Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconst0ci Structured version   Visualization version   GIF version

Theorem fvconst0ci 48883
Description: A constant function's value is either the constant or the empty set. (An artifact of our function value definition.) (Contributed by Zhi Wang, 18-Sep-2024.)
Hypotheses
Ref Expression
fvconst0ci.1 𝐵 ∈ V
fvconst0ci.2 𝑌 = ((𝐴 × {𝐵})‘𝑋)
Assertion
Ref Expression
fvconst0ci (𝑌 = ∅ ∨ 𝑌 = 𝐵)

Proof of Theorem fvconst0ci
StepHypRef Expression
1 fvconst0ci.2 . . . 4 𝑌 = ((𝐴 × {𝐵})‘𝑋)
2 dmxpss 6147 . . . . . 6 dom (𝐴 × {𝐵}) ⊆ 𝐴
32sseli 3945 . . . . 5 (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑋𝐴)
4 fvconst0ci.1 . . . . . 6 𝐵 ∈ V
54fvconst2 7181 . . . . 5 (𝑋𝐴 → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
63, 5syl 17 . . . 4 (𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = 𝐵)
71, 6eqtrid 2777 . . 3 (𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑌 = 𝐵)
87olcd 874 . 2 (𝑋 ∈ dom (𝐴 × {𝐵}) → (𝑌 = ∅ ∨ 𝑌 = 𝐵))
9 ndmfv 6896 . . . 4 𝑋 ∈ dom (𝐴 × {𝐵}) → ((𝐴 × {𝐵})‘𝑋) = ∅)
101, 9eqtrid 2777 . . 3 𝑋 ∈ dom (𝐴 × {𝐵}) → 𝑌 = ∅)
1110orcd 873 . 2 𝑋 ∈ dom (𝐴 × {𝐵}) → (𝑌 = ∅ ∨ 𝑌 = 𝐵))
128, 11pm2.61i 182 1 (𝑌 = ∅ ∨ 𝑌 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {csn 4592   × cxp 5639  dom cdm 5641  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522
This theorem is referenced by:  f1omo  48885  f1omoOLD  48886
  Copyright terms: Public domain W3C validator