Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblabsnclem Structured version   Visualization version   GIF version

Theorem iblabsnclem 37677
Description: Lemma for iblabsnc 37678; cf. iblabslem 25729. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
iblabsnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabsnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblabsnclem.1 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
iblabsnclem.2 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
iblabsnclem.3 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
Assertion
Ref Expression
iblabsnclem (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem iblabsnclem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iblabsnclem.1 . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
2 iblabsnclem.2 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
3 iblabsnclem.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
43iblrelem 25692 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)))
52, 4mpbid 232 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ))
65simp1d 1142 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
76, 3mbfdm2 25538 . . . . 5 (𝜑𝐴 ∈ dom vol)
8 mblss 25432 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
97, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
10 rembl 25441 . . . . 5 ℝ ∈ dom vol
1110a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
123recnd 11202 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℂ)
1312abscld 15405 . . . . 5 ((𝜑𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
14 0re 11176 . . . . 5 0 ∈ ℝ
15 ifcl 4534 . . . . 5 (((abs‘(𝐹𝐵)) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
1613, 14, 15sylancl 586 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
17 eldifn 4095 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
1817adantl 481 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
19 iffalse 4497 . . . . 5 𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
2018, 19syl 17 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
21 iftrue 4494 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
2221mpteq2ia 5202 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
2313fmpttd 7087 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (abs‘(𝐹𝐵))):𝐴⟶ℝ)
2413adantlr 715 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
2524biantrurd 532 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (abs‘(𝐹𝐵)) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
263adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
27 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
2826, 27absled 15399 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ≤ 𝑦 ↔ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
2928notbid 318 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (¬ (abs‘(𝐹𝐵)) ≤ 𝑦 ↔ ¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
3027, 24ltnled 11321 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (abs‘(𝐹𝐵)) ↔ ¬ (abs‘(𝐹𝐵)) ≤ 𝑦))
31 renegcl 11485 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3231rexrd 11224 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ*)
3332ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
34 elioomnf 13405 . . . . . . . . . . . . . . 15 (-𝑦 ∈ ℝ* → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3533, 34syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3626biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) < -𝑦 ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3727renegcld 11605 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
3826, 37ltnled 11321 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) < -𝑦 ↔ ¬ -𝑦 ≤ (𝐹𝐵)))
3935, 36, 383bitr2d 307 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ¬ -𝑦 ≤ (𝐹𝐵)))
40 rexr 11220 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
4140ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
42 elioopnf 13404 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4341, 42syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4426biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (𝐹𝐵) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4527, 26ltnled 11321 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (𝐹𝐵) ↔ ¬ (𝐹𝐵) ≤ 𝑦))
4643, 44, 453bitr2d 307 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ¬ (𝐹𝐵) ≤ 𝑦))
4739, 46orbi12d 918 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ (¬ -𝑦 ≤ (𝐹𝐵) ∨ ¬ (𝐹𝐵) ≤ 𝑦)))
48 ianor 983 . . . . . . . . . . . 12 (¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦) ↔ (¬ -𝑦 ≤ (𝐹𝐵) ∨ ¬ (𝐹𝐵) ≤ 𝑦))
4947, 48bitr4di 289 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ ¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
5029, 30, 493bitr4rd 312 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ 𝑦 < (abs‘(𝐹𝐵))))
51 elioopnf 13404 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
5241, 51syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
5325, 50, 523bitr4rd 312 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))))
5453rabbidva 3412 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞)} = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))})
55 eqid 2729 . . . . . . . . 9 (𝑥𝐴 ↦ (abs‘(𝐹𝐵))) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
5655mptpreima 6211 . . . . . . . 8 ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) = {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞)}
57 eqid 2729 . . . . . . . . . . 11 (𝑥𝐴 ↦ (𝐹𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵))
5857mptpreima 6211 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)}
5957mptpreima 6211 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)}
6058, 59uneq12i 4129 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) = ({𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)})
61 unrab 4278 . . . . . . . . 9 ({𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)}) = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))}
6260, 61eqtri 2752 . . . . . . . 8 (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))}
6354, 56, 623eqtr4g 2789 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) = (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))))
64 iblmbf 25668 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
652, 64syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
663fmpttd 7087 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ)
67 mbfima 25531 . . . . . . . . . 10 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol)
68 mbfima 25531 . . . . . . . . . 10 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) ∈ dom vol)
69 unmbl 25438 . . . . . . . . . 10 ((((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol ∧ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) ∈ dom vol) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7067, 68, 69syl2anc 584 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7165, 66, 70syl2anc 584 . . . . . . . 8 (𝜑 → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7271adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7363, 72eqeltrd 2828 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) ∈ dom vol)
74 elioomnf 13405 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7541, 74syl 17 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7624biantrurd 532 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) < 𝑦 ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7726, 27absltd 15398 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) < 𝑦 ↔ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
