Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblsplit Structured version   Visualization version   GIF version

Theorem iblsplit 40819
Description: The union of two integrable functions is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblsplit.1 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
iblsplit.2 (𝜑𝑈 = (𝐴𝐵))
iblsplit.3 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
iblsplit.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
iblsplit.5 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblsplit (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iblsplit
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iblsplit.3 . . . 4 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
21fmpttd 6575 . . 3 (𝜑 → (𝑥𝑈𝐶):𝑈⟶ℂ)
3 ssun1 3938 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
4 iblsplit.2 . . . . . 6 (𝜑𝑈 = (𝐴𝐵))
53, 4syl5sseqr 3814 . . . . 5 (𝜑𝐴𝑈)
65resmptd 5629 . . . 4 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
7 iblsplit.4 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
8 eqidd 2766 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)))
9 eqidd 2766 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦))))
105sseld 3760 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥𝑈))
1110imdistani 564 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝜑𝑥𝑈))
1211, 1syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
138, 9, 12isibl2 23824 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)))
147, 13mpbid 223 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))
1514simpld 488 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
166, 15eqeltrd 2844 . . 3 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐴) ∈ MblFn)
17 ssun2 3939 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
1817, 4syl5sseqr 3814 . . . . 5 (𝜑𝐵𝑈)
1918resmptd 5629 . . . 4 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
20 iblsplit.5 . . . . . 6 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
21 eqidd 2766 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)))
22 eqidd 2766 . . . . . . 7 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦))))
2318sseld 3760 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥𝑈))
2423imdistani 564 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝜑𝑥𝑈))
2524, 1syl 17 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
2621, 22, 25isibl2 23824 . . . . . 6 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)))
2720, 26mpbid 223 . . . . 5 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))
2827simpld 488 . . . 4 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
2919, 28eqeltrd 2844 . . 3 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐵) ∈ MblFn)
304eqcomd 2771 . . 3 (𝜑 → (𝐴𝐵) = 𝑈)
312, 16, 29, 30mbfres2cn 40811 . 2 (𝜑 → (𝑥𝑈𝐶) ∈ MblFn)
3215, 12mbfdm2 23695 . . . . . 6 (𝜑𝐴 ∈ dom vol)
3332adantr 472 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝐴 ∈ dom vol)
3428, 25mbfdm2 23695 . . . . . 6 (𝜑𝐵 ∈ dom vol)
3534adantr 472 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝐵 ∈ dom vol)
36 iblsplit.1 . . . . . 6 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
3736adantr 472 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (vol*‘(𝐴𝐵)) = 0)
384adantr 472 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝑈 = (𝐴𝐵))
391adantlr 706 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → 𝐶 ∈ ℂ)
40 ax-icn 10248 . . . . . . . . . . . . . 14 i ∈ ℂ
4140a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → i ∈ ℂ)
42 elfznn0 12640 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
4341, 42expcld 13215 . . . . . . . . . . . 12 (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ)
4443ad2antlr 718 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (i↑𝑘) ∈ ℂ)
4540a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → i ∈ ℂ)
46 ine0 10719 . . . . . . . . . . . . 13 i ≠ 0
4746a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → i ≠ 0)
48 elfzelz 12549 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
4948ad2antlr 718 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → 𝑘 ∈ ℤ)
5045, 47, 49expne0d 13221 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (i↑𝑘) ≠ 0)
5139, 44, 50divcld 11055 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (𝐶 / (i↑𝑘)) ∈ ℂ)
5251recld 14219 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ)
5352rexrd 10343 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ*)
5453adantr 472 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ*)
55 simpr 477 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))
56 pnfge 12164 . . . . . . . 8 ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)
5754, 56syl 17 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)
58 0xr 10340 . . . . . . . 8 0 ∈ ℝ*
59 pnfxr 10346 . . . . . . . 8 +∞ ∈ ℝ*
60 elicc1 12421 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ∧ (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)))
6158, 59, 60mp2an 683 . . . . . . 7 ((ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ∧ (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞))
6254, 55, 57, 61syl3anbrc 1443 . . . . . 6 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞))
63 0e0iccpnf 12487 . . . . . . 7 0 ∈ (0[,]+∞)
6463a1i 11 . . . . . 6 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ ¬ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ∈ (0[,]+∞))
6562, 64ifclda 4277 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
66 eqid 2765 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
67 eqid 2765 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
68 ifan 4294 . . . . . 6 if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
6968mpteq2i 4900 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
70 ifan 4294 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
7170eqcomi 2774 . . . . . . . . 9 if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
7271mpteq2i 4900 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
7372a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
7473fveq2d 6379 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
75 eqidd 2766 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
76 eqidd 2766 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
7775, 76, 12isibl2 23824 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
787, 77mpbid 223 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))
7978simprd 489 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
8079r19.21bi 3079 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
8174, 80eqeltrd 2844 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) ∈ ℝ)
82 ifan 4294 . . . . . . . . 9 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
8382eqcomi 2774 . . . . . . . 8 if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
8483mpteq2i 4900 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
8584fveq2i 6378 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
86 eqidd 2766 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
87 eqidd 2766 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
8886, 87, 25isibl2 23824 . . . . . . . . 9 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
8920, 88mpbid 223 . . . . . . . 8 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))
9089simprd 489 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9190r19.21bi 3079 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9285, 91syl5eqel 2848 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) ∈ ℝ)
9333, 35, 37, 38, 65, 66, 67, 69, 81, 92itg2split 23807 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)))))
9481, 92readdcld 10323 . . . 4 ((𝜑𝑘 ∈ (0...3)) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)))) ∈ ℝ)
9593, 94eqeltrd 2844 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9695ralrimiva 3113 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
97 eqidd 2766 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
98 eqidd 2766 . . 3 ((𝜑𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
9997, 98, 1isibl2 23824 . 2 (𝜑 → ((𝑥𝑈𝐶) ∈ 𝐿1 ↔ ((𝑥𝑈𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
10031, 96, 99mpbir2and 704 1 (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  cun 3730  cin 3731  ifcif 4243   class class class wbr 4809  cmpt 4888  dom cdm 5277  cres 5279  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  ici 10191   + caddc 10192  +∞cpnf 10325  *cxr 10327  cle 10329   / cdiv 10938  3c3 11328  cz 11624  [,]cicc 12380  ...cfz 12533  cexp 13067  cre 14122  vol*covol 23520  volcvol 23521  MblFncmbf 23672  2citg2 23674  𝐿1cibl 23675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-rest 16349  df-topgen 16370  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-top 20978  df-topon 20995  df-bases 21030  df-cmp 21470  df-ovol 23522  df-vol 23523  df-mbf 23677  df-itg1 23678  df-itg2 23679  df-ibl 23680
This theorem is referenced by:  iblsplitf  40823
  Copyright terms: Public domain W3C validator