Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fntopon | Structured version Visualization version GIF version |
Description: The class TopOn is a function with domain the universal class V. Analogue for topologies of fnmre 17217 for Moore collections. (Contributed by BJ, 29-Apr-2021.) |
Ref | Expression |
---|---|
fntopon | ⊢ TopOn Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funtopon 21977 | . 2 ⊢ Fun TopOn | |
2 | dmtopon 21980 | . 2 ⊢ dom TopOn = V | |
3 | df-fn 6421 | . 2 ⊢ (TopOn Fn V ↔ (Fun TopOn ∧ dom TopOn = V)) | |
4 | 1, 2, 3 | mpbir2an 707 | 1 ⊢ TopOn Fn V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 dom cdm 5580 Fun wfun 6412 Fn wfn 6413 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 df-topon 21968 |
This theorem is referenced by: toprntopon 21982 |
Copyright terms: Public domain | W3C validator |