Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjth Structured version   Visualization version   GIF version

Theorem pjth 24046
 Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.)
Hypotheses
Ref Expression
pjth.v 𝑉 = (Base‘𝑊)
pjth.s = (LSSum‘𝑊)
pjth.o 𝑂 = (ocv‘𝑊)
pjth.j 𝐽 = (TopOpen‘𝑊)
pjth.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
pjth ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) = 𝑉)

Proof of Theorem pjth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hlphl 23972 . . . . . 6 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
213ad2ant1 1130 . . . . 5 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑊 ∈ PreHil)
3 phllmod 20322 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑊 ∈ LMod)
5 simp2 1134 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑈𝐿)
6 pjth.v . . . . . . 7 𝑉 = (Base‘𝑊)
7 pjth.l . . . . . . 7 𝐿 = (LSubSp‘𝑊)
86, 7lssss 19704 . . . . . 6 (𝑈𝐿𝑈𝑉)
983ad2ant2 1131 . . . . 5 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑈𝑉)
10 pjth.o . . . . . 6 𝑂 = (ocv‘𝑊)
116, 10, 7ocvlss 20364 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑉) → (𝑂𝑈) ∈ 𝐿)
122, 9, 11syl2anc 587 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑂𝑈) ∈ 𝐿)
13 pjth.s . . . . 5 = (LSSum‘𝑊)
147, 13lsmcl 19851 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿 ∧ (𝑂𝑈) ∈ 𝐿) → (𝑈 (𝑂𝑈)) ∈ 𝐿)
154, 5, 12, 14syl3anc 1368 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) ∈ 𝐿)
166, 7lssss 19704 . . 3 ((𝑈 (𝑂𝑈)) ∈ 𝐿 → (𝑈 (𝑂𝑈)) ⊆ 𝑉)
1715, 16syl 17 . 2 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) ⊆ 𝑉)
18 eqid 2801 . . 3 (norm‘𝑊) = (norm‘𝑊)
19 eqid 2801 . . 3 (+g𝑊) = (+g𝑊)
20 eqid 2801 . . 3 (-g𝑊) = (-g𝑊)
21 eqid 2801 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
22 simpl1 1188 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑊 ∈ ℂHil)
23 simpl2 1189 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑈𝐿)
24 simpr 488 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑥𝑉)
25 pjth.j . . 3 𝐽 = (TopOpen‘𝑊)
26 simpl3 1190 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑈 ∈ (Clsd‘𝐽))
276, 18, 19, 20, 21, 7, 22, 23, 24, 25, 13, 10, 26pjthlem2 24045 . 2 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑥 ∈ (𝑈 (𝑂𝑈)))
2817, 27eqelssd 3939 1 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) = 𝑉)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ⊆ wss 3884  ‘cfv 6328  (class class class)co 7139  Basecbs 16478  +gcplusg 16560  ·𝑖cip 16565  TopOpenctopn 16690  -gcsg 18100  LSSumclsm 18754  LModclmod 19630  LSubSpclss 19699  PreHilcphl 20316  ocvcocv 20352  Clsdccld 21624  normcnm 23186  ℂHilchl 23941 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-ghm 18351  df-cntz 18442  df-lsm 18756  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-rnghom 19466  df-drng 19500  df-subrg 19529  df-staf 19612  df-srng 19613  df-lmod 19632  df-lss 19700  df-lmhm 19790  df-lvec 19871  df-sra 19940  df-rgmod 19941  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-fbas 20091  df-fg 20092  df-cnfld 20095  df-phl 20318  df-ocv 20355  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-flim 22547  df-fcls 22549  df-xms 22930  df-ms 22931  df-tms 22932  df-nm 23192  df-ngp 23193  df-nlm 23196  df-cncf 23486  df-clm 23671  df-cph 23776  df-cfil 23862  df-cmet 23864  df-cms 23942  df-bn 23943  df-hl 23944 This theorem is referenced by:  pjth2  24047
 Copyright terms: Public domain W3C validator