn 17575 isofval 17674 lubfun 18266 glbfun 18279 acsficl2d 18468 gsum2dlem2 19893 gsum2d 19894 dprdfinv 19943 dprdfadd 19944 dmdprdsplitlem 19961 dpjidcl 19982 mptscmfsupp0 20870 pjpm 21655 frlmphllem 21727 uvcff 21738 uvcresum 21740 psrass1lem 21879 psrlidm 21909 psrridm 21910 psrass1 21911 psrass23l 21914 psrcom 21915 psrass23 21916 mplsubrg 21952 mplmon 21980 mplmonmul 21981 mplcoe1 21982 mplcoe5 21985 mplbas2 21987 evlslem2 22024 evlslem6 22026 psdmplcl 22087 psdmul 22091 psropprmul 22160 coe1mul2 22193 evls1fpws 22294 oftpos 22377 pmatcollpw2lem 22702 tgrest 23084 cmpfi 23333 1stcrestlem 23377 ptcnplem 23546 xkoinjcn 23612 symgtgp 24031 eltsms 24058 rrxmval 25342 tdeglem4 26002 plypf1 26154 tayl0 26306 taylthlem1 26318 xrlimcnp 26915 nosupno 27652 noinfno 27667 abrexexd 32500 ofpreima 32658 fisuppov1 32675 mptiffisupp 32685 mptctf 32710 gsummptres2 33044 psgnfzto1stlem 33080 rmfsupp2 33216 elrspunidl 33404 elrspunsn 33405 locfinreflem 33864 measdivcstALTV 34249 sitgf 34371 imageval 35983 poimirlem30 37700 poimir 37703 evlsvvvallem2 42670 evlsvvval 42671 selvvvval 42693 evlselv 42695 mhphf 42705 choicefi 45311 rn1st 45384 fourierdlem80 46298 sge0tsms 46492 scmsuppss 48485 rmfsupp 48487 scmfsupp 48489 fdivval 48654 |
| Copyright terms: Public domain | W3C validator |