| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxpss | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.) |
| Ref | Expression |
|---|---|
| dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq2 5659 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
| 2 | xp0 6131 | . . . . . 6 ⊢ (𝐴 × ∅) = ∅ | |
| 3 | 1, 2 | eqtrdi 2780 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
| 4 | 3 | dmeqd 5869 | . . . 4 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅) |
| 5 | dm0 5884 | . . . 4 ⊢ dom ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2780 | . . 3 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅) |
| 7 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 8 | 6, 7 | eqsstrdi 3991 | . 2 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
| 9 | dmxp 5892 | . . 3 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
| 10 | eqimss 4005 | . . 3 ⊢ (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
| 12 | 8, 11 | pm2.61ine 3008 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 × cxp 5636 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 |
| This theorem is referenced by: rnxpss 6145 ssxpb 6147 resssxp 6243 funssxp 6716 dff3 7072 fparlem3 8093 fparlem4 8094 frxp2 8123 frxp3 8130 brdom3 10481 brdom5 10482 brdom4 10483 canthwelem 10603 pwfseqlem4 10615 uzrdgfni 13923 xptrrel 14946 rlimpm 15466 isohom 17738 ledm 18549 gsumxp 19906 dprd2d2 19976 tsmsxp 24042 dvbssntr 25801 noseqrdgfn 28200 gsumpart 32997 esum2d 34083 poimirlem3 37617 rtrclex 43606 trclexi 43609 rtrclexi 43610 cnvtrcl0 43615 dmtrcl 43616 rfovcnvf1od 43993 issmflem 46725 fvconstr 48847 fvconstrn0 48848 fvconstr2 48849 fvconst0ci 48876 fvconstdomi 48877 |
| Copyright terms: Public domain | W3C validator |