MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funmpt2 Structured version   Visualization version   GIF version

Theorem funmpt2 6555
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
Hypothesis
Ref Expression
funmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
funmpt2 Fun 𝐹

Proof of Theorem funmpt2
StepHypRef Expression
1 funmpt 6554 . 2 Fun (𝑥𝐴𝐵)
2 funmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
32funeqi 6537 . 2 (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵))
41, 3mpbir 231 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cmpt 5188  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-fun 6513
This theorem is referenced by:  pwfilem  9267  cantnfp1lem1  9631  tz9.12lem2  9741  tz9.12lem3  9742  rankf  9747  djuun  9879  cardf2  9896  fin23lem30  10295  hashf1rn  14317  oppccatf  17689  funtopon  22807  qustgpopn  24007  ustn0  24108  cphsscph  25151  ipasslem8  30766  xppreima2  32575  funcnvmpt  32591  mptiffisupp  32616  fsuppcurry1  32648  fsuppcurry2  32649  gsummpt2co  32988  zarclsint  33862  zartopn  33865  zarmxt1  33870  zarcmplem  33871  brsiga  34173  sseqval  34379  ballotlem7  34527  sinccvglem  35659  bj-evalfun  37061  bj-ccinftydisj  37201  bj-elccinfty  37202  bj-minftyccb  37213  iscard4  43522  harval3  43527  comptiunov2i  43695  icccncfext  45885  stoweidlem27  46025  stirlinglem14  46085  fourierdlem70  46174  fourierdlem71  46175  hoi2toco  46605  mptcfsupp  48365  lcoc0  48411  lincresunit2  48467
  Copyright terms: Public domain W3C validator