| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version | ||
| Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
| 2 | 1 | toponunii 22851 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
| 3 | 2 | restid 17344 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
| 5 | 4 | eqcomi 2742 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 ↾t crest 17331 TopOnctopon 22845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-rest 17333 df-topon 22846 |
| This theorem is referenced by: cncfcn1 24851 cncfmpt2f 24855 cdivcncf 24861 cnrehmeo 24898 cnrehmeoOLD 24899 mulcncf 25393 cnlimc 25836 dvidlem 25863 dvcnp2 25868 dvcnp2OLD 25869 dvcn 25870 dvnres 25880 dvaddbr 25887 dvmulbr 25888 dvmulbrOLD 25889 dvcobr 25896 dvcobrOLD 25897 dvcjbr 25900 dvrec 25906 dvexp3 25929 dveflem 25930 dvlipcn 25946 lhop1lem 25965 ftc1cn 25997 dvply1 26238 dvtaylp 26325 taylthlem2 26329 taylthlem2OLD 26330 psercn 26383 pserdvlem2 26385 pserdv 26386 abelth 26398 logcn 26603 dvloglem 26604 dvlog 26607 dvlog2 26609 efopnlem2 26613 logtayl 26616 cxpcn 26701 cxpcnOLD 26702 cxpcn2 26703 cxpcn3 26705 resqrtcn 26706 sqrtcn 26707 dvatan 26892 ftalem3 27032 cxpcncf1 34680 knoppcnlem10 36618 knoppcnlem11 36619 dvtan 37783 ftc1cnnc 37805 dvasin 37817 dvacos 37818 cxpcncf2 46059 |
| Copyright terms: Public domain | W3C validator |