MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponrestid Structured version   Visualization version   GIF version

Theorem toponrestid 22948
Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.)
Hypothesis
Ref Expression
toponrestid.t 𝐴 ∈ (TopOn‘𝐵)
Assertion
Ref Expression
toponrestid 𝐴 = (𝐴t 𝐵)

Proof of Theorem toponrestid
StepHypRef Expression
1 toponrestid.t . . 3 𝐴 ∈ (TopOn‘𝐵)
21toponunii 22943 . . . 4 𝐵 = 𝐴
32restid 17493 . . 3 (𝐴 ∈ (TopOn‘𝐵) → (𝐴t 𝐵) = 𝐴)
41, 3ax-mp 5 . 2 (𝐴t 𝐵) = 𝐴
54eqcomi 2749 1 𝐴 = (𝐴t 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  t crest 17480  TopOnctopon 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rest 17482  df-topon 22938
This theorem is referenced by:  cncfcn1  24956  cncfmpt2f  24960  cdivcncf  24966  cnrehmeo  25003  cnrehmeoOLD  25004  mulcncf  25499  cnlimc  25943  dvidlem  25970  dvcnp2  25975  dvcnp2OLD  25976  dvcn  25977  dvnres  25987  dvaddbr  25994  dvmulbr  25995  dvmulbrOLD  25996  dvcobr  26003  dvcobrOLD  26004  dvcjbr  26007  dvrec  26013  dvexp3  26036  dveflem  26037  dvlipcn  26053  lhop1lem  26072  ftc1cn  26104  dvply1  26343  dvtaylp  26430  taylthlem2  26434  taylthlem2OLD  26435  psercn  26488  pserdvlem2  26490  pserdv  26491  abelth  26503  logcn  26707  dvloglem  26708  dvlog  26711  dvlog2  26713  efopnlem2  26717  logtayl  26720  cxpcn  26805  cxpcnOLD  26806  cxpcn2  26807  cxpcn3  26809  resqrtcn  26810  sqrtcn  26811  dvatan  26996  ftalem3  27136  cxpcncf1  34572  knoppcnlem10  36468  knoppcnlem11  36469  dvtan  37630  ftc1cnnc  37652  dvasin  37664  dvacos  37665  cxpcncf2  45820
  Copyright terms: Public domain W3C validator