Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toponrestid | Structured version Visualization version GIF version |
Description: Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
Ref | Expression |
---|---|
toponrestid.t | ⊢ 𝐴 ∈ (TopOn‘𝐵) |
Ref | Expression |
---|---|
toponrestid | ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponrestid.t | . . 3 ⊢ 𝐴 ∈ (TopOn‘𝐵) | |
2 | 1 | toponunii 21973 | . . . 4 ⊢ 𝐵 = ∪ 𝐴 |
3 | 2 | restid 17061 | . . 3 ⊢ (𝐴 ∈ (TopOn‘𝐵) → (𝐴 ↾t 𝐵) = 𝐴) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ↾t 𝐵) = 𝐴 |
5 | 4 | eqcomi 2747 | 1 ⊢ 𝐴 = (𝐴 ↾t 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rest 17050 df-topon 21968 |
This theorem is referenced by: cncfcn1 23980 cncfmpt2f 23984 cdivcncf 23990 cnrehmeo 24022 cnlimc 24957 dvidlem 24984 dvcnp2 24989 dvcn 24990 dvnres 25000 dvaddbr 25007 dvmulbr 25008 dvcobr 25015 dvcjbr 25018 dvrec 25024 dvexp3 25047 dveflem 25048 dvlipcn 25063 lhop1lem 25082 ftc1cn 25112 dvply1 25349 dvtaylp 25434 taylthlem2 25438 psercn 25490 pserdvlem2 25492 pserdv 25493 abelth 25505 logcn 25707 dvloglem 25708 dvlog 25711 dvlog2 25713 efopnlem2 25717 logtayl 25720 cxpcn 25803 cxpcn2 25804 cxpcn3 25806 resqrtcn 25807 sqrtcn 25808 dvatan 25990 ftalem3 26129 cxpcncf1 32475 knoppcnlem10 34609 knoppcnlem11 34610 dvtan 35754 ftc1cnnc 35776 dvasin 35788 dvacos 35789 cxpcncf2 43330 |
Copyright terms: Public domain | W3C validator |