Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-iminvid Structured version   Visualization version   GIF version

Theorem bj-iminvid 37213
Description: Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024.)
Hypothesis
Ref Expression
bj-iminvid.ex (𝜑𝐴𝑈)
Assertion
Ref Expression
bj-iminvid (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))

Proof of Theorem bj-iminvid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-iminvid.ex . . 3 (𝜑𝐴𝑈)
2 idssxp 6036 . . . 4 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
32a1i 11 . . 3 (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴))
41, 1, 3bj-iminvval2 37212 . 2 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝑥 = (( I ↾ 𝐴) “ 𝑦))})
5 cnvresid 6615 . . . . . . 7 ( I ↾ 𝐴) = ( I ↾ 𝐴)
65imaeq1i 6044 . . . . . 6 (( I ↾ 𝐴) “ 𝑦) = (( I ↾ 𝐴) “ 𝑦)
7 resiima 6063 . . . . . 6 (𝑦𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
86, 7eqtrid 2782 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
98adantl 481 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
109eqeq2d 2746 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 = (( I ↾ 𝐴) “ 𝑦) ↔ 𝑥 = 𝑦))
1110bj-imdiridlem 37203 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝑥 = (( I ↾ 𝐴) “ 𝑦))} = ( I ↾ 𝒫 𝐴)
124, 11eqtrdi 2786 1 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3926  𝒫 cpw 4575  {copab 5181   I cid 5547   × cxp 5652  ccnv 5653  cres 5656  cima 5657  cfv 6531  (class class class)co 7405  𝒫*ciminv 37209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-iminv 37210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator