Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubrn Structured version   Visualization version   GIF version

Theorem mrsubrn 35557
Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubrn ran 𝑆 = (𝑆 “ (𝑅m 𝑉))

Proof of Theorem mrsubrn
Dummy variables 𝑒 𝑓 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubvr.v . . . . . . 7 𝑉 = (mVR‘𝑇)
2 mrsubvr.r . . . . . . 7 𝑅 = (mREx‘𝑇)
3 mrsubvr.s . . . . . . 7 𝑆 = (mRSubst‘𝑇)
41, 2, 3mrsubff 35556 . . . . . 6 (𝑇 ∈ V → 𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅))
54ffnd 6652 . . . . 5 (𝑇 ∈ V → 𝑆 Fn (𝑅pm 𝑉))
6 eleq1w 2814 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝑥 ∈ dom 𝑓𝑣 ∈ dom 𝑓))
7 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝑓𝑥) = (𝑓𝑣))
8 s1eq 14508 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → ⟨“𝑥”⟩ = ⟨“𝑣”⟩)
96, 7, 8ifbieq12d 4501 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
10 eqid 2731 . . . . . . . . . . . . . . . . 17 (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) = (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))
11 fvex 6835 . . . . . . . . . . . . . . . . . 18 (𝑓𝑣) ∈ V
12 s1cli 14513 . . . . . . . . . . . . . . . . . . 19 ⟨“𝑣”⟩ ∈ Word V
1312elexi 3459 . . . . . . . . . . . . . . . . . 18 ⟨“𝑣”⟩ ∈ V
1411, 13ifex 4523 . . . . . . . . . . . . . . . . 17 if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) ∈ V
159, 10, 14fvmpt 6929 . . . . . . . . . . . . . . . 16 (𝑣𝑉 → ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
1615adantl 481 . . . . . . . . . . . . . . 15 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑣𝑉) → ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
1716ifeq1da 4504 . . . . . . . . . . . . . 14 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩) = if(𝑣𝑉, if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩), ⟨“𝑣”⟩))
18 ifan 4526 . . . . . . . . . . . . . 14 if((𝑣𝑉𝑣 ∈ dom 𝑓), (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣𝑉, if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩), ⟨“𝑣”⟩)
1917, 18eqtr4di 2784 . . . . . . . . . . . . 13 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩) = if((𝑣𝑉𝑣 ∈ dom 𝑓), (𝑓𝑣), ⟨“𝑣”⟩))
20 elpmi 8770 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (𝑅pm 𝑉) → (𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉))
2120adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉))
2221simprd 495 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → dom 𝑓𝑉)
2322sseld 3928 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑣 ∈ dom 𝑓𝑣𝑉))
2423pm4.71rd 562 . . . . . . . . . . . . . . 15 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑣 ∈ dom 𝑓 ↔ (𝑣𝑉𝑣 ∈ dom 𝑓)))
2524bicomd 223 . . . . . . . . . . . . . 14 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((𝑣𝑉𝑣 ∈ dom 𝑓) ↔ 𝑣 ∈ dom 𝑓))
2625ifbid 4496 . . . . . . . . . . . . 13 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if((𝑣𝑉𝑣 ∈ dom 𝑓), (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩))
2719, 26eqtr2d 2767 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩))
2827mpteq2dv 5183 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)))
2928coeq1d 5800 . . . . . . . . . 10 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))
3029oveq2d 7362 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))
3130mpteq2dv 5183 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
32 eqid 2731 . . . . . . . . . 10 (mCN‘𝑇) = (mCN‘𝑇)
33 eqid 2731 . . . . . . . . . 10 (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) = (freeMnd‘((mCN‘𝑇) ∪ 𝑉))
3432, 1, 2, 3, 33mrsubfval 35552 . . . . . . . . 9 ((𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉) → (𝑆𝑓) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
3521, 34syl 17 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆𝑓) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
3621simpld 494 . . . . . . . . . . . . 13 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → 𝑓:dom 𝑓𝑅)
