Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubrn Structured version   Visualization version   GIF version

Theorem mrsubrn 35481
Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubrn ran 𝑆 = (𝑆 “ (𝑅m 𝑉))

Proof of Theorem mrsubrn
Dummy variables 𝑒 𝑓 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubvr.v . . . . . . 7 𝑉 = (mVR‘𝑇)
2 mrsubvr.r . . . . . . 7 𝑅 = (mREx‘𝑇)
3 mrsubvr.s . . . . . . 7 𝑆 = (mRSubst‘𝑇)
41, 2, 3mrsubff 35480 . . . . . 6 (𝑇 ∈ V → 𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅))
54ffnd 6748 . . . . 5 (𝑇 ∈ V → 𝑆 Fn (𝑅pm 𝑉))
6 eleq1w 2827 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝑥 ∈ dom 𝑓𝑣 ∈ dom 𝑓))
7 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝑓𝑥) = (𝑓𝑣))
8 s1eq 14648 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ⟨“𝑥”⟩ = ⟨“𝑣”⟩)
96, 7, 8ifbieq12d 4576 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
10 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) = (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))
11 fvex 6933 . . . . . . . . . . . . . . . . . 18 (𝑓𝑣) ∈ V
12 s1cli 14653 . . . . . . . . . . . . . . . . . . 19 ⟨“𝑣”⟩ ∈ Word V
1312elexi 3511 . . . . . . . . . . . . . . . . . 18 ⟨“𝑣”⟩ ∈ V
1411, 13ifex 4598 . . . . . . . . . . . . . . . . 17 if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) ∈ V
159, 10, 14fvmpt 7029 . . . . . . . . . . . . . . . 16 (𝑣𝑉 → ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
1615adantl 481 . . . . . . . . . . . . . . 15 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
1716ifeq1da 4579 . . . . . . . . . . . . . 14 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩) = if(𝑣𝑉, if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩), ⟨“𝑣”⟩))
18 ifan 4601 . . . . . . . . . . . . . 14 if((𝑣𝑉𝑣 ∈ dom 𝑓), (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣𝑉, if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩), ⟨“𝑣”⟩)
1917, 18eqtr4di 2798 . . . . . . . . . . . . 13 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩) = if((𝑣𝑉𝑣 ∈ dom 𝑓), (𝑓𝑣), ⟨“𝑣”⟩))
20 elpmi 8904 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (𝑅pm 𝑉) → (𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉))
2120adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉))
2221simprd 495 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → dom 𝑓𝑉)
2322sseld 4007 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑣 ∈ dom 𝑓𝑣𝑉))
2423pm4.71rd 562 . . . . . . . . . . . . . . 15 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑣 ∈ dom 𝑓 ↔ (𝑣𝑉𝑣 ∈ dom 𝑓)))
2524bicomd 223 . . . . . . . . . . . . . 14 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((𝑣𝑉𝑣 ∈ dom 𝑓) ↔ 𝑣 ∈ dom 𝑓))
2625ifbid 4571 . . . . . . . . . . . . 13 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if((𝑣𝑉𝑣 ∈ dom 𝑓), (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
2719, 26eqtr2d 2781 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩))
2827mpteq2dv 5268 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)))
2928coeq1d 5886 . . . . . . . . . 10 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))
3029oveq2d 7464 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))
3130mpteq2dv 5268 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
32 eqid 2740 . . . . . . . . . 10 (mCN‘𝑇) = (mCN‘𝑇)
33 eqid 2740 . . . . . . . . . 10 (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) = (freeMnd‘((mCN‘𝑇) ∪ 𝑉))
3432, 1, 2, 3, 33mrsubfval 35476 . . . . . . . . 9 ((𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉) → (𝑆𝑓) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
3521, 34syl 17 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆𝑓) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
3621simpld 494 . . . . . . . . . . . . 13 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → 𝑓:dom 𝑓𝑅)
