Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblabsnclem Structured version   Visualization version   GIF version

Theorem iblabsnclem 34970
Description: Lemma for iblabsnc 34971; cf. iblabslem 24428. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
iblabsnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabsnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblabsnclem.1 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
iblabsnclem.2 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
iblabsnclem.3 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
Assertion
Ref Expression
iblabsnclem (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem iblabsnclem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iblabsnclem.1 . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
2 iblabsnclem.2 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
3 iblabsnclem.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
43iblrelem 24391 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)))
52, 4mpbid 234 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ))
65simp1d 1138 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
76, 3mbfdm2 24238 . . . . 5 (𝜑𝐴 ∈ dom vol)
8 mblss 24132 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
97, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
10 rembl 24141 . . . . 5 ℝ ∈ dom vol
1110a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
123recnd 10669 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℂ)
1312abscld 14796 . . . . 5 ((𝜑𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
14 0re 10643 . . . . 5 0 ∈ ℝ
15 ifcl 4511 . . . . 5 (((abs‘(𝐹𝐵)) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
1613, 14, 15sylancl 588 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
17 eldifn 4104 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
1817adantl 484 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
19 iffalse 4476 . . . . 5 𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
2018, 19syl 17 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
21 iftrue 4473 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
2221mpteq2ia 5157 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
2313fmpttd 6879 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (abs‘(𝐹𝐵))):𝐴⟶ℝ)
2413adantlr 713 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
2524biantrurd 535 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (abs‘(𝐹𝐵)) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
263adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
27 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
2826, 27absled 14790 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ≤ 𝑦 ↔ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
2928notbid 320 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (¬ (abs‘(𝐹𝐵)) ≤ 𝑦 ↔ ¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
3027, 24ltnled 10787 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (abs‘(𝐹𝐵)) ↔ ¬ (abs‘(𝐹𝐵)) ≤ 𝑦))
31 renegcl 10949 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3231rexrd 10691 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ*)
3332ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
34 elioomnf 12833 . . . . . . . . . . . . . . 15 (-𝑦 ∈ ℝ* → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3533, 34syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3626biantrurd 535 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) < -𝑦 ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3727renegcld 11067 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
3826, 37ltnled 10787 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) < -𝑦 ↔ ¬ -𝑦 ≤ (𝐹𝐵)))
3935, 36, 383bitr2d 309 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ¬ -𝑦 ≤ (𝐹𝐵)))
40 rexr 10687 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
4140ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
42 elioopnf 12832 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4341, 42syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4426biantrurd 535 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (𝐹𝐵) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4527, 26ltnled 10787 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (𝐹𝐵) ↔ ¬ (𝐹𝐵) ≤ 𝑦))
4643, 44, 453bitr2d 309 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ¬ (𝐹𝐵) ≤ 𝑦))
4739, 46orbi12d 915 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ (¬ -𝑦 ≤ (𝐹𝐵) ∨ ¬ (𝐹𝐵) ≤ 𝑦)))
48 ianor 978 . . . . . . . . . . . 12 (¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦) ↔ (¬ -𝑦 ≤ (𝐹𝐵) ∨ ¬ (𝐹𝐵) ≤ 𝑦))
4947, 48syl6bbr 291 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ ¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
5029, 30, 493bitr4rd 314 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ 𝑦 < (abs‘(𝐹𝐵))))
51 elioopnf 12832 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
5241, 51syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
5325, 50, 523bitr4rd 314 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))))
5453rabbidva 3478 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞)} = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))})
55 eqid 2821 . . . . . . . . 9 (𝑥𝐴 ↦ (abs‘(𝐹𝐵))) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
5655mptpreima 6092 . . . . . . . 8 ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) = {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞)}
57 eqid 2821 . . . . . . . . . . 11 (𝑥𝐴 ↦ (𝐹𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵))
5857mptpreima 6092 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)}
5957mptpreima 6092 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)}
6058, 59uneq12i 4137 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) = ({𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)})
61 unrab 4274 . . . . . . . . 9 ({𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)}) = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))}
6260, 61eqtri 2844 . . . . . . . 8 (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))}
6354, 56, 623eqtr4g 2881 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) = (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))))
64 iblmbf 24368 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
652, 64syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
663fmpttd 6879 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ)
67 mbfima 24231 . . . . . . . . . 10 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol)
68 mbfima 24231 . . . . . . . . . 10 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) ∈ dom vol)
69 unmbl 24138 . . . . . . . . . 10 ((((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol ∧ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) ∈ dom vol) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7067, 68, 69syl2anc 586 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7165, 66, 70syl2anc 586 . . . . . . . 8 (𝜑 → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7271adantr 483 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7363, 72eqeltrd 2913 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) ∈ dom vol)
74 elioomnf 12833 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7541, 74syl 17 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7624biantrurd 535 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) < 𝑦 ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7726, 27absltd 14789 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) < 𝑦 ↔ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
7875, 76, 773bitr2d 309 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
7926biantrurd 535 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦))))
