| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version | ||
| Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
| 2 | 1 | toponunii 22801 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
| 3 | 2 | restid 17337 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
| 5 | 4 | eqcomi 2738 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 ↾t crest 17324 TopOnctopon 22795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-rest 17326 df-topon 22796 |
| This theorem is referenced by: cncfcn1 24802 cncfmpt2f 24806 cdivcncf 24812 cnrehmeo 24849 cnrehmeoOLD 24850 mulcncf 25344 cnlimc 25787 dvidlem 25814 dvcnp2 25819 dvcnp2OLD 25820 dvcn 25821 dvnres 25831 dvaddbr 25838 dvmulbr 25839 dvmulbrOLD 25840 dvcobr 25847 dvcobrOLD 25848 dvcjbr 25851 dvrec 25857 dvexp3 25880 dveflem 25881 dvlipcn 25897 lhop1lem 25916 ftc1cn 25948 dvply1 26189 dvtaylp 26276 taylthlem2 26280 taylthlem2OLD 26281 psercn 26334 pserdvlem2 26336 pserdv 26337 abelth 26349 logcn 26554 dvloglem 26555 dvlog 26558 dvlog2 26560 efopnlem2 26564 logtayl 26567 cxpcn 26652 cxpcnOLD 26653 cxpcn2 26654 cxpcn3 26656 resqrtcn 26657 sqrtcn 26658 dvatan 26843 ftalem3 26983 cxpcncf1 34563 knoppcnlem10 36476 knoppcnlem11 36477 dvtan 37650 ftc1cnnc 37672 dvasin 37684 dvacos 37685 cxpcncf2 45880 |
| Copyright terms: Public domain | W3C validator |