MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funmpt2 Structured version   Visualization version   GIF version

Theorem funmpt2 6617
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
Hypothesis
Ref Expression
funmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
funmpt2 Fun 𝐹

Proof of Theorem funmpt2
StepHypRef Expression
1 funmpt 6616 . 2 Fun (𝑥𝐴𝐵)
2 funmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
32funeqi 6599 . 2 (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵))
41, 3mpbir 231 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cmpt 5249  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-fun 6575
This theorem is referenced by:  pwfilem  9384  cantnfp1lem1  9747  tz9.12lem2  9857  tz9.12lem3  9858  rankf  9863  djuun  9995  cardf2  10012  fin23lem30  10411  hashf1rn  14401  oppccatf  17788  funtopon  22947  qustgpopn  24149  ustn0  24250  cphsscph  25304  ipasslem8  30869  xppreima2  32669  funcnvmpt  32685  mptiffisupp  32705  fsuppcurry1  32739  fsuppcurry2  32740  gsummpt2co  33031  zarclsint  33818  zartopn  33821  zarmxt1  33826  zarcmplem  33827  brsiga  34147  sseqval  34353  ballotlem7  34500  sinccvglem  35640  bj-evalfun  37039  bj-ccinftydisj  37179  bj-elccinfty  37180  bj-minftyccb  37191  iscard4  43495  harval3  43500  comptiunov2i  43668  icccncfext  45808  stoweidlem27  45948  stirlinglem14  46008  fourierdlem70  46097  fourierdlem71  46098  hoi2toco  46528  mptcfsupp  48105  lcoc0  48151  lincresunit2  48207
  Copyright terms: Public domain W3C validator