| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version | ||
| Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab4 6573 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | df-mpt 5202 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 2 | funeqi 6557 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {copab 5181 ↦ cmpt 5201 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-fun 6533 |
| This theorem is referenced by: funmpt2 6575 resfunexg 7207 mptexg 7213 mptexgf 7214 mptexw 7951 brtpos2 8231 tposfun 8241 mptfi 9363 fsuppssov1 9396 sniffsupp 9412 cantnfrescl 9690 cantnflem1 9703 r0weon 10026 axcc2lem 10450 mptct 10552 negfi 12191 mptnn0fsupp 14015 ccatalpha 14611 mreacs 17670 acsfn 17671 isofval 17770 lubfun 18362 glbfun 18375 acsficl2d 18562 gsum2dlem2 19952 gsum2d 19953 dprdfinv 20002 dprdfadd 20003 dmdprdsplitlem 20020 dpjidcl 20041 mptscmfsupp0 20884 pjpm 21668 frlmphllem 21740 uvcff 21751 uvcresum 21753 psrass1lem 21892 psrlidm 21922 psrridm 21923 psrass1 21924 psrass23l 21927 psrcom 21928 psrass23 21929 mplsubrg 21965 mplmon 21993 mplmonmul 21994 mplcoe1 21995 mplcoe5 21998 mplbas2 22000 evlslem2 22037 evlslem6 22039 psdmplcl 22100 psdmul 22104 psropprmul 22173 coe1mul2 22206 evls1fpws 22307 oftpos 22390 pmatcollpw2lem 22715 tgrest 23097 cmpfi 23346 1stcrestlem 23390 ptcnplem 23559 xkoinjcn 23625 symgtgp 24044 eltsms 24071 rrxmval 25357 tdeglem4 26017 plypf1 26169 tayl0 26321 taylthlem1 26333 xrlimcnp 26930 nosupno 27667 noinfno 27682 abrexexd 32490 ofpreima 32643 fisuppov1 32660 mptiffisupp 32670 mptctf 32695 gsummptres2 33047 psgnfzto1stlem 33111 rmfsupp2 33233 elrspunidl 33443 elrspunsn 33444 locfinreflem 33871 measdivcstALTV 34256 sitgf 34379 imageval 35948 poimirlem30 37674 poimir 37677 evlsvvvallem2 42585 evlsvvval 42586 selvvvval 42608 evlselv 42610 mhphf 42620 choicefi 45224 rn1st 45297 fourierdlem80 46215 sge0tsms 46409 scmsuppss 48346 rmfsupp 48348 scmfsupp 48350 fdivval 48519 |
| Copyright terms: Public domain | W3C validator |