Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblsplit Structured version   Visualization version   GIF version

Theorem iblsplit 43125
Description: The union of two integrable functions is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblsplit.1 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
iblsplit.2 (𝜑𝑈 = (𝐴𝐵))
iblsplit.3 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
iblsplit.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
iblsplit.5 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblsplit (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iblsplit
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iblsplit.3 . . . 4 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
21fmpttd 6910 . . 3 (𝜑 → (𝑥𝑈𝐶):𝑈⟶ℂ)
3 ssun1 4072 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
4 iblsplit.2 . . . . . 6 (𝜑𝑈 = (𝐴𝐵))
53, 4sseqtrrid 3940 . . . . 5 (𝜑𝐴𝑈)
65resmptd 5893 . . . 4 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
7 iblsplit.4 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
8 eqidd 2737 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)))
9 eqidd 2737 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦))))
105sseld 3886 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥𝑈))
1110imdistani 572 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝜑𝑥𝑈))
1211, 1syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
138, 9, 12isibl2 24618 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)))
147, 13mpbid 235 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))
1514simpld 498 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
166, 15eqeltrd 2831 . . 3 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐴) ∈ MblFn)
17 ssun2 4073 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
1817, 4sseqtrrid 3940 . . . . 5 (𝜑𝐵𝑈)
1918resmptd 5893 . . . 4 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
20 iblsplit.5 . . . . . 6 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
21 eqidd 2737 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)))
22 eqidd 2737 . . . . . . 7 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦))))
2318sseld 3886 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥𝑈))
2423imdistani 572 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝜑𝑥𝑈))
2524, 1syl 17 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
2621, 22, 25isibl2 24618 . . . . . 6 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)))
2720, 26mpbid 235 . . . . 5 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))
2827simpld 498 . . . 4 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
2919, 28eqeltrd 2831 . . 3 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐵) ∈ MblFn)
304eqcomd 2742 . . 3 (𝜑 → (𝐴𝐵) = 𝑈)
312, 16, 29, 30mbfres2cn 43117 . 2 (𝜑 → (𝑥𝑈𝐶) ∈ MblFn)
3215, 12mbfdm2 24488 . . . . . 6 (𝜑𝐴 ∈ dom vol)
3332adantr 484 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝐴 ∈ dom vol)
3428, 25mbfdm2 24488 . . . . . 6 (𝜑𝐵 ∈ dom vol)
3534adantr 484 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝐵 ∈ dom vol)
36 iblsplit.1 . . . . . 6 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
3736adantr 484 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (vol*‘(𝐴𝐵)) = 0)
384adantr 484 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝑈 = (𝐴𝐵))
391adantlr 715 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → 𝐶 ∈ ℂ)
40 ax-icn 10753 . . . . . . . . . . . . . 14 i ∈ ℂ
4140a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → i ∈ ℂ)
42 elfznn0 13170 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
4341, 42expcld 13681 . . . . . . . . . . . 12 (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ)
4443ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (i↑𝑘) ∈ ℂ)
4540a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → i ∈ ℂ)
46 ine0 11232 . . . . . . . . . . . . 13 i ≠ 0
4746a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → i ≠ 0)
48 elfzelz 13077 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
4948ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → 𝑘 ∈ ℤ)
5045, 47, 49expne0d 13687 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (i↑𝑘) ≠ 0)
5139, 44, 50divcld 11573 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (𝐶 / (i↑𝑘)) ∈ ℂ)
5251recld 14722 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ)
5352rexrd 10848 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ*)
5453adantr 484 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ*)
55 simpr 488 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))
56 pnfge 12687 . . . . . . . 8 ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)
5754, 56syl 17 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)
58 0xr 10845 . . . . . . . 8 0 ∈ ℝ*
59 pnfxr 10852 . . . . . . . 8 +∞ ∈ ℝ*
60 elicc1 12944 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ∧ (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)))
6158, 59, 60mp2an 692 . . . . . . 7 ((ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ∧ (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞))
6254, 55, 57, 61syl3anbrc 1345 . . . . . 6 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞))
63 0e0iccpnf 13012 . . . . . . 7 0 ∈ (0[,]+∞)
6463a1i 11 . . . . . 6 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ ¬ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ∈ (0[,]+∞))
6562, 64ifclda 4460 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
66 eqid 2736 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
67 eqid 2736 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
68 ifan 4478 . . . . . 6 if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
6968mpteq2i 5132 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
70 ifan 4478 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
7170eqcomi 2745 . . . . . . . . 9 if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
7271mpteq2i 5132 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
7372a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
7473fveq2d 6699 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
75 eqidd 2737 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
76 eqidd 2737 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
7775, 76, 12isibl2 24618 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
787, 77mpbid 235 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))
7978simprd 499 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
8079r19.21bi 3120 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
8174, 80eqeltrd 2831 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) ∈ ℝ)
82 ifan 4478 . . . . . . . . 9 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
8382eqcomi 2745 . . . . . . . 8 if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
8483mpteq2i 5132 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
8584fveq2i 6698 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
86 eqidd 2737 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
87 eqidd 2737 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
8886, 87, 25isibl2 24618 . . . . . . . . 9 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
8920, 88mpbid 235 . . . . . . . 8 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))
9089simprd 499 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9190r19.21bi 3120 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9285, 91eqeltrid 2835 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) ∈ ℝ)
9333, 35, 37, 38, 65, 66, 67, 69, 81, 92itg2split 24601 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)))))
9481, 92readdcld 10827 . . . 4 ((𝜑𝑘 ∈ (0...3)) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)))) ∈ ℝ)
9593, 94eqeltrd 2831 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9695ralrimiva 3095 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
97 eqidd 2737 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
98 eqidd 2737 . . 3 ((𝜑𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
9997, 98, 1isibl2 24618 . 2 (𝜑 → ((𝑥𝑈𝐶) ∈ 𝐿1 ↔ ((𝑥𝑈𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
10031, 96, 99mpbir2and 713 1 (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  cun 3851  cin 3852  ifcif 4425   class class class wbr 5039  cmpt 5120  dom cdm 5536  cres 5538  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  ici 10696   + caddc 10697  +∞cpnf 10829  *cxr 10831  cle 10833   / cdiv 11454  3c3 11851  cz 12141  [,]cicc 12903  ...cfz 13060  cexp 13600  cre 14625  vol*covol 24313  volcvol 24314  MblFncmbf 24465  2citg2 24467  𝐿1cibl 24468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-ofr 7448  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215  df-rest 16881  df-topgen 16902  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-top 21745  df-topon 21762  df-bases 21797  df-cmp 22238  df-ovol 24315  df-vol 24316  df-mbf 24470  df-itg1 24471  df-itg2 24472  df-ibl 24473
This theorem is referenced by:  iblsplitf  43129
  Copyright terms: Public domain W3C validator