| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version | ||
| Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
| Ref | Expression |
|---|---|
| funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| funmpt2 | ⊢ Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6515 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | funeqi 6498 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 4 | 1, 3 | mpbir 231 | 1 ⊢ Fun 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ↦ cmpt 5170 Fun wfun 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-fun 6479 |
| This theorem is referenced by: pwfilem 9197 cantnfp1lem1 9563 tz9.12lem2 9673 tz9.12lem3 9674 rankf 9679 djuun 9811 cardf2 9828 fin23lem30 10225 hashf1rn 14251 oppccatf 17626 funtopon 22828 qustgpopn 24028 ustn0 24129 cphsscph 25171 ipasslem8 30807 xppreima2 32623 funcnvmpt 32639 mptiffisupp 32664 fsuppcurry1 32697 fsuppcurry2 32698 gsummpt2co 33018 zarclsint 33875 zartopn 33878 zarmxt1 33883 zarcmplem 33884 brsiga 34186 sseqval 34391 ballotlem7 34539 sinccvglem 35684 bj-evalfun 37086 bj-ccinftydisj 37226 bj-elccinfty 37227 bj-minftyccb 37238 iscard4 43545 harval3 43550 comptiunov2i 43718 icccncfext 45904 stoweidlem27 46044 stirlinglem14 46104 fourierdlem70 46193 fourierdlem71 46194 hoi2toco 46624 mptcfsupp 48387 lcoc0 48433 lincresunit2 48489 |
| Copyright terms: Public domain | W3C validator |