![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmxpss | Structured version Visualization version GIF version |
Description: The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.) |
Ref | Expression |
---|---|
dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq2 5721 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
2 | xp0 6189 | . . . . . 6 ⊢ (𝐴 × ∅) = ∅ | |
3 | 1, 2 | eqtrdi 2796 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
4 | 3 | dmeqd 5930 | . . . 4 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅) |
5 | dm0 5945 | . . . 4 ⊢ dom ∅ = ∅ | |
6 | 4, 5 | eqtrdi 2796 | . . 3 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅) |
7 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
8 | 6, 7 | eqsstrdi 4063 | . 2 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
9 | dmxp 5953 | . . 3 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
10 | eqimss 4067 | . . 3 ⊢ (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
12 | 8, 11 | pm2.61ine 3031 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ≠ wne 2946 ⊆ wss 3976 ∅c0 4352 × cxp 5698 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 |
This theorem is referenced by: rnxpss 6203 ssxpb 6205 resssxp 6301 funssxp 6776 dff3 7134 fparlem3 8155 fparlem4 8156 frxp2 8185 frxp3 8192 brdom3 10597 brdom5 10598 brdom4 10599 canthwelem 10719 pwfseqlem4 10731 uzrdgfni 14009 xptrrel 15029 rlimpm 15546 isohom 17837 ledm 18660 gsumxp 20018 dprd2d2 20088 tsmsxp 24184 dvbssntr 25955 noseqrdgfn 28330 gsumpart 33038 esum2d 34057 poimirlem3 37583 rtrclex 43579 trclexi 43582 rtrclexi 43583 cnvtrcl0 43588 dmtrcl 43589 rfovcnvf1od 43966 issmflem 46648 fvconstr 48569 fvconstrn0 48570 fvconstr2 48571 fvconst0ci 48572 fvconstdomi 48573 |
Copyright terms: Public domain | W3C validator |