Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubrn Structured version   Visualization version   GIF version

Theorem mrsubrn 35473
Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubrn ran 𝑆 = (𝑆 “ (𝑅m 𝑉))

Proof of Theorem mrsubrn
Dummy variables 𝑒 𝑓 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubvr.v . . . . . . 7 𝑉 = (mVR‘𝑇)
2 mrsubvr.r . . . . . . 7 𝑅 = (mREx‘𝑇)
3 mrsubvr.s . . . . . . 7 𝑆 = (mRSubst‘𝑇)
41, 2, 3mrsubff 35472 . . . . . 6 (𝑇 ∈ V → 𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅))
54ffnd 6671 . . . . 5 (𝑇 ∈ V → 𝑆 Fn (𝑅pm 𝑉))
6 eleq1w 2811 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝑥 ∈ dom 𝑓𝑣 ∈ dom 𝑓))
7 fveq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝑓𝑥) = (𝑓𝑣))
8 s1eq 14541 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ⟨“𝑥”⟩ = ⟨“𝑣”⟩)
96, 7, 8ifbieq12d 4513 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
10 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) = (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))
11 fvex 6853 . . . . . . . . . . . . . . . . . 18 (𝑓𝑣) ∈ V
12 s1cli 14546 . . . . . . . . . . . . . . . . . . 19 ⟨“𝑣”⟩ ∈ Word V
1312elexi 3467 . . . . . . . . . . . . . . . . . 18 ⟨“𝑣”⟩ ∈ V
1411, 13ifex 4535 . . . . . . . . . . . . . . . . 17 if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) ∈ V
159, 10, 14fvmpt 6950 . . . . . . . . . . . . . . . 16 (𝑣𝑉 → ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
1615adantl 481 . . . . . . . . . . . . . . 15 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
1716ifeq1da 4516 . . . . . . . . . . . . . 14 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩) = if(𝑣𝑉, if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩), ⟨“𝑣”⟩))
18 ifan 4538 . . . . . . . . . . . . . 14 if((𝑣𝑉𝑣 ∈ dom 𝑓), (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣𝑉, if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩), ⟨“𝑣”⟩)
1917, 18eqtr4di 2782 . . . . . . . . . . . . 13 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩) = if((𝑣𝑉𝑣 ∈ dom 𝑓), (𝑓𝑣), ⟨“𝑣”⟩))
20 elpmi 8796 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (𝑅pm 𝑉) → (𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉))
2120adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉))
2221simprd 495 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → dom 𝑓𝑉)
2322sseld 3942 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑣 ∈ dom 𝑓𝑣𝑉))
2423pm4.71rd 562 . . . . . . . . . . . . . . 15 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑣 ∈ dom 𝑓 ↔ (𝑣𝑉𝑣 ∈ dom 𝑓)))
2524bicomd 223 . . . . . . . . . . . . . 14 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((𝑣𝑉𝑣 ∈ dom 𝑓) ↔ 𝑣 ∈ dom 𝑓))
2625ifbid 4508 . . . . . . . . . . . . 13 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if((𝑣𝑉𝑣 ∈ dom 𝑓), (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
2719, 26eqtr2d 2765 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩))
2827mpteq2dv 5196 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)))
2928coeq1d 5815 . . . . . . . . . 10 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))
3029oveq2d 7385 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))
3130mpteq2dv 5196 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
32 eqid 2729 . . . . . . . . . 10 (mCN‘𝑇) = (mCN‘𝑇)
33 eqid 2729 . . . . . . . . . 10 (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) = (freeMnd‘((mCN‘𝑇) ∪ 𝑉))
3432, 1, 2, 3, 33mrsubfval 35468 . . . . . . . . 9 ((𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉) → (𝑆𝑓) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
3521, 34syl 17 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆𝑓) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
3621simpld 494 . . . . . . . . . . . . 13 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → 𝑓:dom 𝑓𝑅)
