![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version |
Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
Ref | Expression |
---|---|
toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
Ref | Expression |
---|---|
toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
2 | 1 | toponunii 21128 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
3 | 2 | restid 16480 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
5 | 4 | eqcomi 2787 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 ‘cfv 6135 (class class class)co 6922 ↾t crest 16467 TopOnctopon 21122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-rest 16469 df-topon 21123 |
This theorem is referenced by: cncfcn1 23121 cncfmpt2f 23125 cdivcncf 23128 cnrehmeo 23160 cnlimc 24089 dvidlem 24116 dvcnp2 24120 dvcn 24121 dvnres 24131 dvaddbr 24138 dvmulbr 24139 dvcobr 24146 dvcjbr 24149 dvrec 24155 dvexp3 24178 dveflem 24179 dvlipcn 24194 lhop1lem 24213 ftc1cn 24243 dvply1 24476 dvtaylp 24561 taylthlem2 24565 psercn 24617 pserdvlem2 24619 pserdv 24620 abelth 24632 logcn 24830 dvloglem 24831 dvlog 24834 dvlog2 24836 efopnlem2 24840 logtayl 24843 cxpcn 24926 cxpcn2 24927 cxpcn3 24929 resqrtcn 24930 sqrtcn 24931 dvatan 25113 ftalem3 25253 cxpcncf1 31275 knoppcnlem10 33075 knoppcnlem11 33076 dvtan 34085 ftc1cnnc 34109 dvasin 34121 dvacos 34122 cxpcncf2 41041 |
Copyright terms: Public domain | W3C validator |