MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmxpss Structured version   Visualization version   GIF version

Theorem dmxpss 6202
Description: The domain of a Cartesian product is included in its first factor. (Contributed by NM, 19-Mar-2007.)
Assertion
Ref Expression
dmxpss dom (𝐴 × 𝐵) ⊆ 𝐴

Proof of Theorem dmxpss
StepHypRef Expression
1 xpeq2 5721 . . . . . 6 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
2 xp0 6189 . . . . . 6 (𝐴 × ∅) = ∅
31, 2eqtrdi 2796 . . . . 5 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
43dmeqd 5930 . . . 4 (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅)
5 dm0 5945 . . . 4 dom ∅ = ∅
64, 5eqtrdi 2796 . . 3 (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅)
7 0ss 4423 . . 3 ∅ ⊆ 𝐴
86, 7eqsstrdi 4063 . 2 (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴)
9 dmxp 5953 . . 3 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
10 eqimss 4067 . . 3 (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴)
119, 10syl 17 . 2 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴)
128, 11pm2.61ine 3031 1 dom (𝐴 × 𝐵) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wne 2946  wss 3976  c0 4352   × cxp 5698  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710
This theorem is referenced by:  rnxpss  6203  ssxpb  6205  resssxp  6301  funssxp  6776  dff3  7134  fparlem3  8155  fparlem4  8156  frxp2  8185  frxp3  8192  brdom3  10597  brdom5  10598  brdom4  10599  canthwelem  10719  pwfseqlem4  10731  uzrdgfni  14009  xptrrel  15029  rlimpm  15546  isohom  17837  ledm  18660  gsumxp  20018  dprd2d2  20088  tsmsxp  24184  dvbssntr  25955  noseqrdgfn  28330  gsumpart  33038  esum2d  34057  poimirlem3  37583  rtrclex  43579  trclexi  43582  rtrclexi  43583  cnvtrcl0  43588  dmtrcl  43589  rfovcnvf1od  43966  issmflem  46648  fvconstr  48569  fvconstrn0  48570  fvconstr2  48571  fvconst0ci  48572  fvconstdomi  48573
  Copyright terms: Public domain W3C validator