| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvconstr2 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| fvconstr.1 | ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) |
| fvconstr2.2 | ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐹𝐵)) |
| Ref | Expression |
|---|---|
| fvconstr2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconstr2.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐹𝐵)) | |
| 2 | 1 | ne0d 4317 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐵) ≠ ∅) |
| 3 | fvconstr.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) | |
| 4 | 3 | oveqd 7422 | . . . . . 6 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵)) |
| 5 | df-ov 7408 | . . . . . 6 ⊢ (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) | |
| 6 | 4, 5 | eqtrdi 2786 | . . . . 5 ⊢ (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉)) |
| 7 | 6 | neeq1d 2991 | . . . 4 ⊢ (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅)) |
| 8 | dmxpss 6160 | . . . . 5 ⊢ dom (𝑅 × {𝑌}) ⊆ 𝑅 | |
| 9 | ndmfv 6911 | . . . . . 6 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) = ∅) | |
| 10 | 9 | necon1ai 2959 | . . . . 5 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌})) |
| 11 | 8, 10 | sselid 3956 | . . . 4 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑅) |
| 12 | 7, 11 | biimtrdi 253 | . . 3 ⊢ (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑅)) |
| 13 | 2, 12 | mpd 15 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) |
| 14 | df-br 5120 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 {csn 4601 〈cop 4607 class class class wbr 5119 × cxp 5652 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: prsthinc 49350 |
| Copyright terms: Public domain | W3C validator |