3736adantr 480 . . . . . . . . . . . 12 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) → 𝑓:dom 𝑓𝑅)
3837ffvelcdmda 7038 . . . . . . . . . . 11 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ 𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ 𝑅)
39 elun2 4142 . . . . . . . . . . . . . 14 (𝑥𝑉𝑥 ∈ ((mCN‘𝑇) ∪ 𝑉))
4039ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → 𝑥 ∈ ((mCN‘𝑇) ∪ 𝑉))
4140s1cld 14544 . . . . . . . . . . . 12 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → ⟨“𝑥”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
4232, 1, 2mrexval 35461 . . . . . . . . . . . . 13 (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
4342ad3antrrr 730 . . . . . . . . . . . 12 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
4441, 43eleqtrrd 2831 . . . . . . . . . . 11 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → ⟨“𝑥”⟩ ∈ 𝑅)
4538, 44ifclda 4520 . . . . . . . . . 10 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) → if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩) ∈ 𝑅)
4645fmpttd 7069 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)):𝑉𝑅)
47 ssid 3966 . . . . . . . . 9 𝑉𝑉
4832, 1, 2, 3, 33mrsubfval 35468 . . . . . . . . 9 (((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)):𝑉𝑅𝑉𝑉) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
4946, 47, 48sylancl 586 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
5031, 35, 493eqtr4d 2774 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆𝑓) = (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))))
515adantr 480 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → 𝑆 Fn (𝑅pm 𝑉))
52 mapsspm 8826 . . . . . . . . 9 (𝑅m 𝑉) ⊆ (𝑅pm 𝑉)
5352a1i 11 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑅m 𝑉) ⊆ (𝑅pm 𝑉))
542fvexi 6854 . . . . . . . . . 10 𝑅 ∈ V
551fvexi 6854 . . . . . . . . . 10 𝑉 ∈ V
5654, 55elmap 8821 . . . . . . . . 9 ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) ∈ (𝑅m 𝑉) ↔ (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)):𝑉𝑅)
5746, 56sylibr 234 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) ∈ (𝑅m 𝑉))
58 fnfvima 7189 . . . . . . . 8 ((𝑆 Fn (𝑅pm 𝑉) ∧ (𝑅m 𝑉) ⊆ (𝑅pm 𝑉) ∧ (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) ∈ (𝑅m 𝑉)) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) ∈ (𝑆 “ (𝑅m 𝑉)))
5951, 53, 57, 58syl3anc 1373 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) ∈ (𝑆 “ (𝑅m 𝑉)))
6050, 59eqeltrd 2828 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆𝑓) ∈ (𝑆 “ (𝑅m 𝑉)))
6160ralrimiva 3125 . . . . 5 (𝑇 ∈ V → ∀𝑓 ∈ (𝑅pm 𝑉)(𝑆𝑓) ∈ (𝑆 “ (𝑅m 𝑉)))
62 ffnfv 7073 . . . . 5 (𝑆:(𝑅pm 𝑉)⟶(𝑆 “ (𝑅m 𝑉)) ↔ (𝑆 Fn (𝑅pm 𝑉) ∧ ∀𝑓 ∈ (𝑅pm 𝑉)(𝑆𝑓) ∈ (𝑆 “ (𝑅m 𝑉))))
635, 61, 62sylanbrc 583 . . . 4 (𝑇 ∈ V → 𝑆:(𝑅pm 𝑉)⟶(𝑆 “ (𝑅m 𝑉)))
6463frnd 6678 . . 3 (𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
653rnfvprc 6834 . . . 4 𝑇 ∈ V → ran 𝑆 = ∅)
66 0ss 4359 . . . 4 ∅ ⊆ (𝑆 “ (𝑅m 𝑉))
6765, 66eqsstrdi 3988 . . 3 𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
6864, 67pm2.61i 182 . 2 ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉))
69 imassrn 6031 . 2 (𝑆 “ (𝑅m 𝑉)) ⊆ ran 𝑆
7068, 69eqssi 3960 1 ran 𝑆 = (𝑆 “ (𝑅m 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cun 3909  wss 3911  c0 4292  ifcif 4484  cmpt 5183  dom cdm 5631  ran crn 5632  cima 5634  ccom 5635   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  pm cpm 8777  Word cword 14454  ⟨“cs1 14536   Σg cgsu 17379  freeMndcfrmd 18750  mCNcmcn 35420  mVRcmvar 35421  mRExcmrex 35426  mRSubstcmrsub 35430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-frmd 18752  df-mrex 35446  df-mrsub 35450
This theorem is referenced by:  mrsubff1o  35475  mrsub0  35476  mrsubccat  35478  mrsubcn  35479  msubrn  35489
  Copyright terms: Public domain W3C validator