| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxpss | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.) |
| Ref | Expression |
|---|---|
| dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq2 5637 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
| 2 | xp0 6105 | . . . . . 6 ⊢ (𝐴 × ∅) = ∅ | |
| 3 | 1, 2 | eqtrdi 2782 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
| 4 | 3 | dmeqd 5845 | . . . 4 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅) |
| 5 | dm0 5860 | . . . 4 ⊢ dom ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2782 | . . 3 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅) |
| 7 | 0ss 4350 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 8 | 6, 7 | eqsstrdi 3979 | . 2 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
| 9 | dmxp 5869 | . . 3 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
| 10 | eqimss 3993 | . . 3 ⊢ (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
| 12 | 8, 11 | pm2.61ine 3011 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2928 ⊆ wss 3902 ∅c0 4283 × cxp 5614 dom cdm 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 |
| This theorem is referenced by: rnxpss 6119 ssxpb 6121 resssxp 6217 funssxp 6679 dff3 7033 fparlem3 8044 fparlem4 8045 frxp2 8074 frxp3 8081 brdom3 10416 brdom5 10417 brdom4 10418 canthwelem 10538 pwfseqlem4 10550 uzrdgfni 13862 xptrrel 14884 rlimpm 15404 isohom 17680 ledm 18493 gsumxp 19886 dprd2d2 19956 tsmsxp 24068 dvbssntr 25826 noseqrdgfn 28234 gsumpart 33032 esum2d 34101 poimirlem3 37662 rtrclex 43649 trclexi 43652 rtrclexi 43653 cnvtrcl0 43658 dmtrcl 43659 rfovcnvf1od 44036 issmflem 46764 fvconstr 48892 fvconstrn0 48893 fvconstr2 48894 fvconst0ci 48921 fvconstdomi 48922 |
| Copyright terms: Public domain | W3C validator |