Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-iminvid Structured version   Visualization version   GIF version

Theorem bj-iminvid 36567
Description: Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024.)
Hypothesis
Ref Expression
bj-iminvid.ex (𝜑𝐴𝑈)
Assertion
Ref Expression
bj-iminvid (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))

Proof of Theorem bj-iminvid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-iminvid.ex . . 3 (𝜑𝐴𝑈)
2 idssxp 6039 . . . 4 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
32a1i 11 . . 3 (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴))
41, 1, 3bj-iminvval2 36566 . 2 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝑥 = (( I ↾ 𝐴) “ 𝑦))})
5 cnvresid 6618 . . . . . . 7 ( I ↾ 𝐴) = ( I ↾ 𝐴)
65imaeq1i 6047 . . . . . 6 (( I ↾ 𝐴) “ 𝑦) = (( I ↾ 𝐴) “ 𝑦)
7 resiima 6066 . . . . . 6 (𝑦𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
86, 7eqtrid 2776 . . . . 5 (𝑦𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
98adantl 481 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴) “ 𝑦) = 𝑦)
109eqeq2d 2735 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 = (( I ↾ 𝐴) “ 𝑦) ↔ 𝑥 = 𝑦))
1110bj-imdiridlem 36557 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ 𝑥 = (( I ↾ 𝐴) “ 𝑦))} = ( I ↾ 𝒫 𝐴)
124, 11eqtrdi 2780 1 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wss 3941  𝒫 cpw 4595  {copab 5201   I cid 5564   × cxp 5665  ccnv 5666  cres 5669  cima 5670  cfv 6534  (class class class)co 7402  𝒫*ciminv 36563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-iminv 36564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator