Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconst0ci Structured version   Visualization version   GIF version

Theorem fvconst0ci 49016
Description: A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
fvconst0ci.1 𝐵 ∈ V
fvconst0ci.2 𝑌 = ((𝐴 × {𝐵})‘𝑋)
Assertion
Ref Expression
fvconst0ci (𝑌 = ∅ ∨ 𝑌 = 𝐵)

Proof of Theorem fvconst0ci
StepHypRef Expression
1 fvconst0ci.2 . . . 4 𝑌 = ((𝐴 × {𝐵})‘𝑋)
2 dmxpss 6123 . . . . . 6 dom (𝐴 × {𝐵}) ⊆ 𝐴
32sseli 3926 . . . . 5 (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑋𝐴)
4 fvconst0ci.1 . . . . . 6 𝐵 ∈ V
54fvconst2 7144 . . . . 5 (𝑋𝐴 → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
63, 5syl 17 . . . 4 (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
71, 6eqtrid 2780 . . 3 (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑌 = 𝐵)
87olcd 874 . 2 (𝑋 ∈ dom (𝐴 × {𝐵}) → (𝑌 = ∅ ∨ 𝑌 = 𝐵))
9 ndmfv 6860 . . . 4 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = ∅)
101, 9eqtrid 2780 . . 3 𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑌 = ∅)
1110orcd 873 . 2 𝑋 ∈ dom (𝐴 × {𝐵}) → (𝑌 = ∅ ∨ 𝑌 = 𝐵))
128, 11pm2.61i 182 1 (𝑌 = ∅ ∨ 𝑌 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  {csn 4575   × cxp 5617  dom cdm 5619  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494
This theorem is referenced by:  f1omo  49018  f1omoOLD  49019
  Copyright terms: Public domain W3C validator