Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblsplit Structured version   Visualization version   GIF version

Theorem iblsplit 45964
Description: The union of two integrable functions is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblsplit.1 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
iblsplit.2 (𝜑𝑈 = (𝐴𝐵))
iblsplit.3 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
iblsplit.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
iblsplit.5 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblsplit (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iblsplit
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iblsplit.3 . . . 4 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
21fmpttd 7087 . . 3 (𝜑 → (𝑥𝑈𝐶):𝑈⟶ℂ)
3 ssun1 4141 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
4 iblsplit.2 . . . . . 6 (𝜑𝑈 = (𝐴𝐵))
53, 4sseqtrrid 3990 . . . . 5 (𝜑𝐴𝑈)
65resmptd 6011 . . . 4 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
7 iblsplit.4 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
8 eqidd 2730 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)))
9 eqidd 2730 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦))))
105sseld 3945 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥𝑈))
1110imdistani 568 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝜑𝑥𝑈))
1211, 1syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
138, 9, 12isibl2 25667 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)))
147, 13mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))
1514simpld 494 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
166, 15eqeltrd 2828 . . 3 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐴) ∈ MblFn)
17 ssun2 4142 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
1817, 4sseqtrrid 3990 . . . . 5 (𝜑𝐵𝑈)
1918resmptd 6011 . . . 4 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
20 iblsplit.5 . . . . . 6 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
21 eqidd 2730 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)))
22 eqidd 2730 . . . . . . 7 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦))))
2318sseld 3945 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥𝑈))
2423imdistani 568 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝜑𝑥𝑈))
2524, 1syl 17 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
2621, 22, 25isibl2 25667 . . . . . 6 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)))
2720, 26mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))
2827simpld 494 . . . 4 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
2919, 28eqeltrd 2828 . . 3 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐵) ∈ MblFn)
304eqcomd 2735 . . 3 (𝜑 → (𝐴𝐵) = 𝑈)
312, 16, 29, 30mbfres2cn 45956 . 2 (𝜑 → (𝑥𝑈𝐶) ∈ MblFn)
3215, 12mbfdm2 25538 . . . . . 6 (𝜑𝐴 ∈ dom vol)
3332adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝐴 ∈ dom vol)
3428, 25mbfdm2 25538 . . . . . 6 (𝜑𝐵 ∈ dom vol)
3534adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝐵 ∈ dom vol)
36 iblsplit.1 . . . . . 6 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
3736adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (vol*‘(𝐴𝐵)) = 0)
384adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝑈 = (𝐴𝐵))
391adantlr 715 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → 𝐶 ∈ ℂ)
40 ax-icn 11127 . . . . . . . . . . . . . 14 i ∈ ℂ
4140a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → i ∈ ℂ)
42 elfznn0 13581 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
4341, 42expcld 14111 . . . . . . . . . . . 12 (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ)
4443ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (i↑𝑘) ∈ ℂ)
4540a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → i ∈ ℂ)
46 ine0 11613 . . . . . . . . . . . . 13 i ≠ 0
4746a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → i ≠ 0)
48 elfzelz 13485 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
4948ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → 𝑘 ∈ ℤ)
5045, 47, 49expne0d 14117 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (i↑𝑘) ≠ 0)
5139, 44, 50divcld 11958 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (𝐶 / (i↑𝑘)) ∈ ℂ)
5251recld 15160 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ)
5352rexrd 11224 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ*)
5453adantr 480 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ*)
55 simpr 484 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))
56 pnfge 13090 . . . . . . . 8 ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)
5754, 56syl 17 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)
58 0xr 11221 . . . . . . . 8 0 ∈ ℝ*
59 pnfxr 11228 . . . . . . . 8 +∞ ∈ ℝ*
60 elicc1 13350 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ∧ (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)))
6158, 59, 60mp2an 692 . . . . . . 7 ((ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ∧ (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞))
6254, 55, 57, 61syl3anbrc 1344 . . . . . 6 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞))
63 0e0iccpnf 13420 . . . . . . 7 0 ∈ (0[,]+∞)
6463a1i 11 . . . . . 6 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ ¬ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ∈ (0[,]+∞))
6562, 64ifclda 4524 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
66 eqid 2729 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
67 eqid 2729 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
68 ifan 4542 . . . . . 6 if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
6968mpteq2i 5203 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
70 ifan 4542 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
7170eqcomi 2738 . . . . . . . . 9 if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
7271mpteq2i 5203 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
7372a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
7473fveq2d 6862 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
75 eqidd 2730 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
76 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
7775, 76, 12isibl2 25667 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
787, 77mpbid 232 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))
7978simprd 495 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
8079r19.21bi 3229 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
8174, 80eqeltrd 2828 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) ∈ ℝ)
82 ifan 4542 . . . . . . . . 9 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
8382eqcomi 2738 . . . . . . . 8 if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
8483mpteq2i 5203 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
8584fveq2i 6861 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
86 eqidd 2730 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
87 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
8886, 87, 25isibl2 25667 . . . . . . . . 9 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
8920, 88mpbid 232 . . . . . . . 8 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))
9089simprd 495 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9190r19.21bi 3229 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9285, 91eqeltrid 2832 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) ∈ ℝ)
9333, 35, 37, 38, 65, 66, 67, 69, 81, 92itg2split 25650 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)))))
9481, 92readdcld 11203 . . . 4 ((𝜑𝑘 ∈ (0...3)) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)))) ∈ ℝ)
9593, 94eqeltrd 2828 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9695ralrimiva 3125 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
97 eqidd 2730 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
98 eqidd 2730 . . 3 ((𝜑𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
9997, 98, 1isibl2 25667 . 2 (𝜑 → ((𝑥𝑈𝐶) ∈ 𝐿1 ↔ ((𝑥𝑈𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
10031, 96, 99mpbir2and 713 1 (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cun 3912  cin 3913  ifcif 4488   class class class wbr 5107  cmpt 5188  dom cdm 5638  cres 5640  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  ici 11070   + caddc 11071  +∞cpnf 11205  *cxr 11207  cle 11209   / cdiv 11835  3c3 12242  cz 12529  [,]cicc 13309  ...cfz 13468  cexp 14026  cre 15063  vol*covol 25363  volcvol 25364  MblFncmbf 25515  2citg2 25517  𝐿1cibl 25518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523
This theorem is referenced by:  iblsplitf  45968
  Copyright terms: Public domain W3C validator