3736adantr 480 . . . . . . . . . . . 12 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) → 𝑓:dom 𝑓𝑅)
3837ffvelcdmda 7118 . . . . . . . . . . 11 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ 𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ 𝑅)
39 elun2 4206 . . . . . . . . . . . . . 14 (𝑥𝑉𝑥 ∈ ((mCN‘𝑇) ∪ 𝑉))
4039ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → 𝑥 ∈ ((mCN‘𝑇) ∪ 𝑉))
4140s1cld 14651 . . . . . . . . . . . 12 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → ⟨“𝑥”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
4232, 1, 2mrexval 35469 . . . . . . . . . . . . 13 (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
4342ad3antrrr 729 . . . . . . . . . . . 12 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
4441, 43eleqtrrd 2847 . . . . . . . . . . 11 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → ⟨“𝑥”⟩ ∈ 𝑅)
4538, 44ifclda 4583 . . . . . . . . . 10 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) → if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩) ∈ 𝑅)
4645fmpttd 7149 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)):𝑉𝑅)
47 ssid 4031 . . . . . . . . 9 𝑉𝑉
4832, 1, 2, 3, 33mrsubfval 35476 . . . . . . . . 9 (((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)):𝑉𝑅𝑉𝑉) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
4946, 47, 48sylancl 585 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
5031, 35, 493eqtr4d 2790 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆𝑓) = (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))))
515adantr 480 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → 𝑆 Fn (𝑅pm 𝑉))
52 mapsspm 8934 . . . . . . . . 9 (𝑅m 𝑉) ⊆ (𝑅pm 𝑉)
5352a1i 11 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑅m 𝑉) ⊆ (𝑅pm 𝑉))
542fvexi 6934 . . . . . . . . . 10 𝑅 ∈ V
551fvexi 6934 . . . . . . . . . 10 𝑉 ∈ V
5654, 55elmap 8929 . . . . . . . . 9 ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) ∈ (𝑅m 𝑉) ↔ (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)):𝑉𝑅)
5746, 56sylibr 234 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) ∈ (𝑅m 𝑉))
58 fnfvima 7270 . . . . . . . 8 ((𝑆 Fn (𝑅pm 𝑉) ∧ (𝑅m 𝑉) ⊆ (𝑅pm 𝑉) ∧ (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) ∈ (𝑅m 𝑉)) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) ∈ (𝑆 “ (𝑅m 𝑉)))
5951, 53, 57, 58syl3anc 1371 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) ∈ (𝑆 “ (𝑅m 𝑉)))
6050, 59eqeltrd 2844 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆𝑓) ∈ (𝑆 “ (𝑅m 𝑉)))
6160ralrimiva 3152 . . . . 5 (𝑇 ∈ V → ∀𝑓 ∈ (𝑅pm 𝑉)(𝑆𝑓) ∈ (𝑆 “ (𝑅m 𝑉)))
62 ffnfv 7153 . . . . 5 (𝑆:(𝑅pm 𝑉)⟶(𝑆 “ (𝑅m 𝑉)) ↔ (𝑆 Fn (𝑅pm 𝑉) ∧ ∀𝑓 ∈ (𝑅pm 𝑉)(𝑆𝑓) ∈ (𝑆 “ (𝑅m 𝑉))))
635, 61, 62sylanbrc 582 . . . 4 (𝑇 ∈ V → 𝑆:(𝑅pm 𝑉)⟶(𝑆 “ (𝑅m 𝑉)))
6463frnd 6755 . . 3 (𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
653rnfvprc 6914 . . . 4 𝑇 ∈ V → ran 𝑆 = ∅)
66 0ss 4423 . . . 4 ∅ ⊆ (𝑆 “ (𝑅m 𝑉))
6765, 66eqsstrdi 4063 . . 3 𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
6864, 67pm2.61i 182 . 2 ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉))
69 imassrn 6100 . 2 (𝑆 “ (𝑅m 𝑉)) ⊆ ran 𝑆
7068, 69eqssi 4025 1 ran 𝑆 = (𝑆 “ (𝑅m 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cun 3974  wss 3976  c0 4352  ifcif 4548  cmpt 5249  dom cdm 5700  ran crn 5701  cima 5703  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  pm cpm 8885  Word cword 14562  ⟨“cs1 14643   Σg cgsu 17500  freeMndcfrmd 18882  mCNcmcn 35428  mVRcmvar 35429  mRExcmrex 35434  mRSubstcmrsub 35438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-frmd 18884  df-mrex 35454  df-mrsub 35458
This theorem is referenced by:  mrsubff1o  35483  mrsub0  35484  mrsubccat  35486  mrsubcn  35487  msubrn  35497
  Copyright terms: Public domain W3C validator