Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-iminvid Structured version   Visualization version   GIF version

Theorem bj-iminvid 37239
Description: Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024.)
Hypothesis
Ref Expression
bj-iminvid.ex (𝜑𝐴𝑈)
Assertion
Ref Expression
bj-iminvid (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))

Proof of Theorem bj-iminvid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-iminvid.ex . . 3 (𝜑𝐴𝑈)
2 idssxp 5997 . . . 4 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
32a1i 11 . . 3 (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴))
41, 1, 3bj-iminvval2 37238 . 2 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝑥 = (( I ↾ 𝐴) “ 𝑦))})
5 cnvresid 6560 . . . . . . 7 ( I ↾ 𝐴) = ( I ↾ 𝐴)
65imaeq1i 6005 . . . . . 6 (( I ↾ 𝐴) “ 𝑦) = (( I ↾ 𝐴) “ 𝑦)
7 resiima 6024 . . . . . 6 (𝑦𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
86, 7eqtrid 2778 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
98adantl 481 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
109eqeq2d 2742 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 = (( I ↾ 𝐴) “ 𝑦) ↔ 𝑥 = 𝑦))
1110bj-imdiridlem 37229 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝑥 = (( I ↾ 𝐴) “ 𝑦))} = ( I ↾ 𝒫 𝐴)
124, 11eqtrdi 2782 1 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  𝒫 cpw 4547  {copab 5151   I cid 5508   × cxp 5612  ccnv 5613  cres 5616  cima 5617  cfv 6481  (class class class)co 7346  𝒫*ciminv 37235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-iminv 37236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator