Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconstr2 Structured version   Visualization version   GIF version

Theorem fvconstr2 48856
Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
fvconstr.1 (𝜑𝐹 = (𝑅 × {𝑌}))
fvconstr2.2 (𝜑𝑋 ∈ (𝐴𝐹𝐵))
Assertion
Ref Expression
fvconstr2 (𝜑𝐴𝑅𝐵)

Proof of Theorem fvconstr2
StepHypRef Expression
1 fvconstr2.2 . . . 4 (𝜑𝑋 ∈ (𝐴𝐹𝐵))
21ne0d 4308 . . 3 (𝜑 → (𝐴𝐹𝐵) ≠ ∅)
3 fvconstr.1 . . . . . . 7 (𝜑𝐹 = (𝑅 × {𝑌}))
43oveqd 7407 . . . . . 6 (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵))
5 df-ov 7393 . . . . . 6 (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩)
64, 5eqtrdi 2781 . . . . 5 (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩))
76neeq1d 2985 . . . 4 (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅))
8 dmxpss 6147 . . . . 5 dom (𝑅 × {𝑌}) ⊆ 𝑅
9 ndmfv 6896 . . . . . 6 (¬ ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = ∅)
109necon1ai 2953 . . . . 5 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}))
118, 10sselid 3947 . . . 4 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
127, 11biimtrdi 253 . . 3 (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑅))
132, 12mpd 15 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
14 df-br 5111 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
1513, 14sylibr 234 1 (𝜑𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  c0 4299  {csn 4592  cop 4598   class class class wbr 5110   × cxp 5639  dom cdm 5641  cfv 6514  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  prsthinc  49457
  Copyright terms: Public domain W3C validator