| Step | Hyp | Ref
| Expression |
| 1 | | iblsplit.3 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
| 2 | 1 | fmpttd 7110 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶):𝑈⟶ℂ) |
| 3 | | ssun1 4158 |
. . . . . 6
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| 4 | | iblsplit.2 |
. . . . . 6
⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
| 5 | 3, 4 | sseqtrrid 4007 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
| 6 | 5 | resmptd 6032 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝑈 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 7 | | iblsplit.4 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
| 8 | | eqidd 2737 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) |
| 9 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦)))) |
| 10 | 5 | sseld 3962 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑈)) |
| 11 | 10 | imdistani 568 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜑 ∧ 𝑥 ∈ 𝑈)) |
| 12 | 11, 1 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 13 | 8, 9, 12 | isibl2 25724 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ ∀𝑦 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))) |
| 14 | 7, 13 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ ∀𝑦 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)) |
| 15 | 14 | simpld 494 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 16 | 6, 15 | eqeltrd 2835 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝑈 ↦ 𝐶) ↾ 𝐴) ∈ MblFn) |
| 17 | | ssun2 4159 |
. . . . . 6
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
| 18 | 17, 4 | sseqtrrid 4007 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
| 19 | 18 | resmptd 6032 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝑈 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 20 | | iblsplit.5 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈
𝐿1) |
| 21 | | eqidd 2737 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) |
| 22 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦)))) |
| 23 | 18 | sseld 3962 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
| 24 | 23 | imdistani 568 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜑 ∧ 𝑥 ∈ 𝑈)) |
| 25 | 24, 1 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 26 | 21, 22, 25 | isibl2 25724 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ∧ ∀𝑦 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))) |
| 27 | 20, 26 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ∧ ∀𝑦 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)) |
| 28 | 27 | simpld 494 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
| 29 | 19, 28 | eqeltrd 2835 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝑈 ↦ 𝐶) ↾ 𝐵) ∈ MblFn) |
| 30 | 4 | eqcomd 2742 |
. . 3
⊢ (𝜑 → (𝐴 ∪ 𝐵) = 𝑈) |
| 31 | 2, 16, 29, 30 | mbfres2cn 45954 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ MblFn) |
| 32 | 15, 12 | mbfdm2 25595 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 33 | 32 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝐴 ∈ dom vol) |
| 34 | 28, 25 | mbfdm2 25595 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ dom vol) |
| 35 | 34 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝐵 ∈ dom vol) |
| 36 | | iblsplit.1 |
. . . . . 6
⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
| 37 | 36 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
| 38 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝑈 = (𝐴 ∪ 𝐵)) |
| 39 | 1 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
| 40 | | ax-icn 11193 |
. . . . . . . . . . . . . 14
⊢ i ∈
ℂ |
| 41 | 40 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...3) → i ∈
ℂ) |
| 42 | | elfznn0 13642 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℕ0) |
| 43 | 41, 42 | expcld 14169 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...3) →
(i↑𝑘) ∈
ℂ) |
| 44 | 43 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (i↑𝑘) ∈ ℂ) |
| 45 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → i ∈ ℂ) |
| 46 | | ine0 11677 |
. . . . . . . . . . . . 13
⊢ i ≠
0 |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → i ≠ 0) |
| 48 | | elfzelz 13546 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
| 49 | 48 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → 𝑘 ∈ ℤ) |
| 50 | 45, 47, 49 | expne0d 14175 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (i↑𝑘) ≠ 0) |
| 51 | 39, 44, 50 | divcld 12022 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (𝐶 / (i↑𝑘)) ∈ ℂ) |
| 52 | 51 | recld 15218 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) |
| 53 | 52 | rexrd 11290 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈
ℝ*) |
| 54 | 53 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈
ℝ*) |
| 55 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) |
| 56 | | pnfge 13151 |
. . . . . . . 8
⊢
((ℜ‘(𝐶 /
(i↑𝑘))) ∈
ℝ* → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞) |
| 57 | 54, 56 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞) |
| 58 | | 0xr 11287 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
| 59 | | pnfxr 11294 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
| 60 | | elicc1 13411 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ*) →
((ℜ‘(𝐶 /
(i↑𝑘))) ∈
(0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))) ∧
(ℜ‘(𝐶 /
(i↑𝑘))) ≤
+∞))) |
| 61 | 58, 59, 60 | mp2an 692 |
. . . . . . 7
⊢
((ℜ‘(𝐶 /
(i↑𝑘))) ∈
(0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))) ∧
(ℜ‘(𝐶 /
(i↑𝑘))) ≤
+∞)) |
| 62 | 54, 55, 57, 61 | syl3anbrc 1344 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞)) |
| 63 | | 0e0iccpnf 13481 |
. . . . . . 7
⊢ 0 ∈
(0[,]+∞) |
| 64 | 63 | a1i 11 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) ∧ ¬ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ∈
(0[,]+∞)) |
| 65 | 62, 64 | ifclda 4541 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
| 66 | | eqid 2736 |
. . . . 5
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 67 | | eqid 2736 |
. . . . 5
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 68 | | ifan 4559 |
. . . . . 6
⊢ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 69 | 68 | mpteq2i 5222 |
. . . . 5
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝑈 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 70 | | ifan 4559 |
. . . . . . . . . 10
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 71 | 70 | eqcomi 2745 |
. . . . . . . . 9
⊢ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) |
| 72 | 71 | mpteq2i 5222 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 73 | 72 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 74 | 73 | fveq2d 6885 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) |
| 75 | | eqidd 2737 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 76 | | eqidd 2737 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 77 | 75, 76, 12 | isibl2 25724 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))) |
| 78 | 7, 77 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)) |
| 79 | 78 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 80 | 79 | r19.21bi 3238 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 81 | 74, 80 | eqeltrd 2835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0), 0)))
∈ ℝ) |
| 82 | | ifan 4559 |
. . . . . . . . 9
⊢ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 83 | 82 | eqcomi 2745 |
. . . . . . . 8
⊢ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) |
| 84 | 83 | mpteq2i 5222 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 85 | 84 | fveq2i 6884 |
. . . . . 6
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) =
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 86 | | eqidd 2737 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 87 | | eqidd 2737 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 88 | 86, 87, 25 | isibl2 25724 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))) |
| 89 | 20, 88 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)) |
| 90 | 89 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 91 | 90 | r19.21bi 3238 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 92 | 85, 91 | eqeltrid 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐵, if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0), 0)))
∈ ℝ) |
| 93 | 33, 35, 37, 38, 65, 66, 67, 69, 81, 92 | itg2split 25707 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) +
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐵, if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0),
0))))) |
| 94 | 81, 92 | readdcld 11269 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) +
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐵, if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0), 0))))
∈ ℝ) |
| 95 | 93, 94 | eqeltrd 2835 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 96 | 95 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 97 | | eqidd 2737 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 98 | | eqidd 2737 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 99 | 97, 98, 1 | isibl2 25724 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝑈 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))) |
| 100 | 31, 96, 99 | mpbir2and 713 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈
𝐿1) |