| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version | ||
| Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
| Ref | Expression |
|---|---|
| funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| funmpt2 | ⊢ Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6524 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | funeqi 6507 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↦ cmpt 5176 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-fun 6488 |
| This theorem is referenced by: pwfilem 9225 cantnfp1lem1 9593 tz9.12lem2 9703 tz9.12lem3 9704 rankf 9709 djuun 9841 cardf2 9858 fin23lem30 10255 hashf1rn 14277 oppccatf 17652 funtopon 22823 qustgpopn 24023 ustn0 24124 cphsscph 25167 ipasslem8 30799 xppreima2 32608 funcnvmpt 32624 mptiffisupp 32649 fsuppcurry1 32681 fsuppcurry2 32682 gsummpt2co 33014 zarclsint 33838 zartopn 33841 zarmxt1 33846 zarcmplem 33847 brsiga 34149 sseqval 34355 ballotlem7 34503 sinccvglem 35644 bj-evalfun 37046 bj-ccinftydisj 37186 bj-elccinfty 37187 bj-minftyccb 37198 iscard4 43506 harval3 43511 comptiunov2i 43679 icccncfext 45869 stoweidlem27 46009 stirlinglem14 46069 fourierdlem70 46158 fourierdlem71 46159 hoi2toco 46589 mptcfsupp 48349 lcoc0 48395 lincresunit2 48451 |
| Copyright terms: Public domain | W3C validator |