| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version | ||
| Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
| 2 | 1 | toponunii 22779 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
| 3 | 2 | restid 17372 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
| 5 | 4 | eqcomi 2738 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ↾t crest 17359 TopOnctopon 22773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-rest 17361 df-topon 22774 |
| This theorem is referenced by: cncfcn1 24780 cncfmpt2f 24784 cdivcncf 24790 cnrehmeo 24827 cnrehmeoOLD 24828 mulcncf 25322 cnlimc 25765 dvidlem 25792 dvcnp2 25797 dvcnp2OLD 25798 dvcn 25799 dvnres 25809 dvaddbr 25816 dvmulbr 25817 dvmulbrOLD 25818 dvcobr 25825 dvcobrOLD 25826 dvcjbr 25829 dvrec 25835 dvexp3 25858 dveflem 25859 dvlipcn 25875 lhop1lem 25894 ftc1cn 25926 dvply1 26167 dvtaylp 26254 taylthlem2 26258 taylthlem2OLD 26259 psercn 26312 pserdvlem2 26314 pserdv 26315 abelth 26327 logcn 26532 dvloglem 26533 dvlog 26536 dvlog2 26538 efopnlem2 26542 logtayl 26545 cxpcn 26630 cxpcnOLD 26631 cxpcn2 26632 cxpcn3 26634 resqrtcn 26635 sqrtcn 26636 dvatan 26821 ftalem3 26961 cxpcncf1 34559 knoppcnlem10 36463 knoppcnlem11 36464 dvtan 37637 ftc1cnnc 37659 dvasin 37671 dvacos 37672 cxpcncf2 45870 |
| Copyright terms: Public domain | W3C validator |