| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxpss | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.) |
| Ref | Expression |
|---|---|
| dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq2 5640 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
| 2 | xp0 5719 | . . . . . 6 ⊢ (𝐴 × ∅) = ∅ | |
| 3 | 1, 2 | eqtrdi 2784 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
| 4 | 3 | dmeqd 5849 | . . . 4 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅) |
| 5 | dm0 5864 | . . . 4 ⊢ dom ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2784 | . . 3 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅) |
| 7 | 0ss 4349 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 8 | 6, 7 | eqsstrdi 3975 | . 2 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
| 9 | dmxp 5873 | . . 3 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
| 10 | eqimss 3989 | . . 3 ⊢ (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
| 12 | 8, 11 | pm2.61ine 3012 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 × cxp 5617 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 |
| This theorem is referenced by: rnxpss 6124 ssxpb 6126 resssxp 6222 funssxp 6684 dff3 7039 fparlem3 8050 fparlem4 8051 frxp2 8080 frxp3 8087 brdom3 10426 brdom5 10427 brdom4 10428 canthwelem 10548 pwfseqlem4 10560 uzrdgfni 13867 xptrrel 14889 rlimpm 15409 isohom 17685 ledm 18498 gsumxp 19890 dprd2d2 19960 tsmsxp 24071 dvbssntr 25829 noseqrdgfn 28237 gsumpart 33044 esum2d 34127 poimirlem3 37683 rtrclex 43734 trclexi 43737 rtrclexi 43738 cnvtrcl0 43743 dmtrcl 43744 rfovcnvf1od 44121 issmflem 46849 fvconstr 48986 fvconstrn0 48987 fvconstr2 48988 fvconst0ci 49015 fvconstdomi 49016 |
| Copyright terms: Public domain | W3C validator |