![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pjth | Structured version Visualization version GIF version |
Description: Projection Theorem: Any Hilbert space vector π΄ can be decomposed uniquely into a member π₯ of a closed subspace π» and a member π¦ of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) |
Ref | Expression |
---|---|
pjth.v | β’ π = (Baseβπ) |
pjth.s | β’ β = (LSSumβπ) |
pjth.o | β’ π = (ocvβπ) |
pjth.j | β’ π½ = (TopOpenβπ) |
pjth.l | β’ πΏ = (LSubSpβπ) |
Ref | Expression |
---|---|
pjth | β’ ((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β (π β (πβπ)) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlphl 24889 | . . . . . 6 β’ (π β βHil β π β PreHil) | |
2 | 1 | 3ad2ant1 1133 | . . . . 5 β’ ((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β π β PreHil) |
3 | phllmod 21189 | . . . . 5 β’ (π β PreHil β π β LMod) | |
4 | 2, 3 | syl 17 | . . . 4 β’ ((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β π β LMod) |
5 | simp2 1137 | . . . 4 β’ ((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β π β πΏ) | |
6 | pjth.v | . . . . . . 7 β’ π = (Baseβπ) | |
7 | pjth.l | . . . . . . 7 β’ πΏ = (LSubSpβπ) | |
8 | 6, 7 | lssss 20552 | . . . . . 6 β’ (π β πΏ β π β π) |
9 | 8 | 3ad2ant2 1134 | . . . . 5 β’ ((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β π β π) |
10 | pjth.o | . . . . . 6 β’ π = (ocvβπ) | |
11 | 6, 10, 7 | ocvlss 21231 | . . . . 5 β’ ((π β PreHil β§ π β π) β (πβπ) β πΏ) |
12 | 2, 9, 11 | syl2anc 584 | . . . 4 β’ ((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β (πβπ) β πΏ) |
13 | pjth.s | . . . . 5 β’ β = (LSSumβπ) | |
14 | 7, 13 | lsmcl 20699 | . . . 4 β’ ((π β LMod β§ π β πΏ β§ (πβπ) β πΏ) β (π β (πβπ)) β πΏ) |
15 | 4, 5, 12, 14 | syl3anc 1371 | . . 3 β’ ((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β (π β (πβπ)) β πΏ) |
16 | 6, 7 | lssss 20552 | . . 3 β’ ((π β (πβπ)) β πΏ β (π β (πβπ)) β π) |
17 | 15, 16 | syl 17 | . 2 β’ ((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β (π β (πβπ)) β π) |
18 | eqid 2732 | . . 3 β’ (normβπ) = (normβπ) | |
19 | eqid 2732 | . . 3 β’ (+gβπ) = (+gβπ) | |
20 | eqid 2732 | . . 3 β’ (-gβπ) = (-gβπ) | |
21 | eqid 2732 | . . 3 β’ (Β·πβπ) = (Β·πβπ) | |
22 | simpl1 1191 | . . 3 β’ (((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β§ π₯ β π) β π β βHil) | |
23 | simpl2 1192 | . . 3 β’ (((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β§ π₯ β π) β π β πΏ) | |
24 | simpr 485 | . . 3 β’ (((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β§ π₯ β π) β π₯ β π) | |
25 | pjth.j | . . 3 β’ π½ = (TopOpenβπ) | |
26 | simpl3 1193 | . . 3 β’ (((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β§ π₯ β π) β π β (Clsdβπ½)) | |
27 | 6, 18, 19, 20, 21, 7, 22, 23, 24, 25, 13, 10, 26 | pjthlem2 24962 | . 2 β’ (((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β§ π₯ β π) β π₯ β (π β (πβπ))) |
28 | 17, 27 | eqelssd 4003 | 1 β’ ((π β βHil β§ π β πΏ β§ π β (Clsdβπ½)) β (π β (πβπ)) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wss 3948 βcfv 6543 (class class class)co 7411 Basecbs 17146 +gcplusg 17199 Β·πcip 17204 TopOpenctopn 17369 -gcsg 18823 LSSumclsm 19504 LModclmod 20475 LSubSpclss 20547 PreHilcphl 21183 ocvcocv 21219 Clsdccld 22527 normcnm 24092 βHilchl 24858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-q 12935 df-rp 12977 df-xneg 13094 df-xadd 13095 df-xmul 13096 df-ioo 13330 df-ico 13332 df-icc 13333 df-fz 13487 df-fzo 13630 df-seq 13969 df-exp 14030 df-hash 14293 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-mulr 17213 df-starv 17214 df-sca 17215 df-vsca 17216 df-ip 17217 df-tset 17218 df-ple 17219 df-ds 17221 df-unif 17222 df-hom 17223 df-cco 17224 df-rest 17370 df-topn 17371 df-0g 17389 df-gsum 17390 df-topgen 17391 df-pt 17392 df-prds 17395 df-xrs 17450 df-qtop 17455 df-imas 17456 df-xps 17458 df-mre 17532 df-mrc 17533 df-acs 17535 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-mhm 18673 df-submnd 18674 df-grp 18824 df-minusg 18825 df-sbg 18826 df-mulg 18953 df-subg 19005 df-ghm 19092 df-cntz 19183 df-lsm 19506 df-cmn 19652 df-abl 19653 df-mgp 19990 df-ur 20007 df-ring 20060 df-cring 20061 df-oppr 20154 df-dvdsr 20175 df-unit 20176 df-invr 20206 df-dvr 20219 df-rnghom 20255 df-subrg 20321 df-drng 20363 df-staf 20457 df-srng 20458 df-lmod 20477 df-lss 20548 df-lmhm 20638 df-lvec 20719 df-sra 20791 df-rgmod 20792 df-psmet 20942 df-xmet 20943 df-met 20944 df-bl 20945 df-mopn 20946 df-fbas 20947 df-fg 20948 df-cnfld 20951 df-phl 21185 df-ocv 21222 df-top 22403 df-topon 22420 df-topsp 22442 df-bases 22456 df-cld 22530 df-ntr 22531 df-cls 22532 df-nei 22609 df-cn 22738 df-cnp 22739 df-haus 22826 df-cmp 22898 df-tx 23073 df-hmeo 23266 df-fil 23357 df-flim 23450 df-fcls 23452 df-xms 23833 df-ms 23834 df-tms 23835 df-nm 24098 df-ngp 24099 df-nlm 24102 df-cncf 24401 df-clm 24586 df-cph 24692 df-cfil 24779 df-cmet 24781 df-cms 24859 df-bn 24860 df-hl 24861 |
This theorem is referenced by: pjth2 24964 |
Copyright terms: Public domain | W3C validator |