Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconstr2 Structured version   Visualization version   GIF version

Theorem fvconstr2 46137
Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
fvconstr.1 (𝜑𝐹 = (𝑅 × {𝑌}))
fvconstr2.2 (𝜑𝑋 ∈ (𝐴𝐹𝐵))
Assertion
Ref Expression
fvconstr2 (𝜑𝐴𝑅𝐵)

Proof of Theorem fvconstr2
StepHypRef Expression
1 fvconstr2.2 . . . 4 (𝜑𝑋 ∈ (𝐴𝐹𝐵))
21ne0d 4274 . . 3 (𝜑 → (𝐴𝐹𝐵) ≠ ∅)
3 fvconstr.1 . . . . . . 7 (𝜑𝐹 = (𝑅 × {𝑌}))
43oveqd 7285 . . . . . 6 (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵))
5 df-ov 7271 . . . . . 6 (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩)
64, 5eqtrdi 2795 . . . . 5 (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩))
76neeq1d 3004 . . . 4 (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅))
8 dmxpss 6071 . . . . 5 dom (𝑅 × {𝑌}) ⊆ 𝑅
9 ndmfv 6798 . . . . . 6 (¬ ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = ∅)
109necon1ai 2972 . . . . 5 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}))
118, 10sselid 3923 . . . 4 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
127, 11syl6bi 252 . . 3 (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑅))
132, 12mpd 15 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
14 df-br 5079 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
1513, 14sylibr 233 1 (𝜑𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  wne 2944  c0 4261  {csn 4566  cop 4572   class class class wbr 5078   × cxp 5586  dom cdm 5588  cfv 6430  (class class class)co 7268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-dm 5598  df-iota 6388  df-fv 6438  df-ov 7271
This theorem is referenced by:  prsthinc  46287
  Copyright terms: Public domain W3C validator