Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmxpss | Structured version Visualization version GIF version |
Description: The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.) |
Ref | Expression |
---|---|
dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq2 5601 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
2 | xp0 6050 | . . . . . 6 ⊢ (𝐴 × ∅) = ∅ | |
3 | 1, 2 | eqtrdi 2795 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
4 | 3 | dmeqd 5803 | . . . 4 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅) |
5 | dm0 5818 | . . . 4 ⊢ dom ∅ = ∅ | |
6 | 4, 5 | eqtrdi 2795 | . . 3 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅) |
7 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
8 | 6, 7 | eqsstrdi 3971 | . 2 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
9 | dmxp 5827 | . . 3 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
10 | eqimss 3973 | . . 3 ⊢ (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
12 | 8, 11 | pm2.61ine 3027 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2942 ⊆ wss 3883 ∅c0 4253 × cxp 5578 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 |
This theorem is referenced by: rnxpss 6064 ssxpb 6066 resssxp 6162 funssxp 6613 dff3 6958 fparlem3 7925 fparlem4 7926 brdom3 10215 brdom5 10216 brdom4 10217 canthwelem 10337 pwfseqlem4 10349 uzrdgfni 13606 xptrrel 14619 rlimpm 15137 isohom 17405 ledm 18223 gsumxp 19492 dprd2d2 19562 tsmsxp 23214 dvbssntr 24969 gsumpart 31217 esum2d 31961 frxp2 33718 frxp3 33724 poimirlem3 35707 rtrclex 41114 trclexi 41117 rtrclexi 41118 cnvtrcl0 41123 dmtrcl 41124 rfovcnvf1od 41501 issmflem 44150 fvconstr 46071 fvconstrn0 46072 fvconstr2 46073 fvconst0ci 46074 fvconstdomi 46075 |
Copyright terms: Public domain | W3C validator |