![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funmpt | Structured version Visualization version GIF version |
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
funmpt | ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab4 6604 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | df-mpt 5231 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
3 | 2 | funeqi 6588 | . 2 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
4 | 1, 3 | mpbir 231 | 1 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 ∈ wcel 2105 {copab 5209 ↦ cmpt 5230 Fun wfun 6556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-fun 6564 |
This theorem is referenced by: funmpt2 6606 resfunexg 7234 mptexg 7240 mptexgf 7241 mptexw 7975 brtpos2 8255 tposfun 8265 mptfi 9388 fsuppssov1 9421 sniffsupp 9437 cantnfrescl 9713 cantnflem1 9726 r0weon 10049 axcc2lem 10473 mptct 10575 negfi 12214 mptnn0fsupp 14034 ccatalpha 14627 mreacs 17702 acsfn 17703 isofval 17804 lubfun 18409 glbfun 18422 acsficl2d 18609 gsum2dlem2 20003 gsum2d 20004 dprdfinv 20053 dprdfadd 20054 dmdprdsplitlem 20071 dpjidcl 20092 mptscmfsupp0 20941 pjpm 21745 frlmphllem 21817 uvcff 21828 uvcresum 21830 psrass1lem 21969 psrlidm 21999 psrridm 22000 psrass1 22001 psrass23l 22004 psrcom 22005 psrass23 22006 mplsubrg 22042 mplmon 22070 mplmonmul 22071 mplcoe1 22072 mplcoe5 22075 mplbas2 22077 evlslem2 22120 evlslem6 22122 psdmplcl 22183 psdmul 22187 psropprmul 22254 coe1mul2 22287 evls1fpws 22388 oftpos 22473 pmatcollpw2lem 22798 tgrest 23182 cmpfi 23431 1stcrestlem 23475 ptcnplem 23644 xkoinjcn 23710 symgtgp 24129 eltsms 24156 rrxmval 25452 tdeglem4 26113 plypf1 26265 tayl0 26417 taylthlem1 26429 xrlimcnp 27025 nosupno 27762 noinfno 27777 abrexexd 32536 ofpreima 32681 fisuppov1 32697 mptiffisupp 32707 mptctf 32734 gsummptres2 33038 psgnfzto1stlem 33102 rmfsupp2 33227 elrspunidl 33435 elrspunsn 33436 locfinreflem 33800 measdivcstALTV 34205 sitgf 34328 imageval 35911 poimirlem30 37636 poimir 37639 evlsvvvallem2 42548 evlsvvval 42549 selvvvval 42571 evlselv 42573 mhphf 42583 choicefi 45142 rn1st 45218 fourierdlem80 46141 sge0tsms 46335 scmsuppss 48215 rmfsupp 48217 scmfsupp 48219 fdivval 48388 |
Copyright terms: Public domain | W3C validator |