| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version | ||
| Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab4 6556 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | df-mpt 5192 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 2 | funeqi 6540 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5172 ↦ cmpt 5191 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-fun 6516 |
| This theorem is referenced by: funmpt2 6558 resfunexg 7192 mptexg 7198 mptexgf 7199 mptexw 7934 brtpos2 8214 tposfun 8224 mptfi 9309 fsuppssov1 9342 sniffsupp 9358 cantnfrescl 9636 cantnflem1 9649 r0weon 9972 axcc2lem 10396 mptct 10498 negfi 12139 mptnn0fsupp 13969 ccatalpha 14565 mreacs 17626 acsfn 17627 isofval 17726 lubfun 18318 glbfun 18331 acsficl2d 18518 gsum2dlem2 19908 gsum2d 19909 dprdfinv 19958 dprdfadd 19959 dmdprdsplitlem 19976 dpjidcl 19997 mptscmfsupp0 20840 pjpm 21624 frlmphllem 21696 uvcff 21707 uvcresum 21709 psrass1lem 21848 psrlidm 21878 psrridm 21879 psrass1 21880 psrass23l 21883 psrcom 21884 psrass23 21885 mplsubrg 21921 mplmon 21949 mplmonmul 21950 mplcoe1 21951 mplcoe5 21954 mplbas2 21956 evlslem2 21993 evlslem6 21995 psdmplcl 22056 psdmul 22060 psropprmul 22129 coe1mul2 22162 evls1fpws 22263 oftpos 22346 pmatcollpw2lem 22671 tgrest 23053 cmpfi 23302 1stcrestlem 23346 ptcnplem 23515 xkoinjcn 23581 symgtgp 24000 eltsms 24027 rrxmval 25312 tdeglem4 25972 plypf1 26124 tayl0 26276 taylthlem1 26288 xrlimcnp 26885 nosupno 27622 noinfno 27637 abrexexd 32445 ofpreima 32596 fisuppov1 32613 mptiffisupp 32623 mptctf 32648 gsummptres2 33000 psgnfzto1stlem 33064 rmfsupp2 33196 elrspunidl 33406 elrspunsn 33407 locfinreflem 33837 measdivcstALTV 34222 sitgf 34345 imageval 35925 poimirlem30 37651 poimir 37654 evlsvvvallem2 42557 evlsvvval 42558 selvvvval 42580 evlselv 42582 mhphf 42592 choicefi 45201 rn1st 45274 fourierdlem80 46191 sge0tsms 46385 scmsuppss 48363 rmfsupp 48365 scmfsupp 48367 fdivval 48532 |
| Copyright terms: Public domain | W3C validator |