| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version | ||
| Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
| 2 | 1 | toponunii 22803 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
| 3 | 2 | restid 17396 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
| 5 | 4 | eqcomi 2738 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ↾t crest 17383 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rest 17385 df-topon 22798 |
| This theorem is referenced by: cncfcn1 24804 cncfmpt2f 24808 cdivcncf 24814 cnrehmeo 24851 cnrehmeoOLD 24852 mulcncf 25346 cnlimc 25789 dvidlem 25816 dvcnp2 25821 dvcnp2OLD 25822 dvcn 25823 dvnres 25833 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 dvcobr 25849 dvcobrOLD 25850 dvcjbr 25853 dvrec 25859 dvexp3 25882 dveflem 25883 dvlipcn 25899 lhop1lem 25918 ftc1cn 25950 dvply1 26191 dvtaylp 26278 taylthlem2 26282 taylthlem2OLD 26283 psercn 26336 pserdvlem2 26338 pserdv 26339 abelth 26351 logcn 26556 dvloglem 26557 dvlog 26560 dvlog2 26562 efopnlem2 26566 logtayl 26569 cxpcn 26654 cxpcnOLD 26655 cxpcn2 26656 cxpcn3 26658 resqrtcn 26659 sqrtcn 26660 dvatan 26845 ftalem3 26985 cxpcncf1 34586 knoppcnlem10 36490 knoppcnlem11 36491 dvtan 37664 ftc1cnnc 37686 dvasin 37698 dvacos 37699 cxpcncf2 45897 |
| Copyright terms: Public domain | W3C validator |