Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-iminvid Structured version   Visualization version   GIF version

Theorem bj-iminvid 34875
Description: Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024.)
Hypothesis
Ref Expression
bj-iminvid.ex (𝜑𝐴𝑈)
Assertion
Ref Expression
bj-iminvid (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))

Proof of Theorem bj-iminvid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-iminvid.ex . . 3 (𝜑𝐴𝑈)
2 idssxp 5881 . . . 4 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
32a1i 11 . . 3 (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴))
41, 1, 3bj-iminvval2 34874 . 2 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝑥 = (( I ↾ 𝐴) “ 𝑦))})
5 cnvresid 6407 . . . . . . 7 ( I ↾ 𝐴) = ( I ↾ 𝐴)
65imaeq1i 5891 . . . . . 6 (( I ↾ 𝐴) “ 𝑦) = (( I ↾ 𝐴) “ 𝑦)
7 resiima 5909 . . . . . 6 (𝑦𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
86, 7syl5eq 2806 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
98adantl 486 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
109eqeq2d 2770 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 = (( I ↾ 𝐴) “ 𝑦) ↔ 𝑥 = 𝑦))
1110bj-imdiridlem 34865 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝑥 = (( I ↾ 𝐴) “ 𝑦))} = ( I ↾ 𝒫 𝐴)
124, 11eqtrdi 2810 1 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wss 3854  𝒫 cpw 4487  {copab 5087   I cid 5422   × cxp 5515  ccnv 5516  cres 5519  cima 5520  cfv 6328  (class class class)co 7143  𝒫*ciminv 34871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7146  df-oprab 7147  df-mpo 7148  df-iminv 34872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator