![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvconstr2 | Structured version Visualization version GIF version |
Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.) |
Ref | Expression |
---|---|
fvconstr.1 | ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) |
fvconstr2.2 | ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐹𝐵)) |
Ref | Expression |
---|---|
fvconstr2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvconstr2.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐹𝐵)) | |
2 | 1 | ne0d 4365 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐵) ≠ ∅) |
3 | fvconstr.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) | |
4 | 3 | oveqd 7465 | . . . . . 6 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵)) |
5 | df-ov 7451 | . . . . . 6 ⊢ (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) | |
6 | 4, 5 | eqtrdi 2796 | . . . . 5 ⊢ (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉)) |
7 | 6 | neeq1d 3006 | . . . 4 ⊢ (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅)) |
8 | dmxpss 6202 | . . . . 5 ⊢ dom (𝑅 × {𝑌}) ⊆ 𝑅 | |
9 | ndmfv 6955 | . . . . . 6 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) = ∅) | |
10 | 9 | necon1ai 2974 | . . . . 5 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌})) |
11 | 8, 10 | sselid 4006 | . . . 4 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑅) |
12 | 7, 11 | biimtrdi 253 | . . 3 ⊢ (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑅)) |
13 | 2, 12 | mpd 15 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) |
14 | df-br 5167 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
15 | 13, 14 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 {csn 4648 〈cop 4654 class class class wbr 5166 × cxp 5698 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: prsthinc 48721 |
Copyright terms: Public domain | W3C validator |