Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvconstr2 | Structured version Visualization version GIF version |
Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 18-Sep-2024.) |
Ref | Expression |
---|---|
fvconstr.1 | ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) |
fvconstr2.2 | ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐹𝐵)) |
Ref | Expression |
---|---|
fvconstr2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvconstr2.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐴𝐹𝐵)) | |
2 | 1 | ne0d 4274 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐵) ≠ ∅) |
3 | fvconstr.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) | |
4 | 3 | oveqd 7285 | . . . . . 6 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵)) |
5 | df-ov 7271 | . . . . . 6 ⊢ (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) | |
6 | 4, 5 | eqtrdi 2795 | . . . . 5 ⊢ (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉)) |
7 | 6 | neeq1d 3004 | . . . 4 ⊢ (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅)) |
8 | dmxpss 6071 | . . . . 5 ⊢ dom (𝑅 × {𝑌}) ⊆ 𝑅 | |
9 | ndmfv 6798 | . . . . . 6 ⊢ (¬ 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) = ∅) | |
10 | 9 | necon1ai 2972 | . . . . 5 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ dom (𝑅 × {𝑌})) |
11 | 8, 10 | sselid 3923 | . . . 4 ⊢ (((𝑅 × {𝑌})‘〈𝐴, 𝐵〉) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑅) |
12 | 7, 11 | syl6bi 252 | . . 3 ⊢ (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ → 〈𝐴, 𝐵〉 ∈ 𝑅)) |
13 | 2, 12 | mpd 15 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) |
14 | df-br 5079 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∅c0 4261 {csn 4566 〈cop 4572 class class class wbr 5078 × cxp 5586 dom cdm 5588 ‘cfv 6430 (class class class)co 7268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-iota 6388 df-fv 6438 df-ov 7271 |
This theorem is referenced by: prsthinc 46287 |
Copyright terms: Public domain | W3C validator |