![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-iminvid | Structured version Visualization version GIF version |
Description: Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024.) |
Ref | Expression |
---|---|
bj-iminvid.ex | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
bj-iminvid | ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-iminvid.ex | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | idssxp 6078 | . . . 4 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)) |
4 | 1, 1, 3 | bj-iminvval2 37160 | . 2 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑥 = (◡( I ↾ 𝐴) “ 𝑦))}) |
5 | cnvresid 6657 | . . . . . . 7 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
6 | 5 | imaeq1i 6086 | . . . . . 6 ⊢ (◡( I ↾ 𝐴) “ 𝑦) = (( I ↾ 𝐴) “ 𝑦) |
7 | resiima 6105 | . . . . . 6 ⊢ (𝑦 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦) | |
8 | 6, 7 | eqtrid 2792 | . . . . 5 ⊢ (𝑦 ⊆ 𝐴 → (◡( I ↾ 𝐴) “ 𝑦) = 𝑦) |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (◡( I ↾ 𝐴) “ 𝑦) = 𝑦) |
10 | 9 | eqeq2d 2751 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (𝑥 = (◡( I ↾ 𝐴) “ 𝑦) ↔ 𝑥 = 𝑦)) |
11 | 10 | bj-imdiridlem 37151 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑥 = (◡( I ↾ 𝐴) “ 𝑦))} = ( I ↾ 𝒫 𝐴) |
12 | 4, 11 | eqtrdi 2796 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 {copab 5228 I cid 5592 × cxp 5698 ◡ccnv 5699 ↾ cres 5702 “ cima 5703 ‘cfv 6573 (class class class)co 7448 𝒫*ciminv 37157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-iminv 37158 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |