| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version | ||
| Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
| Ref | Expression |
|---|---|
| funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| funmpt2 | ⊢ Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6527 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | funeqi 6510 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ↦ cmpt 5176 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-fun 6491 |
| This theorem is referenced by: pwfilem 9212 cantnfp1lem1 9578 tz9.12lem2 9691 tz9.12lem3 9692 rankf 9697 djuun 9829 cardf2 9846 fin23lem30 10243 hashf1rn 14269 oppccatf 17644 funtopon 22845 qustgpopn 24045 ustn0 24146 cphsscph 25188 ipasslem8 30828 xppreima2 32644 funcnvmpt 32660 mptiffisupp 32685 fsuppcurry1 32718 fsuppcurry2 32719 gsummpt2co 33039 zarclsint 33896 zartopn 33899 zarmxt1 33904 zarcmplem 33905 brsiga 34207 sseqval 34412 ballotlem7 34560 sinccvglem 35727 bj-evalfun 37128 bj-ccinftydisj 37268 bj-elccinfty 37269 bj-minftyccb 37280 iscard4 43640 harval3 43645 comptiunov2i 43813 icccncfext 45999 stoweidlem27 46139 stirlinglem14 46199 fourierdlem70 46288 fourierdlem71 46289 hoi2toco 46719 mptcfsupp 48491 lcoc0 48537 lincresunit2 48593 |
| Copyright terms: Public domain | W3C validator |