MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funmpt2 Structured version   Visualization version   GIF version

Theorem funmpt2 6575
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
Hypothesis
Ref Expression
funmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
funmpt2 Fun 𝐹

Proof of Theorem funmpt2
StepHypRef Expression
1 funmpt 6574 . 2 Fun (𝑥𝐴𝐵)
2 funmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
32funeqi 6557 . 2 (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵))
41, 3mpbir 231 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cmpt 5201  Fun wfun 6525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-fun 6533
This theorem is referenced by:  pwfilem  9328  cantnfp1lem1  9692  tz9.12lem2  9802  tz9.12lem3  9803  rankf  9808  djuun  9940  cardf2  9957  fin23lem30  10356  hashf1rn  14370  oppccatf  17740  funtopon  22858  qustgpopn  24058  ustn0  24159  cphsscph  25203  ipasslem8  30818  xppreima2  32629  funcnvmpt  32645  mptiffisupp  32670  fsuppcurry1  32702  fsuppcurry2  32703  gsummpt2co  33042  zarclsint  33903  zartopn  33906  zarmxt1  33911  zarcmplem  33912  brsiga  34214  sseqval  34420  ballotlem7  34568  sinccvglem  35694  bj-evalfun  37091  bj-ccinftydisj  37231  bj-elccinfty  37232  bj-minftyccb  37243  iscard4  43557  harval3  43562  comptiunov2i  43730  icccncfext  45916  stoweidlem27  46056  stirlinglem14  46116  fourierdlem70  46205  fourierdlem71  46206  hoi2toco  46636  mptcfsupp  48352  lcoc0  48398  lincresunit2  48454
  Copyright terms: Public domain W3C validator