MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmxpss Structured version   Visualization version   GIF version

Theorem dmxpss 6063
Description: The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.)
Assertion
Ref Expression
dmxpss dom (𝐴 × 𝐵) ⊆ 𝐴

Proof of Theorem dmxpss
StepHypRef Expression
1 xpeq2 5601 . . . . . 6 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
2 xp0 6050 . . . . . 6 (𝐴 × ∅) = ∅
31, 2eqtrdi 2795 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
43dmeqd 5803 . . . 4 (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅)
5 dm0 5818 . . . 4 dom ∅ = ∅
64, 5eqtrdi 2795 . . 3 (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅)
7 0ss 4327 . . 3 ∅ ⊆ 𝐴
86, 7eqsstrdi 3971 . 2 (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴)
9 dmxp 5827 . . 3 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
10 eqimss 3973 . . 3 (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴)
119, 10syl 17 . 2 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴)
128, 11pm2.61ine 3027 1 dom (𝐴 × 𝐵) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wne 2942  wss 3883  c0 4253   × cxp 5578  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590
This theorem is referenced by:  rnxpss  6064  ssxpb  6066  resssxp  6162  funssxp  6613  dff3  6958  fparlem3  7925  fparlem4  7926  brdom3  10215  brdom5  10216  brdom4  10217  canthwelem  10337  pwfseqlem4  10349  uzrdgfni  13606  xptrrel  14619  rlimpm  15137  isohom  17405  ledm  18223  gsumxp  19492  dprd2d2  19562  tsmsxp  23214  dvbssntr  24969  gsumpart  31217  esum2d  31961  frxp2  33718  frxp3  33724  poimirlem3  35707  rtrclex  41114  trclexi  41117  rtrclexi  41118  cnvtrcl0  41123  dmtrcl  41124  rfovcnvf1od  41501  issmflem  44150  fvconstr  46071  fvconstrn0  46072  fvconstr2  46073  fvconst0ci  46074  fvconstdomi  46075
  Copyright terms: Public domain W3C validator