7875, 76, 773bitr2d 307 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
7926biantrurd 532 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦))))
8078, 79bitrd 279 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦))))
81 3anass 1094 . . . . . . . . . . 11 (((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8280, 81bitr4di 289 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
83 elioo2 13347 . . . . . . . . . . . 12 ((-𝑦 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8432, 40, 83syl2anc 584 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8584ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8682, 85bitr4d 282 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ (𝐹𝐵) ∈ (-𝑦(,)𝑦)))
8786rabbidva 3412 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦)} = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-𝑦(,)𝑦)})
8855mptpreima 6211 . . . . . . . 8 ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) = {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦)}
8957mptpreima 6211 . . . . . . . 8 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-𝑦(,)𝑦)}
9087, 88, 893eqtr4g 2789 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) = ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)))
91 mbfima 25531 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9265, 66, 91syl2anc 584 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9392adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9490, 93eqeltrd 2828 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) ∈ dom vol)
9523, 7, 73, 94ismbf2d 25541 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (abs‘(𝐹𝐵))) ∈ MblFn)
9622, 95eqeltrid 2832 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
979, 11, 16, 20, 96mbfss 25547 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
981, 97eqeltrid 2832 . 2 (𝜑𝐺 ∈ MblFn)
99 reex 11159 . . . . . . . . 9 ℝ ∈ V
10099a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
101 ifan 4542 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0)
102 ifcl 4534 . . . . . . . . . . . . 13 (((𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
1033, 14, 102sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
104 max1 13145 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
10514, 3, 104sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
106 elrege0 13415 . . . . . . . . . . . 12 (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)))
107103, 105, 106sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞))
108 0e0icopnf 13419 . . . . . . . . . . . 12 0 ∈ (0[,)+∞)
109108a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
110107, 109ifclda 4524 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) ∈ (0[,)+∞))
111101, 110eqeltrid 2832 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
112111adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
113 ifan 4542 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)
1143renegcld 11605 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(𝐹𝐵) ∈ ℝ)
115 ifcl 4534 . . . . . . . . . . . . 13 ((-(𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
116114, 14, 115sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
117 max1 13145 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -(𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
11814, 114, 117sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
119 elrege0 13415 . . . . . . . . . . . 12 (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
120116, 118, 119sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞))
121120, 109ifclda 4524 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) ∈ (0[,)+∞))
122113, 121eqeltrid 2832 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
123122adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
124 eqidd 2730 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)))
125 eqidd 2730 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))
126100, 112, 123, 124, 125offval2 7673 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
127101, 113oveq12i 7399 . . . . . . . . 9 (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0))
128 max0add 15276 . . . . . . . . . . . . 13 ((𝐹𝐵) ∈ ℝ → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
1293, 128syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
130 iftrue 4494 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
131130adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
132 iftrue 4494 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
133132adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
134131, 133oveq12d 7405 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
13521adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
136129, 134, 1353eqtr4d 2774 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
137136ex 412 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
138 00id 11349 . . . . . . . . . . 11 (0 + 0) = 0
139 iffalse 4497 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = 0)
140 iffalse 4497 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = 0)
141139, 140oveq12d 7405 . . . . . . . . . . 11 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (0 + 0))
142138, 141, 193eqtr4a 2790 . . . . . . . . . 10 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
143137, 142pm2.61d1 180 . . . . . . . . 9 (𝜑 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
144127, 143eqtrid 2776 . . . . . . . 8 (𝜑 → (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
145144mpteq2dv 5201 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
146126, 145eqtrd 2764 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
1471, 146eqtr4id 2783 . . . . 5 (𝜑𝐺 = ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
148147fveq2d 6862 . . . 4 (𝜑 → (∫2𝐺) = (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
149111adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
150101, 139eqtrid 2776 . . . . . . 7 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
15118, 150syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
152 ibar 528 . . . . . . . . 9 (𝑥𝐴 → (0 ≤ (𝐹𝐵) ↔ (𝑥𝐴 ∧ 0 ≤ (𝐹𝐵))))
153152ifbid 4512 . . . . . . . 8 (𝑥𝐴 → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
154153mpteq2ia 5202 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
1553, 6mbfpos 25552 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) ∈ MblFn)
156154, 155eqeltrrid 2833 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
1579, 11, 149, 151, 156mbfss 25547 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
158112fmpttd 7087 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1595simp2d 1143 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ)
160123fmpttd 7087 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1615simp3d 1144 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)
162157, 158, 159, 160, 161itg2addnc 37668 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
163148, 162eqtrd 2764 . . 3 (𝜑 → (∫2𝐺) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
164159, 161readdcld 11203 . . 3 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) ∈ ℝ)
165163, 164eqeltrd 2828 . 2 (𝜑 → (∫2𝐺) ∈ ℝ)
16698, 165jca 511 1 (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  -cneg 11406  (,)cioo 13306  [,)cico 13308  abscabs 15200  volcvol 25364  MblFncmbf 25515  2citg2 25517  𝐿1cibl 25518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-0p 25571
This theorem is referenced by:  iblabsnc  37678  iblmulc2nc  37679
  Copyright terms: Public domain W3C validator