Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-iminvid | Structured version Visualization version GIF version |
Description: Functorial property of the inverse image: the inverse image by the identity on a set is the identity on the powerset. (Contributed by BJ, 26-May-2024.) |
Ref | Expression |
---|---|
bj-iminvid.ex | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
bj-iminvid | ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-iminvid.ex | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | idssxp 5956 | . . . 4 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)) |
4 | 1, 1, 3 | bj-iminvval2 35365 | . 2 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑥 = (◡( I ↾ 𝐴) “ 𝑦))}) |
5 | cnvresid 6513 | . . . . . . 7 ⊢ ◡( I ↾ 𝐴) = ( I ↾ 𝐴) | |
6 | 5 | imaeq1i 5966 | . . . . . 6 ⊢ (◡( I ↾ 𝐴) “ 𝑦) = (( I ↾ 𝐴) “ 𝑦) |
7 | resiima 5984 | . . . . . 6 ⊢ (𝑦 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝑦) = 𝑦) | |
8 | 6, 7 | eqtrid 2790 | . . . . 5 ⊢ (𝑦 ⊆ 𝐴 → (◡( I ↾ 𝐴) “ 𝑦) = 𝑦) |
9 | 8 | adantl 482 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (◡( I ↾ 𝐴) “ 𝑦) = 𝑦) |
10 | 9 | eqeq2d 2749 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (𝑥 = (◡( I ↾ 𝐴) “ 𝑦) ↔ 𝑥 = 𝑦)) |
11 | 10 | bj-imdiridlem 35356 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑥 = (◡( I ↾ 𝐴) “ 𝑦))} = ( I ↾ 𝒫 𝐴) |
12 | 4, 11 | eqtrdi 2794 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 𝒫 cpw 4533 {copab 5136 I cid 5488 × cxp 5587 ◡ccnv 5588 ↾ cres 5591 “ cima 5592 ‘cfv 6433 (class class class)co 7275 𝒫*ciminv 35362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-iminv 35363 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |