Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblsplit Structured version   Visualization version   GIF version

Theorem iblsplit 41746
Description: The union of two integrable functions is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblsplit.1 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
iblsplit.2 (𝜑𝑈 = (𝐴𝐵))
iblsplit.3 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
iblsplit.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
iblsplit.5 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblsplit (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iblsplit
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iblsplit.3 . . . 4 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
21fmpttd 6733 . . 3 (𝜑 → (𝑥𝑈𝐶):𝑈⟶ℂ)
3 ssun1 4064 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
4 iblsplit.2 . . . . . 6 (𝜑𝑈 = (𝐴𝐵))
53, 4sseqtrrid 3936 . . . . 5 (𝜑𝐴𝑈)
65resmptd 5781 . . . 4 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
7 iblsplit.4 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
8 eqidd 2794 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)))
9 eqidd 2794 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦))))
105sseld 3883 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥𝑈))
1110imdistani 569 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝜑𝑥𝑈))
1211, 1syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
138, 9, 12isibl2 24038 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)))
147, 13mpbid 233 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))
1514simpld 495 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
166, 15eqeltrd 2881 . . 3 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐴) ∈ MblFn)
17 ssun2 4065 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
1817, 4sseqtrrid 3936 . . . . 5 (𝜑𝐵𝑈)
1918resmptd 5781 . . . 4 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
20 iblsplit.5 . . . . . 6 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
21 eqidd 2794 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0)))
22 eqidd 2794 . . . . . . 7 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑦))) = (ℜ‘(𝐶 / (i↑𝑦))))
2318sseld 3883 . . . . . . . . 9 (𝜑 → (𝑥𝐵𝑥𝑈))
2423imdistani 569 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝜑𝑥𝑈))
2524, 1syl 17 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
2621, 22, 25isibl2 24038 . . . . . 6 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ)))
2720, 26mpbid 233 . . . . 5 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑦 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑦)))), (ℜ‘(𝐶 / (i↑𝑦))), 0))) ∈ ℝ))
2827simpld 495 . . . 4 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
2919, 28eqeltrd 2881 . . 3 (𝜑 → ((𝑥𝑈𝐶) ↾ 𝐵) ∈ MblFn)
304eqcomd 2799 . . 3 (𝜑 → (𝐴𝐵) = 𝑈)
312, 16, 29, 30mbfres2cn 41738 . 2 (𝜑 → (𝑥𝑈𝐶) ∈ MblFn)
3215, 12mbfdm2 23909 . . . . . 6 (𝜑𝐴 ∈ dom vol)
3332adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝐴 ∈ dom vol)
3428, 25mbfdm2 23909 . . . . . 6 (𝜑𝐵 ∈ dom vol)
3534adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝐵 ∈ dom vol)
36 iblsplit.1 . . . . . 6 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
3736adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (vol*‘(𝐴𝐵)) = 0)
384adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝑈 = (𝐴𝐵))
391adantlr 711 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → 𝐶 ∈ ℂ)
40 ax-icn 10431 . . . . . . . . . . . . . 14 i ∈ ℂ
4140a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → i ∈ ℂ)
42 elfznn0 12839 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
4341, 42expcld 13348 . . . . . . . . . . . 12 (𝑘 ∈ (0...3) → (i↑𝑘) ∈ ℂ)
4443ad2antlr 723 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (i↑𝑘) ∈ ℂ)
4540a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → i ∈ ℂ)
46 ine0 10912 . . . . . . . . . . . . 13 i ≠ 0
4746a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → i ≠ 0)
48 elfzelz 12747 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
4948ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → 𝑘 ∈ ℤ)
5045, 47, 49expne0d 13354 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (i↑𝑘) ≠ 0)
5139, 44, 50divcld 11253 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (𝐶 / (i↑𝑘)) ∈ ℂ)
5251recld 14375 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ)
5352rexrd 10526 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ*)
5453adantr 481 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ*)
55 simpr 485 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))))
56 pnfge 12364 . . . . . . . 8 ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)
5754, 56syl 17 . . . . . . 7 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)
58 0xr 10523 . . . . . . . 8 0 ∈ ℝ*
59 pnfxr 10530 . . . . . . . 8 +∞ ∈ ℝ*
