MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblconst Structured version   Visualization version   GIF version

Theorem iblconst 25833
Description: A constant function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
iblconst ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ 𝐿1)

Proof of Theorem iblconst
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconstmpt 5735 . 2 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
2 mbfconst 25648 . . . . 5 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn)
323adant2 1128 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn)
41, 3eqeltrrid 2831 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ MblFn)
5 ifan 4577 . . . . . . . 8 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0)
65mpteq2i 5249 . . . . . . 7 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0))
76fveq2i 6894 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0)))
8 simpl1 1188 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → 𝐴 ∈ dom vol)
9 simpl2 1189 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → (vol‘𝐴) ∈ ℝ)
10 simpl3 1190 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → 𝐵 ∈ ℂ)
11 ax-icn 11206 . . . . . . . . . . . 12 i ∈ ℂ
12 ine0 11688 . . . . . . . . . . . 12 i ≠ 0
13 elfzelz 13547 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
1413adantl 480 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → 𝑘 ∈ ℤ)
15 expclz 14096 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
1611, 12, 14, 15mp3an12i 1462 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → (i↑𝑘) ∈ ℂ)
17 expne0i 14106 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
1811, 12, 14, 17mp3an12i 1462 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → (i↑𝑘) ≠ 0)
1910, 16, 18divcld 12033 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → (𝐵 / (i↑𝑘)) ∈ ℂ)
2019recld 15192 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → (ℜ‘(𝐵 / (i↑𝑘))) ∈ ℝ)
21 0re 11255 . . . . . . . . 9 0 ∈ ℝ
22 ifcl 4569 . . . . . . . . 9 (((ℜ‘(𝐵 / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ)
2320, 21, 22sylancl 584 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ)
24 max1 13210 . . . . . . . . 9 ((0 ∈ ℝ ∧ (ℜ‘(𝐵 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
2521, 20, 24sylancr 585 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → 0 ≤ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
26 elrege0 13477 . . . . . . . 8 (if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
2723, 25, 26sylanbrc 581 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ (0[,)+∞))
28 itg2const 25756 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0))) = (if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) · (vol‘𝐴)))
298, 9, 27, 28syl3anc 1368 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0))) = (if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) · (vol‘𝐴)))
307, 29eqtrid 2778 . . . . 5 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) · (vol‘𝐴)))
3123, 9remulcld 11283 . . . . 5 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → (if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) · (vol‘𝐴)) ∈ ℝ)
3230, 31eqeltrd 2826 . . . 4 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
3332ralrimiva 3136 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
34 eqidd 2727 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
35 eqidd 2727 . . . 4 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
36 simpl3 1190 . . . 4 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
3734, 35, 36isibl2 25782 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)))
384, 33, 37mpbir2and 711 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝐿1)
391, 38eqeltrid 2830 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  ifcif 4524  {csn 4624   class class class wbr 5144  cmpt 5227   × cxp 5671  dom cdm 5673  cfv 6544  (class class class)co 7414  cc 11145  cr 11146  0cc0 11147  ici 11149   · cmul 11152  +∞cpnf 11284  cle 11288   / cdiv 11910  3c3 12312  cz 12602  [,)cico 13372  ...cfz 13530  cexp 14073  cre 15095  volcvol 25478  MblFncmbf 25629  2citg2 25631  𝐿1cibl 25632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-inf2 9675  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225  ax-addf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-disj 5112  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-ofr 7681  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9476  df-inf 9477  df-oi 9544  df-dju 9935  df-card 9973  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-div 11911  df-nn 12257  df-2 12319  df-3 12320  df-n0 12517  df-z 12603  df-uz 12867  df-q 12977  df-rp 13021  df-xadd 13139  df-ioo 13374  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13674  df-fl 13804  df-seq 14014  df-exp 14074  df-hash 14341  df-cj 15097  df-re 15098  df-im 15099  df-sqrt 15233  df-abs 15234  df-clim 15483  df-sum 15684  df-xmet 21330  df-met 21331  df-ovol 25479  df-vol 25480  df-mbf 25634  df-itg1 25635  df-itg2 25636  df-ibl 25637  df-0p 25685
This theorem is referenced by:  itgconst  25834  bddibl  25855  ftc1lem4  26060  itgulm  26432  ftc1cnnclem  37403  iblconstmpt  45611  itgiccshift  45635  itgperiod  45636  itgsbtaddcnst  45637
  Copyright terms: Public domain W3C validator