| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version | ||
| Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
| 2 | 1 | toponunii 22810 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
| 3 | 2 | restid 17403 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
| 5 | 4 | eqcomi 2739 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-rest 17392 df-topon 22805 |
| This theorem is referenced by: cncfcn1 24811 cncfmpt2f 24815 cdivcncf 24821 cnrehmeo 24858 cnrehmeoOLD 24859 mulcncf 25353 cnlimc 25796 dvidlem 25823 dvcnp2 25828 dvcnp2OLD 25829 dvcn 25830 dvnres 25840 dvaddbr 25847 dvmulbr 25848 dvmulbrOLD 25849 dvcobr 25856 dvcobrOLD 25857 dvcjbr 25860 dvrec 25866 dvexp3 25889 dveflem 25890 dvlipcn 25906 lhop1lem 25925 ftc1cn 25957 dvply1 26198 dvtaylp 26285 taylthlem2 26289 taylthlem2OLD 26290 psercn 26343 pserdvlem2 26345 pserdv 26346 abelth 26358 logcn 26563 dvloglem 26564 dvlog 26567 dvlog2 26569 efopnlem2 26573 logtayl 26576 cxpcn 26661 cxpcnOLD 26662 cxpcn2 26663 cxpcn3 26665 resqrtcn 26666 sqrtcn 26667 dvatan 26852 ftalem3 26992 cxpcncf1 34593 knoppcnlem10 36497 knoppcnlem11 36498 dvtan 37671 ftc1cnnc 37693 dvasin 37705 dvacos 37706 cxpcncf2 45904 |
| Copyright terms: Public domain | W3C validator |