60 elicc1 12621 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ∧ (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞)))
6158, 59, 60mp2an 688 . . . . . . 7 ((ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞) ↔ ((ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ* ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘))) ∧ (ℜ‘(𝐶 / (i↑𝑘))) ≤ +∞))
6254, 55, 57, 61syl3anbrc 1334 . . . . . 6 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ (0[,]+∞))
63 0e0iccpnf 12686 . . . . . . 7 0 ∈ (0[,]+∞)
6463a1i 11 . . . . . 6 ((((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) ∧ ¬ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))) → 0 ∈ (0[,]+∞))
6562, 64ifclda 4409 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ (0[,]+∞))
66 eqid 2793 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
67 eqid 2793 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
68 ifan 4426 . . . . . 6 if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
6968mpteq2i 5046 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
70 ifan 4426 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
7170eqcomi 2802 . . . . . . . . 9 if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
7271mpteq2i 5046 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
7372a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
7473fveq2d 6534 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
75 eqidd 2794 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
76 eqidd 2794 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
7775, 76, 12isibl2 24038 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
787, 77mpbid 233 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))
7978simprd 496 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
8079r19.21bi 3173 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
8174, 80eqeltrd 2881 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) ∈ ℝ)
82 ifan 4426 . . . . . . . . 9 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
8382eqcomi 2802 . . . . . . . 8 if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)
8483mpteq2i 5046 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
8584fveq2i 6533 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
86 eqidd 2794 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
87 eqidd 2794 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
8886, 87, 25isibl2 24038 . . . . . . . . 9 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
8920, 88mpbid 233 . . . . . . . 8 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))
9089simprd 496 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9190r19.21bi 3173 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9285, 91syl5eqel 2885 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) ∈ ℝ)
9333, 35, 37, 38, 65, 66, 67, 69, 81, 92itg2split 24021 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)))))
9481, 92readdcld 10505 . . . 4 ((𝜑𝑘 ∈ (0...3)) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)))) ∈ ℝ)
9593, 94eqeltrd 2881 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
9695ralrimiva 3147 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
97 eqidd 2794 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
98 eqidd 2794 . . 3 ((𝜑𝑥𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
9997, 98, 1isibl2 24038 . 2 (𝜑 → ((𝑥𝑈𝐶) ∈ 𝐿1 ↔ ((𝑥𝑈𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
10031, 96, 99mpbir2and 709 1 (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1078   = wceq 1520  wcel 2079  wne 2982  wral 3103  cun 3852  cin 3853  ifcif 4375   class class class wbr 4956  cmpt 5035  dom cdm 5435  cres 5437  cfv 6217  (class class class)co 7007  cc 10370  cr 10371  0cc0 10372  ici 10374   + caddc 10375  +∞cpnf 10507  *cxr 10509  cle 10511   / cdiv 11134  3c3 11530  cz 11818  [,]cicc 12580  ...cfz 12731  cexp 13267  cre 14278  vol*covol 23734  volcvol 23735  MblFncmbf 23886  2citg2 23888  𝐿1cibl 23889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-disj 4925  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-ofr 7259  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-map 8249  df-pm 8250  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-dju 9165  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-n0 11735  df-z 11819  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-ico 12583  df-icc 12584  df-fz 12732  df-fzo 12873  df-fl 13000  df-seq 13208  df-exp 13268  df-hash 13529  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-clim 14667  df-sum 14865  df-rest 16513  df-topgen 16534  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-top 21174  df-topon 21191  df-bases 21226  df-cmp 21667  df-ovol 23736  df-vol 23737  df-mbf 23891  df-itg1 23892  df-itg2 23893  df-ibl 23894
This theorem is referenced by:  iblsplitf  41750
  Copyright terms: Public domain W3C validator