![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version |
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab4 6615 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | df-mpt 5250 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 2 | funeqi 6599 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
4 | 1, 3 | mpbir 231 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {copab 5228 ↦ cmpt 5249 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: funmpt2 6617 resfunexg 7252 mptexg 7258 mptexgf 7259 mptexw 7993 brtpos2 8273 tposfun 8283 mptfi 9421 fsuppssov1 9453 sniffsupp 9469 cantnfrescl 9745 cantnflem1 9758 r0weon 10081 axcc2lem 10505 mptct 10607 negfi 12244 mptnn0fsupp 14048 ccatalpha 14641 mreacs 17716 acsfn 17717 isofval 17818 lubfun 18422 glbfun 18435 acsficl2d 18622 gsum2dlem2 20013 gsum2d 20014 dprdfinv 20063 dprdfadd 20064 dmdprdsplitlem 20081 dpjidcl 20102 mptscmfsupp0 20947 pjpm 21751 frlmphllem 21823 uvcff 21834 uvcresum 21836 psrass1lem 21975 psrlidm 22005 psrridm 22006 psrass1 22007 psrass23l 22010 psrcom 22011 psrass23 22012 mplsubrg 22048 mplmon 22076 mplmonmul 22077 mplcoe1 22078 mplcoe5 22081 mplbas2 22083 evlslem2 22126 evlslem6 22128 psdmplcl 22189 psdmul 22193 psropprmul 22260 coe1mul2 22293 evls1fpws 22394 oftpos 22479 pmatcollpw2lem 22804 tgrest 23188 cmpfi 23437 1stcrestlem 23481 ptcnplem 23650 xkoinjcn 23716 symgtgp 24135 eltsms 24162 rrxmval 25458 tdeglem4 26119 plypf1 26271 tayl0 26421 taylthlem1 26433 xrlimcnp 27029 nosupno 27766 noinfno 27781 abrexexd 32537 ofpreima 32683 mptiffisupp 32705 mptctf 32731 gsummptres2 33036 psgnfzto1stlem 33093 rmfsupp2 33218 elrspunidl 33421 elrspunsn 33422 locfinreflem 33786 measdivcstALTV 34189 sitgf 34312 imageval 35894 poimirlem30 37610 poimir 37613 evlsvvvallem2 42517 evlsvvval 42518 selvvvval 42540 evlselv 42542 mhphf 42552 choicefi 45107 rn1st 45183 fourierdlem80 46107 sge0tsms 46301 scmsuppss 48097 rmfsupp 48099 scmfsupp 48103 fdivval 48273 |
Copyright terms: Public domain | W3C validator |