Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funmpt2 | Structured version Visualization version GIF version |
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
funmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
funmpt2 | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6472 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | funeqi 6455 | . 2 ⊢ (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
4 | 1, 3 | mpbir 230 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ↦ cmpt 5157 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: pwfilem 8960 cantnfp1lem1 9436 tz9.12lem2 9546 tz9.12lem3 9547 rankf 9552 djuun 9684 cardf2 9701 fin23lem30 10098 hashf1rn 14067 oppccatf 17439 funtopon 22069 qustgpopn 23271 ustn0 23372 metuval 23705 cphsscph 24415 ipasslem8 29199 xppreima2 30988 funcnvmpt 31004 fsuppcurry1 31060 fsuppcurry2 31061 gsummpt2co 31308 zarclsint 31822 zartopn 31825 zarmxt1 31830 zarcmplem 31831 metidval 31840 pstmval 31845 brsiga 32151 measbasedom 32170 sseqval 32355 ballotlem7 32502 sinccvglem 33630 bj-evalfun 35244 bj-ccinftydisj 35384 bj-elccinfty 35385 bj-minftyccb 35396 iscard4 41140 harval3 41145 comptiunov2i 41314 icccncfext 43428 stoweidlem27 43568 stirlinglem14 43628 fourierdlem70 43717 fourierdlem71 43718 hoi2toco 44145 mptcfsupp 45716 lcoc0 45763 lincresunit2 45819 |
Copyright terms: Public domain | W3C validator |