Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvconstrn0 Structured version   Visualization version   GIF version

Theorem fvconstrn0 46195
Description: Two ways of expressing 𝐴𝑅𝐵. (Contributed by Zhi Wang, 20-Sep-2024.)
Hypotheses
Ref Expression
fvconstr.1 (𝜑𝐹 = (𝑅 × {𝑌}))
fvconstr.2 (𝜑𝑌𝑉)
fvconstr.3 (𝜑𝑌 ≠ ∅)
Assertion
Ref Expression
fvconstrn0 (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) ≠ ∅))

Proof of Theorem fvconstrn0
StepHypRef Expression
1 df-br 5076 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 fvconstr.1 . . . . . . . 8 (𝜑𝐹 = (𝑅 × {𝑌}))
32oveqd 7301 . . . . . . 7 (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑅 × {𝑌})𝐵))
4 df-ov 7287 . . . . . . 7 (𝐴(𝑅 × {𝑌})𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩)
53, 4eqtrdi 2795 . . . . . 6 (𝜑 → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩))
65adantr 481 . . . . 5 ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴𝐹𝐵) = ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩))
7 fvconstr.2 . . . . . 6 (𝜑𝑌𝑉)
8 fvconst2g 7086 . . . . . 6 ((𝑌𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = 𝑌)
97, 8sylan 580 . . . . 5 ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = 𝑌)
106, 9eqtrd 2779 . . . 4 ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴𝐹𝐵) = 𝑌)
11 fvconstr.3 . . . . 5 (𝜑𝑌 ≠ ∅)
1211adantr 481 . . . 4 ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → 𝑌 ≠ ∅)
1310, 12eqnetrd 3012 . . 3 ((𝜑 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝑅) → (𝐴𝐹𝐵) ≠ ∅)
145neeq1d 3004 . . . . 5 (𝜑 → ((𝐴𝐹𝐵) ≠ ∅ ↔ ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅))
1514biimpa 477 . . . 4 ((𝜑 ∧ (𝐴𝐹𝐵) ≠ ∅) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅)
16 dmxpss 6079 . . . . 5 dom (𝑅 × {𝑌}) ⊆ 𝑅
17 ndmfv 6813 . . . . . 6 (¬ ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}) → ((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) = ∅)
1817necon1ai 2972 . . . . 5 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ dom (𝑅 × {𝑌}))
1916, 18sselid 3920 . . . 4 (((𝑅 × {𝑌})‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2015, 19syl 17 . . 3 ((𝜑 ∧ (𝐴𝐹𝐵) ≠ ∅) → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2113, 20impbida 798 . 2 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ (𝐴𝐹𝐵) ≠ ∅))
221, 21syl5bb 283 1 (𝜑 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐵) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  wne 2944  c0 4257  {csn 4562  cop 4568   class class class wbr 5075   × cxp 5588  dom cdm 5590  cfv 6437  (class class class)co 7284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pr 5353
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3435  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-fv 6445  df-ov 7287
This theorem is referenced by:  prstchom  46369  prstchom2ALT  46371
  Copyright terms: Public domain W3C validator