| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version | ||
| Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
| Ref | Expression |
|---|---|
| funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| funmpt2 | ⊢ Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6574 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | funeqi 6557 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↦ cmpt 5201 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-fun 6533 |
| This theorem is referenced by: pwfilem 9328 cantnfp1lem1 9692 tz9.12lem2 9802 tz9.12lem3 9803 rankf 9808 djuun 9940 cardf2 9957 fin23lem30 10356 hashf1rn 14370 oppccatf 17740 funtopon 22858 qustgpopn 24058 ustn0 24159 cphsscph 25203 ipasslem8 30818 xppreima2 32629 funcnvmpt 32645 mptiffisupp 32670 fsuppcurry1 32702 fsuppcurry2 32703 gsummpt2co 33042 zarclsint 33903 zartopn 33906 zarmxt1 33911 zarcmplem 33912 brsiga 34214 sseqval 34420 ballotlem7 34568 sinccvglem 35694 bj-evalfun 37091 bj-ccinftydisj 37231 bj-elccinfty 37232 bj-minftyccb 37243 iscard4 43557 harval3 43562 comptiunov2i 43730 icccncfext 45916 stoweidlem27 46056 stirlinglem14 46116 fourierdlem70 46205 fourierdlem71 46206 hoi2toco 46636 mptcfsupp 48352 lcoc0 48398 lincresunit2 48454 |
| Copyright terms: Public domain | W3C validator |