3736adantr 480 . . . . . . . . . . . 12 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) → 𝑓:dom 𝑓𝑅)
3837ffvelcdmda 7017 . . . . . . . . . . 11 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ 𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ 𝑅)
39 elun2 4130 . . . . . . . . . . . . . 14 (𝑥𝑉𝑥 ∈ ((mCN‘𝑇) ∪ 𝑉))
4039ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → 𝑥 ∈ ((mCN‘𝑇) ∪ 𝑉))
4140s1cld 14511 . . . . . . . . . . . 12 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → ⟨“𝑥”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
4232, 1, 2mrexval 35545 . . . . . . . . . . . . 13 (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
4342ad3antrrr 730 . . . . . . . . . . . 12 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
4441, 43eleqtrrd 2834 . . . . . . . . . . 11 ((((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) ∧ ¬ 𝑥 ∈ dom 𝑓) → ⟨“𝑥”⟩ ∈ 𝑅)
4538, 44ifclda 4508 . . . . . . . . . 10 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑥𝑉) → if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩) ∈ 𝑅)
4645fmpttd 7048 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)):𝑉𝑅)
47 ssid 3952 . . . . . . . . 9 𝑉𝑉
4832, 1, 2, 3, 33mrsubfval 35552 . . . . . . . . 9 (((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)):𝑉𝑅𝑉𝑉) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
4946, 47, 48sylancl 586 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) = (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣𝑉, ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))‘𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
5031, 35, 493eqtr4d 2776 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆𝑓) = (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))))
515adantr 480 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → 𝑆 Fn (𝑅pm 𝑉))
52 mapsspm 8800 . . . . . . . . 9 (𝑅m 𝑉) ⊆ (𝑅pm 𝑉)
5352a1i 11 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑅m 𝑉) ⊆ (𝑅pm 𝑉))
542fvexi 6836 . . . . . . . . . 10 𝑅 ∈ V
551fvexi 6836 . . . . . . . . . 10 𝑉 ∈ V
5654, 55elmap 8795 . . . . . . . . 9 ((𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) ∈ (𝑅m 𝑉) ↔ (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)):𝑉𝑅)
5746, 56sylibr 234 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) ∈ (𝑅m 𝑉))
58 fnfvima 7167 . . . . . . . 8 ((𝑆 Fn (𝑅pm 𝑉) ∧ (𝑅m 𝑉) ⊆ (𝑅pm 𝑉) ∧ (𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩)) ∈ (𝑅m 𝑉)) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) ∈ (𝑆 “ (𝑅m 𝑉)))
5951, 53, 57, 58syl3anc 1373 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆‘(𝑥𝑉 ↦ if(𝑥 ∈ dom 𝑓, (𝑓𝑥), ⟨“𝑥”⟩))) ∈ (𝑆 “ (𝑅m 𝑉)))
6050, 59eqeltrd 2831 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑆𝑓) ∈ (𝑆 “ (𝑅m 𝑉)))
6160ralrimiva 3124 . . . . 5 (𝑇 ∈ V → ∀𝑓 ∈ (𝑅pm 𝑉)(𝑆𝑓) ∈ (𝑆 “ (𝑅m 𝑉)))
62 ffnfv 7052 . . . . 5 (𝑆:(𝑅pm 𝑉)⟶(𝑆 “ (𝑅m 𝑉)) ↔ (𝑆 Fn (𝑅pm 𝑉) ∧ ∀𝑓 ∈ (𝑅pm 𝑉)(𝑆𝑓) ∈ (𝑆 “ (𝑅m 𝑉))))
635, 61, 62sylanbrc 583 . . . 4 (𝑇 ∈ V → 𝑆:(𝑅pm 𝑉)⟶(𝑆 “ (𝑅m 𝑉)))
6463frnd 6659 . . 3 (𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
653rnfvprc 6816 . . . 4 𝑇 ∈ V → ran 𝑆 = ∅)
66 0ss 4347 . . . 4 ∅ ⊆ (𝑆 “ (𝑅m 𝑉))
6765, 66eqsstrdi 3974 . . 3 𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
6864, 67pm2.61i 182 . 2 ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉))
69 imassrn 6019 . 2 (𝑆 “ (𝑅m 𝑉)) ⊆ ran 𝑆
7068, 69eqssi 3946 1 ran 𝑆 = (𝑆 “ (𝑅m 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cun 3895  wss 3897  c0 4280  ifcif 4472  cmpt 5170  dom cdm 5614  ran crn 5615  cima 5617  ccom 5618   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  pm cpm 8751  Word cword 14420  ⟨“cs1 14503   Σg cgsu 17344  freeMndcfrmd 18755  mCNcmcn 35504  mVRcmvar 35505  mRExcmrex 35510  mRSubstcmrsub 35514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-frmd 18757  df-mrex 35530  df-mrsub 35534
This theorem is referenced by:  mrsubff1o  35559  mrsub0  35560  mrsubccat  35562  mrsubcn  35563  msubrn  35573
  Copyright terms: Public domain W3C validator