MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funmpt2 Structured version   Visualization version   GIF version

Theorem funmpt2 6528
Description: Functionality of a class given by a maps-to notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
Hypothesis
Ref Expression
funmpt2.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
funmpt2 Fun 𝐹

Proof of Theorem funmpt2
StepHypRef Expression
1 funmpt 6527 . 2 Fun (𝑥𝐴𝐵)
2 funmpt2.1 . . 3 𝐹 = (𝑥𝐴𝐵)
32funeqi 6510 . 2 (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵))
41, 3mpbir 231 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cmpt 5176  Fun wfun 6483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-fun 6491
This theorem is referenced by:  pwfilem  9212  cantnfp1lem1  9578  tz9.12lem2  9691  tz9.12lem3  9692  rankf  9697  djuun  9829  cardf2  9846  fin23lem30  10243  hashf1rn  14269  oppccatf  17644  funtopon  22845  qustgpopn  24045  ustn0  24146  cphsscph  25188  ipasslem8  30828  xppreima2  32644  funcnvmpt  32660  mptiffisupp  32685  fsuppcurry1  32718  fsuppcurry2  32719  gsummpt2co  33039  zarclsint  33896  zartopn  33899  zarmxt1  33904  zarcmplem  33905  brsiga  34207  sseqval  34412  ballotlem7  34560  sinccvglem  35727  bj-evalfun  37128  bj-ccinftydisj  37268  bj-elccinfty  37269  bj-minftyccb  37280  iscard4  43640  harval3  43645  comptiunov2i  43813  icccncfext  45999  stoweidlem27  46139  stirlinglem14  46199  fourierdlem70  46288  fourierdlem71  46289  hoi2toco  46719  mptcfsupp  48491  lcoc0  48537  lincresunit2  48593
  Copyright terms: Public domain W3C validator