| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version | ||
| Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
| Ref | Expression |
|---|---|
| funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| funmpt2 | ⊢ Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6557 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | funeqi 6540 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↦ cmpt 5191 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-fun 6516 |
| This theorem is referenced by: pwfilem 9274 cantnfp1lem1 9638 tz9.12lem2 9748 tz9.12lem3 9749 rankf 9754 djuun 9886 cardf2 9903 fin23lem30 10302 hashf1rn 14324 oppccatf 17696 funtopon 22814 qustgpopn 24014 ustn0 24115 cphsscph 25158 ipasslem8 30773 xppreima2 32582 funcnvmpt 32598 mptiffisupp 32623 fsuppcurry1 32655 fsuppcurry2 32656 gsummpt2co 32995 zarclsint 33869 zartopn 33872 zarmxt1 33877 zarcmplem 33878 brsiga 34180 sseqval 34386 ballotlem7 34534 sinccvglem 35666 bj-evalfun 37068 bj-ccinftydisj 37208 bj-elccinfty 37209 bj-minftyccb 37220 iscard4 43529 harval3 43534 comptiunov2i 43702 icccncfext 45892 stoweidlem27 46032 stirlinglem14 46092 fourierdlem70 46181 fourierdlem71 46182 hoi2toco 46612 mptcfsupp 48369 lcoc0 48415 lincresunit2 48471 |
| Copyright terms: Public domain | W3C validator |