![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version |
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
funmpt2 | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6592 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funeqi 6575 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ↦ cmpt 5232 Fun wfun 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-fun 6551 |
This theorem is referenced by: pwfilem 9202 cantnfp1lem1 9703 tz9.12lem2 9813 tz9.12lem3 9814 rankf 9819 djuun 9951 cardf2 9968 fin23lem30 10367 hashf1rn 14347 oppccatf 17713 funtopon 22866 qustgpopn 24068 ustn0 24169 cphsscph 25223 ipasslem8 30719 xppreima2 32518 funcnvmpt 32534 mptiffisupp 32555 fsuppcurry1 32589 fsuppcurry2 32590 gsummpt2co 32852 zarclsint 33604 zartopn 33607 zarmxt1 33612 zarcmplem 33613 brsiga 33933 sseqval 34139 ballotlem7 34286 sinccvglem 35407 bj-evalfun 36683 bj-ccinftydisj 36823 bj-elccinfty 36824 bj-minftyccb 36835 iscard4 43105 harval3 43110 comptiunov2i 43278 icccncfext 45413 stoweidlem27 45553 stirlinglem14 45613 fourierdlem70 45702 fourierdlem71 45703 hoi2toco 46133 mptcfsupp 47630 lcoc0 47676 lincresunit2 47732 |
Copyright terms: Public domain | W3C validator |