Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblabsnclem Structured version   Visualization version   GIF version

Theorem iblabsnclem 37670
Description: Lemma for iblabsnc 37671; cf. iblabslem 25762. (Contributed by Brendan Leahy, 7-Nov-2017.)
Hypotheses
Ref Expression
iblabsnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabsnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblabsnclem.1 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
iblabsnclem.2 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
iblabsnclem.3 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
Assertion
Ref Expression
iblabsnclem (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem iblabsnclem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iblabsnclem.1 . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
2 iblabsnclem.2 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
3 iblabsnclem.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
43iblrelem 25725 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)))
52, 4mpbid 232 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ))
65simp1d 1142 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
76, 3mbfdm2 25571 . . . . 5 (𝜑𝐴 ∈ dom vol)
8 mblss 25465 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
97, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
10 rembl 25474 . . . . 5 ℝ ∈ dom vol
1110a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
123recnd 11178 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℂ)
1312abscld 15381 . . . . 5 ((𝜑𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
14 0re 11152 . . . . 5 0 ∈ ℝ
15 ifcl 4530 . . . . 5 (((abs‘(𝐹𝐵)) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
1613, 14, 15sylancl 586 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
17 eldifn 4091 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
1817adantl 481 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
19 iffalse 4493 . . . . 5 𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
2018, 19syl 17 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
21 iftrue 4490 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
2221mpteq2ia 5197 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
2313fmpttd 7069 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (abs‘(𝐹𝐵))):𝐴⟶ℝ)
2413adantlr 715 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
2524biantrurd 532 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (abs‘(𝐹𝐵)) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
263adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
27 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
2826, 27absled 15375 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ≤ 𝑦 ↔ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
2928notbid 318 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (¬ (abs‘(𝐹𝐵)) ≤ 𝑦 ↔ ¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
3027, 24ltnled 11297 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (abs‘(𝐹𝐵)) ↔ ¬ (abs‘(𝐹𝐵)) ≤ 𝑦))
31 renegcl 11461 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3231rexrd 11200 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ*)
3332ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ*)
34 elioomnf 13381 . . . . . . . . . . . . . . 15 (-𝑦 ∈ ℝ* → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3533, 34syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3626biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) < -𝑦 ↔ ((𝐹𝐵) ∈ ℝ ∧ (𝐹𝐵) < -𝑦)))
3727renegcld 11581 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → -𝑦 ∈ ℝ)
3826, 37ltnled 11297 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) < -𝑦 ↔ ¬ -𝑦 ≤ (𝐹𝐵)))
3935, 36, 383bitr2d 307 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-∞(,)-𝑦) ↔ ¬ -𝑦 ≤ (𝐹𝐵)))
40 rexr 11196 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
4140ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ*)
42 elioopnf 13380 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4341, 42syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4426biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (𝐹𝐵) ↔ ((𝐹𝐵) ∈ ℝ ∧ 𝑦 < (𝐹𝐵))))
4527, 26ltnled 11297 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑦 < (𝐹𝐵) ↔ ¬ (𝐹𝐵) ≤ 𝑦))
4643, 44, 453bitr2d 307 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (𝑦(,)+∞) ↔ ¬ (𝐹𝐵) ≤ 𝑦))
4739, 46orbi12d 918 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ (¬ -𝑦 ≤ (𝐹𝐵) ∨ ¬ (𝐹𝐵) ≤ 𝑦)))
48 ianor 983 . . . . . . . . . . . 12 (¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦) ↔ (¬ -𝑦 ≤ (𝐹𝐵) ∨ ¬ (𝐹𝐵) ≤ 𝑦))
4947, 48bitr4di 289 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ ¬ (-𝑦 ≤ (𝐹𝐵) ∧ (𝐹𝐵) ≤ 𝑦)))
5029, 30, 493bitr4rd 312 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞)) ↔ 𝑦 < (abs‘(𝐹𝐵))))
51 elioopnf 13380 . . . . . . . . . . 11 (𝑦 ∈ ℝ* → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
5241, 51syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹𝐵)))))
5325, 50, 523bitr4rd 312 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞) ↔ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))))
5453rabbidva 3409 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞)} = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))})
55 eqid 2729 . . . . . . . . 9 (𝑥𝐴 ↦ (abs‘(𝐹𝐵))) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
5655mptpreima 6199 . . . . . . . 8 ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) = {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (𝑦(,)+∞)}
57 eqid 2729 . . . . . . . . . . 11 (𝑥𝐴 ↦ (𝐹𝐵)) = (𝑥𝐴 ↦ (𝐹𝐵))
5857mptpreima 6199 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)}
5957mptpreima 6199 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)}
6058, 59uneq12i 4125 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) = ({𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)})
61 unrab 4274 . . . . . . . . 9 ({𝑥𝐴 ∣ (𝐹𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥𝐴 ∣ (𝐹𝐵) ∈ (𝑦(,)+∞)}) = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))}
6260, 61eqtri 2752 . . . . . . . 8 (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) = {𝑥𝐴 ∣ ((𝐹𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹𝐵) ∈ (𝑦(,)+∞))}
