MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fntopon Structured version   Visualization version   GIF version

Theorem fntopon 22951
Description: The class TopOn is a function with domain the universal class V. Analogue for topologies of fnmre 17649 for Moore collections. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
fntopon TopOn Fn V

Proof of Theorem fntopon
StepHypRef Expression
1 funtopon 22947 . 2 Fun TopOn
2 dmtopon 22950 . 2 dom TopOn = V
3 df-fn 6576 . 2 (TopOn Fn V ↔ (Fun TopOn ∧ dom TopOn = V))
41, 2, 3mpbir2an 710 1 TopOn Fn V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  dom cdm 5700  Fun wfun 6567   Fn wfn 6568  TopOnctopon 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-fun 6575  df-fn 6576  df-topon 22938
This theorem is referenced by:  toprntopon  22952
  Copyright terms: Public domain W3C validator