![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvconstrn0 | Structured version Visualization version GIF version |
Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 20-Sep-2024.) |
Ref | Expression |
---|---|
fvconstr.1 | ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) |
fvconstr.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
fvconstr.3 | ⊢ (𝜑 → 𝑌 ≠ ∅) |
Ref | Expression |
---|---|
fvconstrn0 | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5150 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅) | |
2 | fvconstr.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 = (𝑅 × {𝑌})) | |
3 | 2 | oveqd 7429 | . . . . . . 7 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵)) |
4 | df-ov 7415 | . . . . . . 7 ⊢ (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) | |
5 | 3, 4 | eqtrdi 2787 | . . . . . 6 ⊢ (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩)) |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩)) |
7 | fvconstr.2 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
8 | fvconst2g 7206 | . . . . . 6 ⊢ ((𝑌 ∈ 𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = 𝑌) | |
9 | 7, 8 | sylan 579 | . . . . 5 ⊢ ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = 𝑌) |
10 | 6, 9 | eqtrd 2771 | . . . 4 ⊢ ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴𝐹𝐵) = 𝑌) |
11 | fvconstr.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ ∅) | |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → 𝑌 ≠ ∅) |
13 | 10, 12 | eqnetrd 3007 | . . 3 ⊢ ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴𝐹𝐵) ≠ ∅) |
14 | 5 | neeq1d 2999 | . . . . 5 ⊢ (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅)) |
15 | 14 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) ≠ ∅) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅) |
16 | dmxpss 6171 | . . . . 5 ⊢ dom (𝑅 × {𝑌}) ⊆ 𝑅 | |
17 | ndmfv 6927 | . . . . . 6 ⊢ (¬ ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = ∅) | |
18 | 17 | necon1ai 2967 | . . . . 5 ⊢ (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌})) |
19 | 16, 18 | sselid 3981 | . . . 4 ⊢ (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑅) |
20 | 15, 19 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝐴𝐹𝐵) ≠ ∅) → ⟨𝐴, 𝐵⟩ ∈ 𝑅) |
21 | 13, 20 | impbida 798 | . 2 ⊢ (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ (𝐴𝐹𝐵) ≠ ∅)) |
22 | 1, 21 | bitrid 282 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∅c0 4323 {csn 4629 ⟨cop 4635 class class class wbr 5149 × cxp 5675 dom cdm 5677 ‘cfv 6544 (class class class)co 7412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7415 |
This theorem is referenced by: prstchom 47786 prstchom2ALT 47788 |
Copyright terms: Public domain | W3C validator |