Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version |
Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
Ref | Expression |
---|---|
toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
Ref | Expression |
---|---|
toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
2 | 1 | toponunii 22065 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
3 | 2 | restid 17144 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
5 | 4 | eqcomi 2747 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ↾t crest 17131 TopOnctopon 22059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-rest 17133 df-topon 22060 |
This theorem is referenced by: cncfcn1 24074 cncfmpt2f 24078 cdivcncf 24084 cnrehmeo 24116 cnlimc 25052 dvidlem 25079 dvcnp2 25084 dvcn 25085 dvnres 25095 dvaddbr 25102 dvmulbr 25103 dvcobr 25110 dvcjbr 25113 dvrec 25119 dvexp3 25142 dveflem 25143 dvlipcn 25158 lhop1lem 25177 ftc1cn 25207 dvply1 25444 dvtaylp 25529 taylthlem2 25533 psercn 25585 pserdvlem2 25587 pserdv 25588 abelth 25600 logcn 25802 dvloglem 25803 dvlog 25806 dvlog2 25808 efopnlem2 25812 logtayl 25815 cxpcn 25898 cxpcn2 25899 cxpcn3 25901 resqrtcn 25902 sqrtcn 25903 dvatan 26085 ftalem3 26224 cxpcncf1 32575 knoppcnlem10 34682 knoppcnlem11 34683 dvtan 35827 ftc1cnnc 35849 dvasin 35861 dvacos 35862 cxpcncf2 43440 |
Copyright terms: Public domain | W3C validator |