| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxpss | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.) |
| Ref | Expression |
|---|---|
| dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq2 5644 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
| 2 | xp0 6111 | . . . . . 6 ⊢ (𝐴 × ∅) = ∅ | |
| 3 | 1, 2 | eqtrdi 2780 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
| 4 | 3 | dmeqd 5852 | . . . 4 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅) |
| 5 | dm0 5867 | . . . 4 ⊢ dom ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2780 | . . 3 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅) |
| 7 | 0ss 4353 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 8 | 6, 7 | eqsstrdi 3982 | . 2 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
| 9 | dmxp 5875 | . . 3 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
| 10 | eqimss 3996 | . . 3 ⊢ (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
| 12 | 8, 11 | pm2.61ine 3008 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 ⊆ wss 3905 ∅c0 4286 × cxp 5621 dom cdm 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 |
| This theorem is referenced by: rnxpss 6125 ssxpb 6127 resssxp 6222 funssxp 6684 dff3 7038 fparlem3 8054 fparlem4 8055 frxp2 8084 frxp3 8091 brdom3 10441 brdom5 10442 brdom4 10443 canthwelem 10563 pwfseqlem4 10575 uzrdgfni 13883 xptrrel 14905 rlimpm 15425 isohom 17701 ledm 18514 gsumxp 19873 dprd2d2 19943 tsmsxp 24058 dvbssntr 25817 noseqrdgfn 28223 gsumpart 33023 esum2d 34059 poimirlem3 37602 rtrclex 43590 trclexi 43593 rtrclexi 43594 cnvtrcl0 43599 dmtrcl 43600 rfovcnvf1od 43977 issmflem 46709 fvconstr 48847 fvconstrn0 48848 fvconstr2 48849 fvconst0ci 48876 fvconstdomi 48877 |
| Copyright terms: Public domain | W3C validator |