| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version | ||
| Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab4 6553 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | df-mpt 5189 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 2 | funeqi 6537 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5169 ↦ cmpt 5188 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6513 |
| This theorem is referenced by: funmpt2 6555 resfunexg 7189 mptexg 7195 mptexgf 7196 mptexw 7931 brtpos2 8211 tposfun 8221 mptfi 9302 fsuppssov1 9335 sniffsupp 9351 cantnfrescl 9629 cantnflem1 9642 r0weon 9965 axcc2lem 10389 mptct 10491 negfi 12132 mptnn0fsupp 13962 ccatalpha 14558 mreacs 17619 acsfn 17620 isofval 17719 lubfun 18311 glbfun 18324 acsficl2d 18511 gsum2dlem2 19901 gsum2d 19902 dprdfinv 19951 dprdfadd 19952 dmdprdsplitlem 19969 dpjidcl 19990 mptscmfsupp0 20833 pjpm 21617 frlmphllem 21689 uvcff 21700 uvcresum 21702 psrass1lem 21841 psrlidm 21871 psrridm 21872 psrass1 21873 psrass23l 21876 psrcom 21877 psrass23 21878 mplsubrg 21914 mplmon 21942 mplmonmul 21943 mplcoe1 21944 mplcoe5 21947 mplbas2 21949 evlslem2 21986 evlslem6 21988 psdmplcl 22049 psdmul 22053 psropprmul 22122 coe1mul2 22155 evls1fpws 22256 oftpos 22339 pmatcollpw2lem 22664 tgrest 23046 cmpfi 23295 1stcrestlem 23339 ptcnplem 23508 xkoinjcn 23574 symgtgp 23993 eltsms 24020 rrxmval 25305 tdeglem4 25965 plypf1 26117 tayl0 26269 taylthlem1 26281 xrlimcnp 26878 nosupno 27615 noinfno 27630 abrexexd 32438 ofpreima 32589 fisuppov1 32606 mptiffisupp 32616 mptctf 32641 gsummptres2 32993 psgnfzto1stlem 33057 rmfsupp2 33189 elrspunidl 33399 elrspunsn 33400 locfinreflem 33830 measdivcstALTV 34215 sitgf 34338 imageval 35918 poimirlem30 37644 poimir 37647 evlsvvvallem2 42550 evlsvvval 42551 selvvvval 42573 evlselv 42575 mhphf 42585 choicefi 45194 rn1st 45267 fourierdlem80 46184 sge0tsms 46378 scmsuppss 48359 rmfsupp 48361 scmfsupp 48363 fdivval 48528 |
| Copyright terms: Public domain | W3C validator |