MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmxpss Structured version   Visualization version   GIF version

Theorem dmxpss 6118
Description: The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.)
Assertion
Ref Expression
dmxpss dom (𝐴 × 𝐵) ⊆ 𝐴

Proof of Theorem dmxpss
StepHypRef Expression
1 xpeq2 5637 . . . . . 6 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
2 xp0 6105 . . . . . 6 (𝐴 × ∅) = ∅
31, 2eqtrdi 2782 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
43dmeqd 5845 . . . 4 (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅)
5 dm0 5860 . . . 4 dom ∅ = ∅
64, 5eqtrdi 2782 . . 3 (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅)
7 0ss 4350 . . 3 ∅ ⊆ 𝐴
86, 7eqsstrdi 3979 . 2 (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴)
9 dmxp 5869 . . 3 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
10 eqimss 3993 . . 3 (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴)
119, 10syl 17 . 2 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴)
128, 11pm2.61ine 3011 1 dom (𝐴 × 𝐵) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wne 2928  wss 3902  c0 4283   × cxp 5614  dom cdm 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626
This theorem is referenced by:  rnxpss  6119  ssxpb  6121  resssxp  6217  funssxp  6679  dff3  7033  fparlem3  8044  fparlem4  8045  frxp2  8074  frxp3  8081  brdom3  10416  brdom5  10417  brdom4  10418  canthwelem  10538  pwfseqlem4  10550  uzrdgfni  13862  xptrrel  14884  rlimpm  15404  isohom  17680  ledm  18493  gsumxp  19886  dprd2d2  19956  tsmsxp  24068  dvbssntr  25826  noseqrdgfn  28234  gsumpart  33032  esum2d  34101  poimirlem3  37662  rtrclex  43649  trclexi  43652  rtrclexi  43653  cnvtrcl0  43658  dmtrcl  43659  rfovcnvf1od  44036  issmflem  46764  fvconstr  48892  fvconstrn0  48893  fvconstr2  48894  fvconst0ci  48921  fvconstdomi  48922
  Copyright terms: Public domain W3C validator