| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxpss | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.) |
| Ref | Expression |
|---|---|
| dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq2 5680 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
| 2 | xp0 6152 | . . . . . 6 ⊢ (𝐴 × ∅) = ∅ | |
| 3 | 1, 2 | eqtrdi 2787 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
| 4 | 3 | dmeqd 5890 | . . . 4 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅) |
| 5 | dm0 5905 | . . . 4 ⊢ dom ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2787 | . . 3 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅) |
| 7 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 8 | 6, 7 | eqsstrdi 4008 | . 2 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
| 9 | dmxp 5913 | . . 3 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
| 10 | eqimss 4022 | . . 3 ⊢ (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
| 12 | 8, 11 | pm2.61ine 3016 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2933 ⊆ wss 3931 ∅c0 4313 × cxp 5657 dom cdm 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 |
| This theorem is referenced by: rnxpss 6166 ssxpb 6168 resssxp 6264 funssxp 6739 dff3 7095 fparlem3 8118 fparlem4 8119 frxp2 8148 frxp3 8155 brdom3 10547 brdom5 10548 brdom4 10549 canthwelem 10669 pwfseqlem4 10681 uzrdgfni 13981 xptrrel 15004 rlimpm 15521 isohom 17794 ledm 18605 gsumxp 19962 dprd2d2 20032 tsmsxp 24098 dvbssntr 25858 noseqrdgfn 28257 gsumpart 33056 esum2d 34129 poimirlem3 37652 rtrclex 43608 trclexi 43611 rtrclexi 43612 cnvtrcl0 43617 dmtrcl 43618 rfovcnvf1od 43995 issmflem 46723 fvconstr 48805 fvconstrn0 48806 fvconstr2 48807 fvconst0ci 48833 fvconstdomi 48834 |
| Copyright terms: Public domain | W3C validator |