| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvconst0ci | Structured version Visualization version GIF version | ||
| Description: A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| fvconst0ci.1 | ⊢ 𝐵 ∈ V |
| fvconst0ci.2 | ⊢ 𝑌 = ((𝐴 × {𝐵})‘𝑋) |
| Ref | Expression |
|---|---|
| fvconst0ci | ⊢ (𝑌 = ∅ ∨ 𝑌 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconst0ci.2 | . . . 4 ⊢ 𝑌 = ((𝐴 × {𝐵})‘𝑋) | |
| 2 | dmxpss 6165 | . . . . . 6 ⊢ dom (𝐴 × {𝐵}) ⊆ 𝐴 | |
| 3 | 2 | sseli 3959 | . . . . 5 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑋 ∈ 𝐴) |
| 4 | fvconst0ci.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 5 | 4 | fvconst2 7201 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
| 7 | 1, 6 | eqtrid 2783 | . . 3 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑌 = 𝐵) |
| 8 | 7 | olcd 874 | . 2 ⊢ (𝑋 ∈ dom (𝐴 × {𝐵}) → (𝑌 = ∅ ∨ 𝑌 = 𝐵)) |
| 9 | ndmfv 6916 | . . . 4 ⊢ (¬ 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = ∅) | |
| 10 | 1, 9 | eqtrid 2783 | . . 3 ⊢ (¬ 𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑌 = ∅) |
| 11 | 10 | orcd 873 | . 2 ⊢ (¬ 𝑋 ∈ dom (𝐴 × {𝐵}) → (𝑌 = ∅ ∨ 𝑌 = 𝐵)) |
| 12 | 8, 11 | pm2.61i 182 | 1 ⊢ (𝑌 = ∅ ∨ 𝑌 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 {csn 4606 × cxp 5657 dom cdm 5659 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 |
| This theorem is referenced by: f1omo 48835 |
| Copyright terms: Public domain | W3C validator |