Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblsplit Structured version   Visualization version   GIF version

Theorem iblsplit 45983
Description: The union of two integrable functions is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblsplit.1 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
iblsplit.2 (𝜑𝑈 = (𝐴𝐵))
iblsplit.3 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
iblsplit.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
iblsplit.5 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblsplit (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iblsplit
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iblsplit.3 . . . 4 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
21fmpttd 7043 . . 3 (𝜑 → (𝑥𝑈𝐶):𝑈⟶ℂ)
3 ssun1 4126 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
4 iblsplit.2 . . . . . 6 (𝜑𝑈 = (𝐴𝐵))
53, 4sseqtrrid 3976 . . . . 5 (𝜑𝐴𝑈)
65resmptd 5986 . . . 4 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
7 iblsplit.4 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
8 eqidd 2731 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)))
9 eqidd 2731 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦))))
105sseld 3931 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥𝑈))
1110imdistani 568 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝜑𝑥𝑈))
1211, 1syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
138, 9, 12isibl2 25687 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)))
147, 13mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))
1514simpld 494 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
166, 15eqeltrd 2829 . . 3 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐴) ∈ MblFn)
17 ssun2 4127 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
1817, 4sseqtrrid 3976 . . . . 5 (𝜑𝐵𝑈)
1918resmptd 5986 . . . 4 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
20 iblsplit.5 . . . . . 6 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
21 eqidd 2731 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)))
22 eqidd 2731 . . . . . . 7 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦))))
2318sseld 3931 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥𝑈))
2423imdistani 568 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝜑𝑥𝑈))
2524, 1syl 17 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
2621, 22, 25isibl2 25687 . . . . . 6 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)))
2720, 26mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))
2827simpld 494 . . . 4 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
2919, 28eqeltrd 2829 . . 3 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐵) ∈ MblFn)
304eqcomd 2736 . . 3 (𝜑 → (𝐴𝐵) = 𝑈)
312, 16, 29, 30mbfres2cn 45975 . 2 (𝜑 → (𝑥𝑈𝐶) ∈ MblFn)
3215, 12mbfdm2 25558 . . . . . 6 (𝜑𝐴 ∈ dom vol)
3332adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝐴 ∈ dom vol)
3428, 25mbfdm2 25558 . . . . . 6 (𝜑𝐵 ∈ dom vol)
3534adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝐵 ∈ dom vol)
36 iblsplit.1 . . . . . 6 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
3736adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (vol*‘(𝐴𝐵)) = 0)
384adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝑈 = (𝐴𝐵))
391adantlr 715 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → 𝐶 ∈ ℂ)
40 ax-icn 11057 . . . . . . . . . . . . . 14 i ∈ ℂ
4140a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → i ∈ ℂ)
42 elfznn0 13512 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
4341, 42expcld 14045 . . . . . . . . . . . 12 (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ)
4443ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (i↑𝑘) ∈ ℂ)
4540a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → i ∈ ℂ)
46 ine0 11544 . . . . . . . . . . . . 13 i ≠ 0
4746a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → i ≠ 0)
48 elfzelz 13416 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
4948ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → 𝑘 ∈ ℤ)
5045, 47, 49expne0d 14051 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (i↑𝑘) ≠ 0)
5139, 44, 50divcld 11889 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (𝐶 / (i↑𝑘)) ∈ ℂ)
5251recld 15093 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ)
5352rexrd 11154 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ*)
5453adantr 480 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ*)
55 simpr 484 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))
56 pnfge 13021 . . . . . . . 8 ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)
5754, 56syl 17 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)
58 0xr 11151 . . . . . . . 8 0 ∈ ℝ*
59 pnfxr 11158 . . . . . . . 8 +∞ ∈ ℝ*
60 elicc1 13281 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ∧ (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)))
6158, 59, 60mp2an 692 . . . . . . 7 ((ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ∧ (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞))
6254, 55, 57, 61syl3anbrc 1344 . . . . . 6 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞))
63 0e0iccpnf 13351 . . . . . . 7 0 ∈ (0[,]+∞)
6463a1i 11 . . . . . 6 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ ¬ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ∈ (0[,]+∞))
6562, 64ifclda 4509 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
66 eqid 2730 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
67 eqid 2730 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
68 ifan 4527 . . . . . 6 if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
6968mpteq2i 5185 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
70 ifan 4527 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
7170eqcomi 2739 . . . . . . . . 9 if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
7271mpteq2i 5185 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
7372a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
7473fveq2d 6821 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
75 eqidd 2731 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
76 eqidd 2731 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
7775, 76, 12isibl2 25687 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
787, 77mpbid 232 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))
7978simprd 495 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
8079r19.21bi 3222 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
8174, 80eqeltrd 2829 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) ∈ ℝ)
82 ifan 4527 . . . . . . . . 9 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
8382eqcomi 2739 . . . . . . . 8 if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
8483mpteq2i 5185 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
8584fveq2i 6820 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
86 eqidd 2731 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
87 eqidd 2731 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
8886, 87, 25isibl2 25687 . . . . . . . . 9 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
8920, 88mpbid 232 . . . . . . . 8 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))
9089simprd 495 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9190r19.21bi 3222 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9285, 91eqeltrid 2833 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) ∈ ℝ)
9333, 35, 37, 38, 65, 66, 67, 69, 81, 92itg2split 25670 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)))))
9481, 92readdcld 11133 . . . 4 ((𝜑𝑘 ∈ (0...3)) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)))) ∈ ℝ)
9593, 94eqeltrd 2829 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9695ralrimiva 3122 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
97 eqidd 2731 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
98 eqidd 2731 . . 3 ((𝜑𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
9997, 98, 1isibl2 25687 . 2 (𝜑 → ((𝑥𝑈𝐶) ∈ 𝐿1 ↔ ((𝑥𝑈𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
10031, 96, 99mpbir2and 713 1 (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  cun 3898  cin 3899  ifcif 4473   class class class wbr 5089  cmpt 5170  dom cdm 5614  cres 5616  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  ici 11000   + caddc 11001  +∞cpnf 11135  *cxr 11137  cle 11139   / cdiv 11766  3c3 12173  cz 12460  [,]cicc 13240  ...cfz 13399  cexp 13960  cre 14996  vol*covol 25383  volcvol 25384  MblFncmbf 25535  2citg2 25537  𝐿1cibl 25538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-rest 17318  df-topgen 17339  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-top 22802  df-topon 22819  df-bases 22854  df-cmp 23295  df-ovol 25385  df-vol 25386  df-mbf 25540  df-itg1 25541  df-itg2 25542  df-ibl 25543
This theorem is referenced by:  iblsplitf  45987
  Copyright terms: Public domain W3C validator