| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version | ||
| Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
| Ref | Expression |
|---|---|
| toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
| 2 | 1 | toponunii 22854 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
| 3 | 2 | restid 17447 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
| 5 | 4 | eqcomi 2744 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 ↾t crest 17434 TopOnctopon 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-rest 17436 df-topon 22849 |
| This theorem is referenced by: cncfcn1 24855 cncfmpt2f 24859 cdivcncf 24865 cnrehmeo 24902 cnrehmeoOLD 24903 mulcncf 25398 cnlimc 25841 dvidlem 25868 dvcnp2 25873 dvcnp2OLD 25874 dvcn 25875 dvnres 25885 dvaddbr 25892 dvmulbr 25893 dvmulbrOLD 25894 dvcobr 25901 dvcobrOLD 25902 dvcjbr 25905 dvrec 25911 dvexp3 25934 dveflem 25935 dvlipcn 25951 lhop1lem 25970 ftc1cn 26002 dvply1 26243 dvtaylp 26330 taylthlem2 26334 taylthlem2OLD 26335 psercn 26388 pserdvlem2 26390 pserdv 26391 abelth 26403 logcn 26608 dvloglem 26609 dvlog 26612 dvlog2 26614 efopnlem2 26618 logtayl 26621 cxpcn 26706 cxpcnOLD 26707 cxpcn2 26708 cxpcn3 26710 resqrtcn 26711 sqrtcn 26712 dvatan 26897 ftalem3 27037 cxpcncf1 34627 knoppcnlem10 36520 knoppcnlem11 36521 dvtan 37694 ftc1cnnc 37716 dvasin 37728 dvacos 37729 cxpcncf2 45928 |
| Copyright terms: Public domain | W3C validator |