Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconstr2 Structured version   Visualization version   GIF version

Theorem fvconstr2 48571
Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
fvconstr.1 (𝜑𝐹 = (𝑅 × {𝑌}))
fvconstr2.2 (𝜑𝑋 ∈ (𝐴𝐹𝐵))
Assertion
Ref Expression
fvconstr2 (𝜑𝐴𝑅𝐵)

Proof of Theorem fvconstr2
StepHypRef Expression
1 fvconstr2.2 . . . 4 (𝜑𝑋 ∈ (𝐴𝐹𝐵))
21ne0d 4365 . . 3 (𝜑 → (𝐴𝐹𝐵) ≠ ∅)
3 fvconstr.1 . . . . . . 7 (𝜑𝐹 = (𝑅 × {𝑌}))
43oveqd 7465 . . . . . 6 (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵))
5 df-ov 7451 . . . . . 6 (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩)
64, 5eqtrdi 2796 . . . . 5 (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩))
76neeq1d 3006 . . . 4 (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅))
8 dmxpss 6202 . . . . 5 dom (𝑅 × {𝑌}) ⊆ 𝑅
9 ndmfv 6955 . . . . . 6 (¬ ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = ∅)
109necon1ai 2974 . . . . 5 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}))
118, 10sselid 4006 . . . 4 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
127, 11biimtrdi 253 . . 3 (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑅))
132, 12mpd 15 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
14 df-br 5167 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
1513, 14sylibr 234 1 (𝜑𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  c0 4352  {csn 4648  cop 4654   class class class wbr 5166   × cxp 5698  dom cdm 5700  cfv 6573  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  prsthinc  48721
  Copyright terms: Public domain W3C validator