![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version |
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
funmpt2 | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6585 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funeqi 6568 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ↦ cmpt 5225 Fun wfun 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-fun 6544 |
This theorem is referenced by: pwfilem 9193 cantnfp1lem1 9693 tz9.12lem2 9803 tz9.12lem3 9804 rankf 9809 djuun 9941 cardf2 9958 fin23lem30 10357 hashf1rn 14335 oppccatf 17701 funtopon 22809 qustgpopn 24011 ustn0 24112 cphsscph 25166 ipasslem8 30634 xppreima2 32420 funcnvmpt 32436 mptiffisupp 32457 fsuppcurry1 32491 fsuppcurry2 32492 gsummpt2co 32740 zarclsint 33409 zartopn 33412 zarmxt1 33417 zarcmplem 33418 brsiga 33738 sseqval 33944 ballotlem7 34091 sinccvglem 35212 bj-evalfun 36488 bj-ccinftydisj 36628 bj-elccinfty 36629 bj-minftyccb 36640 iscard4 42886 harval3 42891 comptiunov2i 43059 icccncfext 45198 stoweidlem27 45338 stirlinglem14 45398 fourierdlem70 45487 fourierdlem71 45488 hoi2toco 45918 mptcfsupp 47367 lcoc0 47413 lincresunit2 47469 |
Copyright terms: Public domain | W3C validator |