MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funmpt2 Structured version   Visualization version   GIF version

Theorem funmpt2 6586
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
Hypothesis
Ref Expression
funmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
funmpt2 Fun 𝐹

Proof of Theorem funmpt2
StepHypRef Expression
1 funmpt 6585 . 2 Fun (𝑥𝐴𝐵)
2 funmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
32funeqi 6568 . 2 (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵))
41, 3mpbir 230 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cmpt 5225  Fun wfun 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-fun 6544
This theorem is referenced by:  pwfilem  9193  cantnfp1lem1  9693  tz9.12lem2  9803  tz9.12lem3  9804  rankf  9809  djuun  9941  cardf2  9958  fin23lem30  10357  hashf1rn  14335  oppccatf  17701  funtopon  22809  qustgpopn  24011  ustn0  24112  cphsscph  25166  ipasslem8  30634  xppreima2  32420  funcnvmpt  32436  mptiffisupp  32457  fsuppcurry1  32491  fsuppcurry2  32492  gsummpt2co  32740  zarclsint  33409  zartopn  33412  zarmxt1  33417  zarcmplem  33418  brsiga  33738  sseqval  33944  ballotlem7  34091  sinccvglem  35212  bj-evalfun  36488  bj-ccinftydisj  36628  bj-elccinfty  36629  bj-minftyccb  36640  iscard4  42886  harval3  42891  comptiunov2i  43059  icccncfext  45198  stoweidlem27  45338  stirlinglem14  45398  fourierdlem70  45487  fourierdlem71  45488  hoi2toco  45918  mptcfsupp  47367  lcoc0  47413  lincresunit2  47469
  Copyright terms: Public domain W3C validator