| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvconst0ci | Structured version Visualization version GIF version | ||
| Description: A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| fvconst0ci.1 | ⊢ 𝐵 ∈ V |
| fvconst0ci.2 | ⊢ 𝑌 = ((𝐴 × {𝐵})‘𝑋) |
| Ref | Expression |
|---|---|
| fvconst0ci | ⊢ (𝑌 = ∅ ∨ 𝑌 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst0ci.2 | . . . 4 ⊢ 𝑌 = ((𝐴 × {𝐵})‘𝑋) | |
| 2 | dmxpss 6118 | . . . . . 6 ⊢ dom (𝐴 × {𝐵}) ⊆ 𝐴 | |
| 3 | 2 | sseli 3930 | . . . . 5 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑋 ∈ 𝐴) |
| 4 | fvconst0ci.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 5 | 4 | fvconst2 7138 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
| 7 | 1, 6 | eqtrid 2778 | . . 3 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑌 = 𝐵) |
| 8 | 7 | olcd 874 | . 2 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → (𝑌 = ∅ ∨ 𝑌 = 𝐵)) |
| 9 | ndmfv 6854 | . . . 4 ⊢ (¬ 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = ∅) | |
| 10 | 1, 9 | eqtrid 2778 | . . 3 ⊢ (¬ 𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑌 = ∅) |
| 11 | 10 | orcd 873 | . 2 ⊢ (¬ 𝑋 ∈ dom (𝐴 × {𝐵}) → (𝑌 = ∅ ∨ 𝑌 = 𝐵)) |
| 12 | 8, 11 | pm2.61i 182 | 1 ⊢ (𝑌 = ∅ ∨ 𝑌 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 {csn 4576 × cxp 5614 dom cdm 5616 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: f1omo 48930 f1omoOLD 48931 |
| Copyright terms: Public domain | W3C validator |