| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-iminvid | Structured version Visualization version GIF version | ||
| Description: Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024.) |
| Ref | Expression |
|---|---|
| bj-iminvid.ex | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| bj-iminvid | ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-iminvid.ex | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 2 | idssxp 6036 | . . . 4 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)) |
| 4 | 1, 1, 3 | bj-iminvval2 37212 | . 2 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑥 = (◡( I ↾ 𝐴) “ 𝑦))}) |
| 5 | cnvresid 6615 | . . . . . . 7 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
| 6 | 5 | imaeq1i 6044 | . . . . . 6 ⊢ (◡( I ↾ 𝐴) “ 𝑦) = (( I ↾ 𝐴) “ 𝑦) |
| 7 | resiima 6063 | . . . . . 6 ⊢ (𝑦 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦) | |
| 8 | 6, 7 | eqtrid 2782 | . . . . 5 ⊢ (𝑦 ⊆ 𝐴 → (◡( I ↾ 𝐴) “ 𝑦) = 𝑦) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (◡( I ↾ 𝐴) “ 𝑦) = 𝑦) |
| 10 | 9 | eqeq2d 2746 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (𝑥 = (◡( I ↾ 𝐴) “ 𝑦) ↔ 𝑥 = 𝑦)) |
| 11 | 10 | bj-imdiridlem 37203 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑥 = (◡( I ↾ 𝐴) “ 𝑦))} = ( I ↾ 𝒫 𝐴) |
| 12 | 4, 11 | eqtrdi 2786 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 𝒫 cpw 4575 {copab 5181 I cid 5547 × cxp 5652 ◡ccnv 5653 ↾ cres 5656 “ cima 5657 ‘cfv 6531 (class class class)co 7405 𝒫*ciminv 37209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-iminv 37210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |