![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version |
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
funmpt2 | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6616 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funeqi 6599 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
4 | 1, 3 | mpbir 231 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ↦ cmpt 5249 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: pwfilem 9384 cantnfp1lem1 9747 tz9.12lem2 9857 tz9.12lem3 9858 rankf 9863 djuun 9995 cardf2 10012 fin23lem30 10411 hashf1rn 14401 oppccatf 17788 funtopon 22947 qustgpopn 24149 ustn0 24250 cphsscph 25304 ipasslem8 30869 xppreima2 32669 funcnvmpt 32685 mptiffisupp 32705 fsuppcurry1 32739 fsuppcurry2 32740 gsummpt2co 33031 zarclsint 33818 zartopn 33821 zarmxt1 33826 zarcmplem 33827 brsiga 34147 sseqval 34353 ballotlem7 34500 sinccvglem 35640 bj-evalfun 37039 bj-ccinftydisj 37179 bj-elccinfty 37180 bj-minftyccb 37191 iscard4 43495 harval3 43500 comptiunov2i 43668 icccncfext 45808 stoweidlem27 45948 stirlinglem14 46008 fourierdlem70 46097 fourierdlem71 46098 hoi2toco 46528 mptcfsupp 48105 lcoc0 48151 lincresunit2 48207 |
Copyright terms: Public domain | W3C validator |