Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblabsnclem Structured version   Visualization version   GIF version

Theorem iblabsnclem 37684
Description: Lemma for iblabsnc 37685; cf. iblabslem 25736. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
iblabsnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabsnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblabsnclem.1 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
iblabsnclem.2 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
iblabsnclem.3 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
Assertion
Ref Expression
iblabsnclem (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem iblabsnclem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iblabsnclem.1 . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
2 iblabsnclem.2 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
3 iblabsnclem.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
43iblrelem 25699 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)))
52, 4mpbid 232 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ))
65simp1d 1142 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
76, 3mbfdm2 25545 . . . . 5 (𝜑𝐴 ∈ dom vol)
8 mblss 25439 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
97, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
10 rembl 25448 . . . . 5 ℝ ∈ dom vol
1110a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
123recnd 11209 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℂ)
1312abscld 15412 . . . . 5 ((𝜑𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
14 0re 11183 . . . . 5 0 ∈ ℝ
15 ifcl 4537 . . . . 5 (((abs‘(𝐹𝐵)) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
1613, 14, 15sylancl 586 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
17 eldifn 4098 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
1817adantl 481 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
19 iffalse 4500 . . . . 5 𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
2018, 19syl 17 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
21 iftrue 4497 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
2221mpteq2ia 5205 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
2313fmpttd 7090 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (abs‘(𝐹𝐵))):𝐴⟶ℝ)
2413adantlr 715 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
2524biantrurd 532 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (abs‘(𝐹𝐵)) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
263adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
27 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
2826, 27absled 15406 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ≤ 𝑦 ↔ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
2928notbid 318 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (¬ (abs‘(𝐹𝐵)) ≤ 𝑦 ↔ ¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
3027, 24ltnled 11328 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (abs‘(𝐹𝐵)) ↔ ¬ (abs‘(𝐹𝐵)) ≤ 𝑦))
31 renegcl 11492 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3231rexrd 11231 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ*)
3332ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
34 elioomnf 13412 . . . . . . . . . . . . . . 15 (-𝑦 ∈ ℝ* → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3533, 34syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3626biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) < -𝑦 ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3727renegcld 11612 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
3826, 37ltnled 11328 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) < -𝑦 ↔ ¬ -𝑦 ≤ (𝐹𝐵)))
3935, 36, 383bitr2d 307 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ¬ -𝑦 ≤ (𝐹𝐵)))
40 rexr 11227 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
4140ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
42 elioopnf 13411 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4341, 42syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4426biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (𝐹𝐵) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4527, 26ltnled 11328 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (𝐹𝐵) ↔ ¬ (𝐹𝐵) ≤ 𝑦))
4643, 44, 453bitr2d 307 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ¬ (𝐹𝐵) ≤ 𝑦))
4739, 46orbi12d 918 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ (¬ -𝑦 ≤ (𝐹𝐵) ∨ ¬ (𝐹𝐵) ≤ 𝑦)))
48 ianor 983 . . . . . . . . . . . 12 (¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦) ↔ (¬ -𝑦 ≤ (𝐹𝐵) ∨ ¬ (𝐹𝐵) ≤ 𝑦))
4947, 48bitr4di 289 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ ¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
5029, 30, 493bitr4rd 312 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ 𝑦 < (abs‘(𝐹𝐵))))
51 elioopnf 13411 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
5241, 51syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
5325, 50, 523bitr4rd 312 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))))
5453rabbidva 3415 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞)} = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))})
55 eqid 2730 . . . . . . . . 9 (𝑥𝐴 ↦ (abs‘(𝐹𝐵))) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
5655mptpreima 6214 . . . . . . . 8 ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) = {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞)}
57 eqid 2730 . . . . . . . . . . 11 (𝑥𝐴 ↦ (𝐹𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵))
5857mptpreima 6214 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)}
5957mptpreima 6214 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)}
6058, 59uneq12i 4132 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) = ({𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)})
61 unrab 4281 . . . . . . . . 9 ({𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)}) = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))}
6260, 61eqtri 2753 . . . . . . . 8 (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))}
6354, 56, 623eqtr4g 2790 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) = (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))))
64 iblmbf 25675 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
652, 64syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
663fmpttd 7090 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ)
67 mbfima 25538 . . . . . . . . . 10 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol)
68 mbfima 25538 . . . . . . . . . 10 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) ∈ dom vol)
69 unmbl 25445 . . . . . . . . . 10 ((((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol ∧ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) ∈ dom vol) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7067, 68, 69syl2anc 584 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7165, 66, 70syl2anc 584 . . . . . . . 8 (𝜑 → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7271adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7363, 72eqeltrd 2829 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) ∈ dom vol)
74 elioomnf 13412 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7541, 74syl 17 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7624biantrurd 532 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) < 𝑦 ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7726, 27absltd 15405 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) < 𝑦 ↔ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
7875, 76, 773bitr2d 307 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
7926biantrurd 532 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦))))
8078, 79bitrd 279 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦))))
81 3anass 1094 . . . . . . . . . . 11 (((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8280, 81bitr4di 289 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
83 elioo2 13354 . . . . . . . . . . . 12 ((-𝑦 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8432, 40, 83syl2anc 584 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8584ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8682, 85bitr4d 282 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ (𝐹𝐵) ∈ (-𝑦(,)𝑦)))
8786rabbidva 3415 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦)} = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-𝑦(,)𝑦)})
8855mptpreima 6214 . . . . . . . 8 ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) = {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦)}
8957mptpreima 6214 . . . . . . . 8 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-𝑦(,)𝑦)}
9087, 88, 893eqtr4g 2790 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) = ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)))
91 mbfima 25538 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9265, 66, 91syl2anc 584 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9392adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9490, 93eqeltrd 2829 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) ∈ dom vol)
9523, 7, 73, 94ismbf2d 25548 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (abs‘(𝐹𝐵))) ∈ MblFn)
9622, 95eqeltrid 2833 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
979, 11, 16, 20, 96mbfss 25554 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
981, 97eqeltrid 2833 . 2 (𝜑𝐺 ∈ MblFn)
99 reex 11166 . . . . . . . . 9 ℝ ∈ V
10099a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
101 ifan 4545 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0)
102 ifcl 4537 . . . . . . . . . . . . 13 (((𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
1033, 14, 102sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
104 max1 13152 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
10514, 3, 104sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
106 elrege0 13422 . . . . . . . . . . . 12 (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)))
107103, 105, 106sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞))
108 0e0icopnf 13426 . . . . . . . . . . . 12 0 ∈ (0[,)+∞)
109108a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
110107, 109ifclda 4527 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) ∈ (0[,)+∞))
111101, 110eqeltrid 2833 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
112111adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
113 ifan 4545 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)
1143renegcld 11612 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(𝐹𝐵) ∈ ℝ)
115 ifcl 4537 . . . . . . . . . . . . 13 ((-(𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
116114, 14, 115sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
117 max1 13152 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -(𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
11814, 114, 117sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
119 elrege0 13422 . . . . . . . . . . . 12 (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
120116, 118, 119sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞))
121120, 109ifclda 4527 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) ∈ (0[,)+∞))
122113, 121eqeltrid 2833 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
123122adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
124 eqidd 2731 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)))
125 eqidd 2731 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))
126100, 112, 123, 124, 125offval2 7676 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
127101, 113oveq12i 7402 . . . . . . . . 9 (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0))
128 max0add 15283 . . . . . . . . . . . . 13 ((𝐹𝐵) ∈ ℝ → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
1293, 128syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
130 iftrue 4497 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
131130adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
132 iftrue 4497 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
133132adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
134131, 133oveq12d 7408 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
13521adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
136129, 134, 1353eqtr4d 2775 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
137136ex 412 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
138 00id 11356 . . . . . . . . . . 11 (0 + 0) = 0
139 iffalse 4500 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = 0)
140 iffalse 4500 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = 0)
141139, 140oveq12d 7408 . . . . . . . . . . 11 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (0 + 0))
142138, 141, 193eqtr4a 2791 . . . . . . . . . 10 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
143137, 142pm2.61d1 180 . . . . . . . . 9 (𝜑 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
144127, 143eqtrid 2777 . . . . . . . 8 (𝜑 → (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
145144mpteq2dv 5204 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
146126, 145eqtrd 2765 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
1471, 146eqtr4id 2784 . . . . 5 (𝜑𝐺 = ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
148147fveq2d 6865 . . . 4 (𝜑 → (∫2𝐺) = (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
149111adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
150101, 139eqtrid 2777 . . . . . . 7 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
15118, 150syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
152 ibar 528 . . . . . . . . 9 (𝑥𝐴 → (0 ≤ (𝐹𝐵) ↔ (𝑥𝐴 ∧ 0 ≤ (𝐹𝐵))))
153152ifbid 4515 . . . . . . . 8 (𝑥𝐴 → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
154153mpteq2ia 5205 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
1553, 6mbfpos 25559 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) ∈ MblFn)
156154, 155eqeltrrid 2834 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
1579, 11, 149, 151, 156mbfss 25554 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
158112fmpttd 7090 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1595simp2d 1143 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ)
160123fmpttd 7090 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1615simp3d 1144 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)
162157, 158, 159, 160, 161itg2addnc 37675 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
163148, 162eqtrd 2765 . . 3 (𝜑 → (∫2𝐺) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
164159, 161readdcld 11210 . . 3 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) ∈ ℝ)
165163, 164eqeltrd 2829 . 2 (𝜑 → (∫2𝐺) ∈ ℝ)
16698, 165jca 511 1 (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  cr 11074  0cc0 11075   + caddc 11078  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  -cneg 11413  (,)cioo 13313  [,)cico 13315  abscabs 15207  volcvol 25371  MblFncmbf 25522  2citg2 25524  𝐿1cibl 25525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-0p 25578
This theorem is referenced by:  iblabsnc  37685  iblmulc2nc  37686
  Copyright terms: Public domain W3C validator