| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvconstr2 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| fvconstr.1 | ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) |
| fvconstr2.2 | ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐹𝐵)) |
| Ref | Expression |
|---|---|
| fvconstr2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconstr2.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐹𝐵)) | |
| 2 | 1 | ne0d 4308 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐵) ≠ ∅) |
| 3 | fvconstr.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) | |
| 4 | 3 | oveqd 7407 | . . . . . 6 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵)) |
| 5 | df-ov 7393 | . . . . . 6 ⊢ (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) | |
| 6 | 4, 5 | eqtrdi 2781 | . . . . 5 ⊢ (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉)) |
| 7 | 6 | neeq1d 2985 | . . . 4 ⊢ (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅)) |
| 8 | dmxpss 6147 | . . . . 5 ⊢ dom (𝑅 × {𝑌}) ⊆ 𝑅 | |
| 9 | ndmfv 6896 | . . . . . 6 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) = ∅) | |
| 10 | 9 | necon1ai 2953 | . . . . 5 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌})) |
| 11 | 8, 10 | sselid 3947 | . . . 4 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑅) |
| 12 | 7, 11 | biimtrdi 253 | . . 3 ⊢ (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑅)) |
| 13 | 2, 12 | mpd 15 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) |
| 14 | df-br 5111 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 {csn 4592 〈cop 4598 class class class wbr 5110 × cxp 5639 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: prsthinc 49457 |
| Copyright terms: Public domain | W3C validator |