![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version |
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
funmpt2 | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6590 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funeqi 6573 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ↦ cmpt 5231 Fun wfun 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-fun 6549 |
This theorem is referenced by: pwfilem 9200 cantnfp1lem1 9701 tz9.12lem2 9811 tz9.12lem3 9812 rankf 9817 djuun 9949 cardf2 9966 fin23lem30 10365 hashf1rn 14343 oppccatf 17709 funtopon 22852 qustgpopn 24054 ustn0 24155 cphsscph 25209 ipasslem8 30703 xppreima2 32494 funcnvmpt 32510 mptiffisupp 32530 fsuppcurry1 32564 fsuppcurry2 32565 gsummpt2co 32819 zarclsint 33543 zartopn 33546 zarmxt1 33551 zarcmplem 33552 brsiga 33872 sseqval 34078 ballotlem7 34225 sinccvglem 35346 bj-evalfun 36622 bj-ccinftydisj 36762 bj-elccinfty 36763 bj-minftyccb 36774 iscard4 43028 harval3 43033 comptiunov2i 43201 icccncfext 45338 stoweidlem27 45478 stirlinglem14 45538 fourierdlem70 45627 fourierdlem71 45628 hoi2toco 46058 mptcfsupp 47556 lcoc0 47602 lincresunit2 47658 |
Copyright terms: Public domain | W3C validator |