![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version |
Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
Ref | Expression |
---|---|
toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
Ref | Expression |
---|---|
toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
2 | 1 | toponunii 22943 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
3 | 2 | restid 17493 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
5 | 4 | eqcomi 2749 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ↾t crest 17480 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-rest 17482 df-topon 22938 |
This theorem is referenced by: cncfcn1 24956 cncfmpt2f 24960 cdivcncf 24966 cnrehmeo 25003 cnrehmeoOLD 25004 mulcncf 25499 cnlimc 25943 dvidlem 25970 dvcnp2 25975 dvcnp2OLD 25976 dvcn 25977 dvnres 25987 dvaddbr 25994 dvmulbr 25995 dvmulbrOLD 25996 dvcobr 26003 dvcobrOLD 26004 dvcjbr 26007 dvrec 26013 dvexp3 26036 dveflem 26037 dvlipcn 26053 lhop1lem 26072 ftc1cn 26104 dvply1 26343 dvtaylp 26430 taylthlem2 26434 taylthlem2OLD 26435 psercn 26488 pserdvlem2 26490 pserdv 26491 abelth 26503 logcn 26707 dvloglem 26708 dvlog 26711 dvlog2 26713 efopnlem2 26717 logtayl 26720 cxpcn 26805 cxpcnOLD 26806 cxpcn2 26807 cxpcn3 26809 resqrtcn 26810 sqrtcn 26811 dvatan 26996 ftalem3 27136 cxpcncf1 34572 knoppcnlem10 36468 knoppcnlem11 36469 dvtan 37630 ftc1cnnc 37652 dvasin 37664 dvacos 37665 cxpcncf2 45820 |
Copyright terms: Public domain | W3C validator |