| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version | ||
| Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
| Ref | Expression |
|---|---|
| funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| funmpt2 | ⊢ Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6554 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | funeqi 6537 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↦ cmpt 5188 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6513 |
| This theorem is referenced by: pwfilem 9267 cantnfp1lem1 9631 tz9.12lem2 9741 tz9.12lem3 9742 rankf 9747 djuun 9879 cardf2 9896 fin23lem30 10295 hashf1rn 14317 oppccatf 17689 funtopon 22807 qustgpopn 24007 ustn0 24108 cphsscph 25151 ipasslem8 30766 xppreima2 32575 funcnvmpt 32591 mptiffisupp 32616 fsuppcurry1 32648 fsuppcurry2 32649 gsummpt2co 32988 zarclsint 33862 zartopn 33865 zarmxt1 33870 zarcmplem 33871 brsiga 34173 sseqval 34379 ballotlem7 34527 sinccvglem 35659 bj-evalfun 37061 bj-ccinftydisj 37201 bj-elccinfty 37202 bj-minftyccb 37213 iscard4 43522 harval3 43527 comptiunov2i 43695 icccncfext 45885 stoweidlem27 46025 stirlinglem14 46085 fourierdlem70 46174 fourierdlem71 46175 hoi2toco 46605 mptcfsupp 48365 lcoc0 48411 lincresunit2 48467 |
| Copyright terms: Public domain | W3C validator |