Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconstr2 Structured version   Visualization version   GIF version

Theorem fvconstr2 45801
Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
fvconstr.1 (𝜑𝐹 = (𝑅 × {𝑌}))
fvconstr2.2 (𝜑𝑋 ∈ (𝐴𝐹𝐵))
Assertion
Ref Expression
fvconstr2 (𝜑𝐴𝑅𝐵)

Proof of Theorem fvconstr2
StepHypRef Expression
1 fvconstr2.2 . . . 4 (𝜑𝑋 ∈ (𝐴𝐹𝐵))
21ne0d 4236 . . 3 (𝜑 → (𝐴𝐹𝐵) ≠ ∅)
3 fvconstr.1 . . . . . . 7 (𝜑𝐹 = (𝑅 × {𝑌}))
43oveqd 7208 . . . . . 6 (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵))
5 df-ov 7194 . . . . . 6 (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩)
64, 5eqtrdi 2787 . . . . 5 (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩))
76neeq1d 2991 . . . 4 (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅))
8 dmxpss 6014 . . . . 5 dom (𝑅 × {𝑌}) ⊆ 𝑅
9 ndmfv 6725 . . . . . 6 (¬ ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = ∅)
109necon1ai 2959 . . . . 5 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}))
118, 10sseldi 3885 . . . 4 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
127, 11syl6bi 256 . . 3 (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑅))
132, 12mpd 15 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
14 df-br 5040 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
1513, 14sylibr 237 1 (𝜑𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  wne 2932  c0 4223  {csn 4527  cop 4533   class class class wbr 5039   × cxp 5534  dom cdm 5536  cfv 6358  (class class class)co 7191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-xp 5542  df-rel 5543  df-cnv 5544  df-dm 5546  df-iota 6316  df-fv 6366  df-ov 7194
This theorem is referenced by:  prsthinc  45951
  Copyright terms: Public domain W3C validator