![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-iminvid | Structured version Visualization version GIF version |
Description: Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024.) |
Ref | Expression |
---|---|
bj-iminvid.ex | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
bj-iminvid | ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-iminvid.ex | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | idssxp 6039 | . . . 4 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)) |
4 | 1, 1, 3 | bj-iminvval2 36566 | . 2 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑥 = (◡( I ↾ 𝐴) “ 𝑦))}) |
5 | cnvresid 6618 | . . . . . . 7 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
6 | 5 | imaeq1i 6047 | . . . . . 6 ⊢ (◡( I ↾ 𝐴) “ 𝑦) = (( I ↾ 𝐴) “ 𝑦) |
7 | resiima 6066 | . . . . . 6 ⊢ (𝑦 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦) | |
8 | 6, 7 | eqtrid 2776 | . . . . 5 ⊢ (𝑦 ⊆ 𝐴 → (◡( I ↾ 𝐴) “ 𝑦) = 𝑦) |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (◡( I ↾ 𝐴) “ 𝑦) = 𝑦) |
10 | 9 | eqeq2d 2735 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (𝑥 = (◡( I ↾ 𝐴) “ 𝑦) ↔ 𝑥 = 𝑦)) |
11 | 10 | bj-imdiridlem 36557 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑥 = (◡( I ↾ 𝐴) “ 𝑦))} = ( I ↾ 𝒫 𝐴) |
12 | 4, 11 | eqtrdi 2780 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⊆ wss 3941 𝒫 cpw 4595 {copab 5201 I cid 5564 × cxp 5665 ◡ccnv 5666 ↾ cres 5669 “ cima 5670 ‘cfv 6534 (class class class)co 7402 𝒫*ciminv 36563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-iminv 36564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |