Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconst0ci Structured version   Visualization version   GIF version

Theorem fvconst0ci 45802
Description: A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
fvconst0ci.1 𝐵 ∈ V
fvconst0ci.2 𝑌 = ((𝐴 × {𝐵})‘𝑋)
Assertion
Ref Expression
fvconst0ci (𝑌 = ∅ ∨ 𝑌 = 𝐵)

Proof of Theorem fvconst0ci
StepHypRef Expression
1 fvconst0ci.2 . . . 4 𝑌 = ((𝐴 × {𝐵})‘𝑋)
2 dmxpss 6014 . . . . . 6 dom (𝐴 × {𝐵}) ⊆ 𝐴
32sseli 3883 . . . . 5 (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑋𝐴)
4 fvconst0ci.1 . . . . . 6 𝐵 ∈ V
54fvconst2 6997 . . . . 5 (𝑋𝐴 → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
63, 5syl 17 . . . 4 (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
71, 6syl5eq 2783 . . 3 (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑌 = 𝐵)
87olcd 874 . 2 (𝑋 ∈ dom (𝐴 × {𝐵}) → (𝑌 = ∅ ∨ 𝑌 = 𝐵))
9 ndmfv 6725 . . . 4 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = ∅)
101, 9syl5eq 2783 . . 3 𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑌 = ∅)
1110orcd 873 . 2 𝑋 ∈ dom (𝐴 × {𝐵}) → (𝑌 = ∅ ∨ 𝑌 = 𝐵))
128, 11pm2.61i 185 1 (𝑌 = ∅ ∨ 𝑌 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1543  wcel 2112  Vcvv 3398  c0 4223  {csn 4527   × cxp 5534  dom cdm 5536  cfv 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366
This theorem is referenced by:  f1omo  45804
  Copyright terms: Public domain W3C validator