8078, 79bitrd 281 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦))))
81 3anass 1091 . . . . . . . . . . 11 (((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8280, 81syl6bbr 291 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
83 elioo2 12780 . . . . . . . . . . . 12 ((-𝑦 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8432, 40, 83syl2anc 586 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8584ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8682, 85bitr4d 284 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ (𝐹𝐵) ∈ (-𝑦(,)𝑦)))
8786rabbidva 3478 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦)} = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-𝑦(,)𝑦)})
8855mptpreima 6092 . . . . . . . 8 ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) = {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦)}
8957mptpreima 6092 . . . . . . . 8 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-𝑦(,)𝑦)}
9087, 88, 893eqtr4g 2881 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) = ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)))
91 mbfima 24231 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9265, 66, 91syl2anc 586 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9392adantr 483 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9490, 93eqeltrd 2913 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) ∈ dom vol)
9523, 7, 73, 94ismbf2d 24241 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (abs‘(𝐹𝐵))) ∈ MblFn)
9622, 95eqeltrid 2917 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
979, 11, 16, 20, 96mbfss 24247 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
981, 97eqeltrid 2917 . 2 (𝜑𝐺 ∈ MblFn)
99 reex 10628 . . . . . . . . 9 ℝ ∈ V
10099a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
101 ifan 4518 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0)
102 ifcl 4511 . . . . . . . . . . . . 13 (((𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
1033, 14, 102sylancl 588 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
104 max1 12579 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
10514, 3, 104sylancr 589 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
106 elrege0 12843 . . . . . . . . . . . 12 (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)))
107103, 105, 106sylanbrc 585 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞))
108 0e0icopnf 12847 . . . . . . . . . . . 12 0 ∈ (0[,)+∞)
109108a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
110107, 109ifclda 4501 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) ∈ (0[,)+∞))
111101, 110eqeltrid 2917 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
112111adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
113 ifan 4518 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)
1143renegcld 11067 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(𝐹𝐵) ∈ ℝ)
115 ifcl 4511 . . . . . . . . . . . . 13 ((-(𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
116114, 14, 115sylancl 588 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
117 max1 12579 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -(𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
11814, 114, 117sylancr 589 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
119 elrege0 12843 . . . . . . . . . . . 12 (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
120116, 118, 119sylanbrc 585 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞))
121120, 109ifclda 4501 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) ∈ (0[,)+∞))
122113, 121eqeltrid 2917 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
123122adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
124 eqidd 2822 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)))
125 eqidd 2822 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))
126100, 112, 123, 124, 125offval2 7426 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
127101, 113oveq12i 7168 . . . . . . . . 9 (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0))
128 max0add 14670 . . . . . . . . . . . . 13 ((𝐹𝐵) ∈ ℝ → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
1293, 128syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
130 iftrue 4473 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
131130adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
132 iftrue 4473 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
133132adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
134131, 133oveq12d 7174 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
13521adantl 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
136129, 134, 1353eqtr4d 2866 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
137136ex 415 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
138 00id 10815 . . . . . . . . . . 11 (0 + 0) = 0
139 iffalse 4476 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = 0)
140 iffalse 4476 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = 0)
141139, 140oveq12d 7174 . . . . . . . . . . 11 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (0 + 0))
142138, 141, 193eqtr4a 2882 . . . . . . . . . 10 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
143137, 142pm2.61d1 182 . . . . . . . . 9 (𝜑 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
144127, 143syl5eq 2868 . . . . . . . 8 (𝜑 → (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
145144mpteq2dv 5162 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
146126, 145eqtrd 2856 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
147146, 1syl6reqr 2875 . . . . 5 (𝜑𝐺 = ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
148147fveq2d 6674 . . . 4 (𝜑 → (∫2𝐺) = (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
149111adantr 483 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
150101, 139syl5eq 2868 . . . . . . 7 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
15118, 150syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
152 ibar 531 . . . . . . . . 9 (𝑥𝐴 → (0 ≤ (𝐹𝐵) ↔ (𝑥𝐴 ∧ 0 ≤ (𝐹𝐵))))
153152ifbid 4489 . . . . . . . 8 (𝑥𝐴 → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
154153mpteq2ia 5157 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
1553, 6mbfpos 24252 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) ∈ MblFn)
156154, 155eqeltrrid 2918 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
1579, 11, 149, 151, 156mbfss 24247 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
158112fmpttd 6879 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1595simp2d 1139 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ)
160123fmpttd 6879 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1615simp3d 1140 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)
162157, 158, 159, 160, 161itg2addnc 34961 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
163148, 162eqtrd 2856 . . 3 (𝜑 → (∫2𝐺) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
164159, 161readdcld 10670 . . 3 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) ∈ ℝ)
165163, 164eqeltrd 2913 . 2 (𝜑 → (∫2𝐺) ∈ ℝ)
16698, 165jca 514 1 (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  cdif 3933  cun 3934  wss 3936  ifcif 4467   class class class wbr 5066  cmpt 5146  ccnv 5554  dom cdm 5555  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  cr 10536  0cc0 10537   + caddc 10540  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675  cle 10676  -cneg 10871  (,)cioo 12739  [,)cico 12741  abscabs 14593  volcvol 24064  MblFncmbf 24215  2citg2 24217  𝐿1cibl 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-0p 24271
This theorem is referenced by:  iblabsnc  34971  iblmulc2nc  34972
  Copyright terms: Public domain W3C validator