MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjth Structured version   Visualization version   GIF version

Theorem pjth 23748
Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.)
Hypotheses
Ref Expression
pjth.v 𝑉 = (Base‘𝑊)
pjth.s = (LSSum‘𝑊)
pjth.o 𝑂 = (ocv‘𝑊)
pjth.j 𝐽 = (TopOpen‘𝑊)
pjth.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
pjth ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) = 𝑉)

Proof of Theorem pjth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hlphl 23674 . . . . . 6 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
213ad2ant1 1113 . . . . 5 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑊 ∈ PreHil)
3 phllmod 20479 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑊 ∈ LMod)
5 simp2 1117 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑈𝐿)
6 pjth.v . . . . . . 7 𝑉 = (Base‘𝑊)
7 pjth.l . . . . . . 7 𝐿 = (LSubSp‘𝑊)
86, 7lssss 19433 . . . . . 6 (𝑈𝐿𝑈𝑉)
983ad2ant2 1114 . . . . 5 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → 𝑈𝑉)
10 pjth.o . . . . . 6 𝑂 = (ocv‘𝑊)
116, 10, 7ocvlss 20521 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑉) → (𝑂𝑈) ∈ 𝐿)
122, 9, 11syl2anc 576 . . . 4 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑂𝑈) ∈ 𝐿)
13 pjth.s . . . . 5 = (LSSum‘𝑊)
147, 13lsmcl 19580 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿 ∧ (𝑂𝑈) ∈ 𝐿) → (𝑈 (𝑂𝑈)) ∈ 𝐿)
154, 5, 12, 14syl3anc 1351 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) ∈ 𝐿)
166, 7lssss 19433 . . 3 ((𝑈 (𝑂𝑈)) ∈ 𝐿 → (𝑈 (𝑂𝑈)) ⊆ 𝑉)
1715, 16syl 17 . 2 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) ⊆ 𝑉)
18 eqid 2778 . . 3 (norm‘𝑊) = (norm‘𝑊)
19 eqid 2778 . . 3 (+g𝑊) = (+g𝑊)
20 eqid 2778 . . 3 (-g𝑊) = (-g𝑊)
21 eqid 2778 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
22 simpl1 1171 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑊 ∈ ℂHil)
23 simpl2 1172 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑈𝐿)
24 simpr 477 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑥𝑉)
25 pjth.j . . 3 𝐽 = (TopOpen‘𝑊)
26 simpl3 1173 . . 3 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑈 ∈ (Clsd‘𝐽))
276, 18, 19, 20, 21, 7, 22, 23, 24, 25, 13, 10, 26pjthlem2 23747 . 2 (((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑥𝑉) → 𝑥 ∈ (𝑈 (𝑂𝑈)))
2817, 27eqelssd 3880 1 ((𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ (Clsd‘𝐽)) → (𝑈 (𝑂𝑈)) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wss 3831  cfv 6190  (class class class)co 6978  Basecbs 16342  +gcplusg 16424  ·𝑖cip 16429  TopOpenctopn 16554  -gcsg 17896  LSSumclsm 18523  LModclmod 19359  LSubSpclss 19428  PreHilcphl 20473  ocvcocv 20509  Clsdccld 21331  normcnm 22892  ℂHilchl 23643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415  ax-addf 10416  ax-mulf 10417
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-se 5368  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-isom 6199  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-of 7229  df-om 7399  df-1st 7503  df-2nd 7504  df-supp 7636  df-tpos 7697  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fsupp 8631  df-fi 8672  df-sup 8703  df-inf 8704  df-oi 8771  df-card 9164  df-cda 9390  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-4 11508  df-5 11509  df-6 11510  df-7 11511  df-8 11512  df-9 11513  df-n0 11711  df-z 11797  df-dec 11915  df-uz 12062  df-q 12166  df-rp 12208  df-xneg 12327  df-xadd 12328  df-xmul 12329  df-ioo 12561  df-ico 12563  df-icc 12564  df-fz 12712  df-fzo 12853  df-seq 13188  df-exp 13248  df-hash 13509  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-struct 16344  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-ress 16350  df-plusg 16437  df-mulr 16438  df-starv 16439  df-sca 16440  df-vsca 16441  df-ip 16442  df-tset 16443  df-ple 16444  df-ds 16446  df-unif 16447  df-hom 16448  df-cco 16449  df-rest 16555  df-topn 16556  df-0g 16574  df-gsum 16575  df-topgen 16576  df-pt 16577  df-prds 16580  df-xrs 16634  df-qtop 16639  df-imas 16640  df-xps 16642  df-mre 16718  df-mrc 16719  df-acs 16721  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-mhm 17806  df-submnd 17807  df-grp 17897  df-minusg 17898  df-sbg 17899  df-mulg 18015  df-subg 18063  df-ghm 18130  df-cntz 18221  df-lsm 18525  df-cmn 18671  df-abl 18672  df-mgp 18966  df-ur 18978  df-ring 19025  df-cring 19026  df-oppr 19099  df-dvdsr 19117  df-unit 19118  df-invr 19148  df-dvr 19159  df-rnghom 19193  df-drng 19230  df-subrg 19259  df-staf 19341  df-srng 19342  df-lmod 19361  df-lss 19429  df-lmhm 19519  df-lvec 19600  df-sra 19669  df-rgmod 19670  df-psmet 20242  df-xmet 20243  df-met 20244  df-bl 20245  df-mopn 20246  df-fbas 20247  df-fg 20248  df-cnfld 20251  df-phl 20475  df-ocv 20512  df-top 21209  df-topon 21226  df-topsp 21248  df-bases 21261  df-cld 21334  df-ntr 21335  df-cls 21336  df-nei 21413  df-cn 21542  df-cnp 21543  df-haus 21630  df-cmp 21702  df-tx 21877  df-hmeo 22070  df-fil 22161  df-flim 22254  df-fcls 22256  df-xms 22636  df-ms 22637  df-tms 22638  df-nm 22898  df-ngp 22899  df-nlm 22902  df-cncf 23192  df-clm 23373  df-cph 23478  df-cfil 23564  df-cmet 23566  df-cms 23644  df-bn 23645  df-hl 23646
This theorem is referenced by:  pjth2  23749
  Copyright terms: Public domain W3C validator