MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topontopon Structured version   Visualization version   GIF version

Theorem topontopon 22804
Description: A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
topontopon (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘ 𝐽))

Proof of Theorem topontopon
StepHypRef Expression
1 topontop 22798 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 toptopon2 22803 . 2 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 218 1 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   cuni 4858  cfv 6482  Topctop 22778  TopOnctopon 22795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-topon 22796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator