Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version |
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab4 6471 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | df-mpt 5158 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 2 | funeqi 6455 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 {copab 5136 ↦ cmpt 5157 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: funmpt2 6473 resfunexg 7091 mptexg 7097 mptexgf 7098 mptexw 7795 brtpos2 8048 tposfun 8058 mptfi 9118 sniffsupp 9159 cantnfrescl 9434 cantnflem1 9447 r0weon 9768 axcc2lem 10192 mptct 10294 negfi 11924 mptnn0fsupp 13717 ccatalpha 14298 mreacs 17367 acsfn 17368 isofval 17469 lubfun 18070 glbfun 18083 acsficl2d 18270 gsum2dlem2 19572 gsum2d 19573 dprdfinv 19622 dprdfadd 19623 dmdprdsplitlem 19640 dpjidcl 19661 mptscmfsupp0 20188 pjpm 20915 frlmphllem 20987 frlmphl 20988 uvcff 20998 uvcresum 21000 psrass1lemOLD 21143 psrass1lem 21146 psrlidm 21172 psrridm 21173 psrass1 21174 psrass23l 21177 psrcom 21178 psrass23 21179 mplsubrg 21211 mplmon 21236 mplmonmul 21237 mplcoe1 21238 mplcoe5 21241 mplbas2 21243 evlslem2 21289 evlslem6 21291 psropprmul 21409 coe1mul2 21440 oftpos 21601 pmatcollpw2lem 21926 tgrest 22310 cmpfi 22559 1stcrestlem 22603 ptcnplem 22772 xkoinjcn 22838 symgtgp 23257 eltsms 23284 rrxmval 24569 tdeglem4 25224 tdeglem4OLD 25225 plypf1 25373 tayl0 25521 taylthlem1 25532 xrlimcnp 26118 abrexexd 30854 ofpreima 31002 mptctf 31052 gsummptres2 31313 psgnfzto1stlem 31367 rmfsupp2 31492 elrspunidl 31606 locfinreflem 31790 measdivcstALTV 32193 sxbrsigalem0 32238 sitgf 32314 nosupno 33906 noinfno 33921 imageval 34232 poimirlem30 35807 poimir 35810 evlsbagval 40275 mhphf 40285 prjcrv0 40470 choicefi 42740 fourierdlem80 43727 sge0tsms 43918 scmsuppss 45708 rmfsupp 45710 scmfsupp 45714 fdivval 45885 |
Copyright terms: Public domain | W3C validator |