MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjth Structured version   Visualization version   GIF version

Theorem pjth 24601
Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.)
Hypotheses
Ref Expression
pjth.v 𝑉 = (Base‘𝑊)
pjth.s = (LSSum‘𝑊)
pjth.o 𝑂 = (ocv‘𝑊)
pjth.j 𝐽 = (TopOpen‘𝑊)
pjth.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
pjth ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) = 𝑉)

Proof of Theorem pjth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hlphl 24527 . . . . . 6 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
213ad2ant1 1132 . . . . 5 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑊 ∈ PreHil)
3 phllmod 20833 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑊 ∈ LMod)
5 simp2 1136 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑈𝐿)
6 pjth.v . . . . . . 7 𝑉 = (Base‘𝑊)
7 pjth.l . . . . . . 7 𝐿 = (LSubSp‘𝑊)
86, 7lssss 20196 . . . . . 6 (𝑈𝐿𝑈𝑉)
983ad2ant2 1133 . . . . 5 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑈𝑉)
10 pjth.o . . . . . 6 𝑂 = (ocv‘𝑊)
116, 10, 7ocvlss 20875 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑉) → (𝑂𝑈) ∈ 𝐿)
122, 9, 11syl2anc 584 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑂𝑈) ∈ 𝐿)
13 pjth.s . . . . 5 = (LSSum‘𝑊)
147, 13lsmcl 20343 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿 ∧ (𝑂𝑈) ∈ 𝐿) → (𝑈 (𝑂𝑈)) ∈ 𝐿)
154, 5, 12, 14syl3anc 1370 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) ∈ 𝐿)
166, 7lssss 20196 . . 3 ((𝑈 (𝑂𝑈)) ∈ 𝐿 → (𝑈 (𝑂𝑈)) ⊆ 𝑉)
1715, 16syl 17 . 2 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) ⊆ 𝑉)
18 eqid 2740 . . 3 (norm‘𝑊) = (norm‘𝑊)
19 eqid 2740 . . 3 (+g𝑊) = (+g𝑊)
20 eqid 2740 . . 3 (-g𝑊) = (-g𝑊)
21 eqid 2740 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
22 simpl1 1190 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑊 ∈ ℂHil)
23 simpl2 1191 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑈𝐿)
24 simpr 485 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑥𝑉)
25 pjth.j . . 3 𝐽 = (TopOpen‘𝑊)
26 simpl3 1192 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑈 ∈ (Clsd‘𝐽))
276, 18, 19, 20, 21, 7, 22, 23, 24, 25, 13, 10, 26pjthlem2 24600 . 2 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑥 ∈ (𝑈 (𝑂𝑈)))
2817, 27eqelssd 3947 1 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wss 3892  cfv 6432  (class class class)co 7271  Basecbs 16910  +gcplusg 16960  ·𝑖cip 16965  TopOpenctopn 17130  -gcsg 18577  LSSumclsm 19237  LModclmod 20121  LSubSpclss 20191  PreHilcphl 20827  ocvcocv 20863  Clsdccld 22165  normcnm 23730  ℂHilchl 24496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-tpos 8033  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-submnd 18429  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mulg 18699  df-subg 18750  df-ghm 18830  df-cntz 18921  df-lsm 19239  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-oppr 19860  df-dvdsr 19881  df-unit 19882  df-invr 19912  df-dvr 19923  df-rnghom 19957  df-drng 19991  df-subrg 20020  df-staf 20103  df-srng 20104  df-lmod 20123  df-lss 20192  df-lmhm 20282  df-lvec 20363  df-sra 20432  df-rgmod 20433  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-phl 20829  df-ocv 20866  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-cn 22376  df-cnp 22377  df-haus 22464  df-cmp 22536  df-tx 22711  df-hmeo 22904  df-fil 22995  df-flim 23088  df-fcls 23090  df-xms 23471  df-ms 23472  df-tms 23473  df-nm 23736  df-ngp 23737  df-nlm 23740  df-cncf 24039  df-clm 24224  df-cph 24330  df-cfil 24417  df-cmet 24419  df-cms 24497  df-bn 24498  df-hl 24499
This theorem is referenced by:  pjth2  24602
  Copyright terms: Public domain W3C validator