Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version |
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
funmpt2 | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6456 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funeqi 6439 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ↦ cmpt 5153 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-fun 6420 |
This theorem is referenced by: pwfilem 8922 cantnfp1lem1 9366 tz9.12lem2 9477 tz9.12lem3 9478 rankf 9483 djuun 9615 cardf2 9632 fin23lem30 10029 hashf1rn 13995 oppccatf 17356 funtopon 21977 qustgpopn 23179 ustn0 23280 metuval 23611 cphsscph 24320 ipasslem8 29100 xppreima2 30889 funcnvmpt 30906 fsuppcurry1 30962 fsuppcurry2 30963 gsummpt2co 31210 zarclsint 31724 zartopn 31727 zarmxt1 31732 zarcmplem 31733 metidval 31742 pstmval 31747 brsiga 32051 measbasedom 32070 sseqval 32255 ballotlem7 32402 sinccvglem 33530 bj-evalfun 35171 bj-ccinftydisj 35311 bj-elccinfty 35312 bj-minftyccb 35323 iscard4 41038 harval3 41041 comptiunov2i 41203 icccncfext 43318 stoweidlem27 43458 stirlinglem14 43518 fourierdlem70 43607 fourierdlem71 43608 hoi2toco 44035 mptcfsupp 45604 lcoc0 45651 lincresunit2 45707 |
Copyright terms: Public domain | W3C validator |