| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version | ||
| Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab4 6514 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | df-mpt 5171 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 3 | 2 | funeqi 6498 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2110 {copab 5151 ↦ cmpt 5170 Fun wfun 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-fun 6479 |
| This theorem is referenced by: funmpt2 6516 resfunexg 7144 mptexg 7150 mptexgf 7151 mptexw 7880 brtpos2 8157 tposfun 8167 mptfi 9230 fsuppssov1 9263 sniffsupp 9279 cantnfrescl 9561 cantnflem1 9574 r0weon 9895 axcc2lem 10319 mptct 10421 negfi 12063 mptnn0fsupp 13896 ccatalpha 14493 mreacs 17556 acsfn 17557 isofval 17656 lubfun 18248 glbfun 18261 acsficl2d 18450 gsum2dlem2 19876 gsum2d 19877 dprdfinv 19926 dprdfadd 19927 dmdprdsplitlem 19944 dpjidcl 19965 mptscmfsupp0 20853 pjpm 21638 frlmphllem 21710 uvcff 21721 uvcresum 21723 psrass1lem 21862 psrlidm 21892 psrridm 21893 psrass1 21894 psrass23l 21897 psrcom 21898 psrass23 21899 mplsubrg 21935 mplmon 21963 mplmonmul 21964 mplcoe1 21965 mplcoe5 21968 mplbas2 21970 evlslem2 22007 evlslem6 22009 psdmplcl 22070 psdmul 22074 psropprmul 22143 coe1mul2 22176 evls1fpws 22277 oftpos 22360 pmatcollpw2lem 22685 tgrest 23067 cmpfi 23316 1stcrestlem 23360 ptcnplem 23529 xkoinjcn 23595 symgtgp 24014 eltsms 24041 rrxmval 25325 tdeglem4 25985 plypf1 26137 tayl0 26289 taylthlem1 26301 xrlimcnp 26898 nosupno 27635 noinfno 27650 abrexexd 32479 ofpreima 32637 fisuppov1 32654 mptiffisupp 32664 mptctf 32689 gsummptres2 33023 psgnfzto1stlem 33059 rmfsupp2 33195 elrspunidl 33383 elrspunsn 33384 locfinreflem 33843 measdivcstALTV 34228 sitgf 34350 imageval 35943 poimirlem30 37669 poimir 37672 evlsvvvallem2 42574 evlsvvval 42575 selvvvval 42597 evlselv 42599 mhphf 42609 choicefi 45216 rn1st 45289 fourierdlem80 46203 sge0tsms 46397 scmsuppss 48381 rmfsupp 48383 scmfsupp 48385 fdivval 48550 |
| Copyright terms: Public domain | W3C validator |