| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version | ||
| Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
| 2 | 1 | toponunii 22826 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
| 3 | 2 | restid 17332 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
| 5 | 4 | eqcomi 2740 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ↾t crest 17319 TopOnctopon 22820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-rest 17321 df-topon 22821 |
| This theorem is referenced by: cncfcn1 24826 cncfmpt2f 24830 cdivcncf 24836 cnrehmeo 24873 cnrehmeoOLD 24874 mulcncf 25368 cnlimc 25811 dvidlem 25838 dvcnp2 25843 dvcnp2OLD 25844 dvcn 25845 dvnres 25855 dvaddbr 25862 dvmulbr 25863 dvmulbrOLD 25864 dvcobr 25871 dvcobrOLD 25872 dvcjbr 25875 dvrec 25881 dvexp3 25904 dveflem 25905 dvlipcn 25921 lhop1lem 25940 ftc1cn 25972 dvply1 26213 dvtaylp 26300 taylthlem2 26304 taylthlem2OLD 26305 psercn 26358 pserdvlem2 26360 pserdv 26361 abelth 26373 logcn 26578 dvloglem 26579 dvlog 26582 dvlog2 26584 efopnlem2 26588 logtayl 26591 cxpcn 26676 cxpcnOLD 26677 cxpcn2 26678 cxpcn3 26680 resqrtcn 26681 sqrtcn 26682 dvatan 26867 ftalem3 27007 cxpcncf1 34600 knoppcnlem10 36536 knoppcnlem11 36537 dvtan 37710 ftc1cnnc 37732 dvasin 37744 dvacos 37745 cxpcncf2 45937 |
| Copyright terms: Public domain | W3C validator |