6354, 56, 623eqtr4g 2789 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) = (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))))
64 iblmbf 25701 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
652, 64syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
663fmpttd 7069 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ)
67 mbfima 25564 . . . . . . . . . 10 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol)
68 mbfima 25564 . . . . . . . . . 10 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) ∈ dom vol)
69 unmbl 25471 . . . . . . . . . 10 ((((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol ∧ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞)) ∈ dom vol) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7067, 68, 69syl2anc 584 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7165, 66, 70syl2anc 584 . . . . . . . 8 (𝜑 → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7271adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (((𝑥𝐴 ↦ (𝐹𝐵)) “ (-∞(,)-𝑦)) ∪ ((𝑥𝐴 ↦ (𝐹𝐵)) “ (𝑦(,)+∞))) ∈ dom vol)
7363, 72eqeltrd 2828 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (𝑦(,)+∞)) ∈ dom vol)
74 elioomnf 13381 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7541, 74syl 17 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7624biantrurd 532 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) < 𝑦 ↔ ((abs‘(𝐹𝐵)) ∈ ℝ ∧ (abs‘(𝐹𝐵)) < 𝑦)))
7726, 27absltd 15374 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) < 𝑦 ↔ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
7875, 76, 773bitr2d 307 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
7926biantrurd 532 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦))))
8078, 79bitrd 279 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦))))
81 3anass 1094 . . . . . . . . . . 11 (((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8280, 81bitr4di 289 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
83 elioo2 13323 . . . . . . . . . . . 12 ((-𝑦 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8432, 40, 83syl2anc 584 . . . . . . . . . . 11 (𝑦 ∈ ℝ → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8584ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐹𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹𝐵) ∈ ℝ ∧ -𝑦 < (𝐹𝐵) ∧ (𝐹𝐵) < 𝑦)))
8682, 85bitr4d 282 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦) ↔ (𝐹𝐵) ∈ (-𝑦(,)𝑦)))
8786rabbidva 3409 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦)} = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-𝑦(,)𝑦)})
8855mptpreima 6199 . . . . . . . 8 ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) = {𝑥𝐴 ∣ (abs‘(𝐹𝐵)) ∈ (-∞(,)𝑦)}
8957mptpreima 6199 . . . . . . . 8 ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) = {𝑥𝐴 ∣ (𝐹𝐵) ∈ (-𝑦(,)𝑦)}
9087, 88, 893eqtr4g 2789 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) = ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)))
91 mbfima 25564 . . . . . . . . 9 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9265, 66, 91syl2anc 584 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9392adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (𝐹𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol)
9490, 93eqeltrd 2828 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ((𝑥𝐴 ↦ (abs‘(𝐹𝐵))) “ (-∞(,)𝑦)) ∈ dom vol)
9523, 7, 73, 94ismbf2d 25574 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (abs‘(𝐹𝐵))) ∈ MblFn)
9622, 95eqeltrid 2832 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
979, 11, 16, 20, 96mbfss 25580 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
981, 97eqeltrid 2832 . 2 (𝜑𝐺 ∈ MblFn)
99 reex 11135 . . . . . . . . 9 ℝ ∈ V
10099a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
101 ifan 4538 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0)
102 ifcl 4530 . . . . . . . . . . . . 13 (((𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
1033, 14, 102sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
104 max1 13121 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
10514, 3, 104sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
106 elrege0 13391 . . . . . . . . . . . 12 (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)))
107103, 105, 106sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞))
108 0e0icopnf 13395 . . . . . . . . . . . 12 0 ∈ (0[,)+∞)
109108a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
110107, 109ifclda 4520 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) ∈ (0[,)+∞))
111101, 110eqeltrid 2832 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
112111adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
113 ifan 4538 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)
1143renegcld 11581 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(𝐹𝐵) ∈ ℝ)
115 ifcl 4530 . . . . . . . . . . . . 13 ((-(𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
116114, 14, 115sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
117 max1 13121 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -(𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
11814, 114, 117sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
119 elrege0 13391 . . . . . . . . . . . 12 (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
120116, 118, 119sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞))
121120, 109ifclda 4520 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) ∈ (0[,)+∞))
122113, 121eqeltrid 2832 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
123122adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
124 eqidd 2730 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)))
125 eqidd 2730 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))
126100, 112, 123, 124, 125offval2 7653 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
127101, 113oveq12i 7381 . . . . . . . . 9 (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0))
128 max0add 15252 . . . . . . . . . . . . 13 ((𝐹𝐵) ∈ ℝ → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
1293, 128syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
130 iftrue 4490 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
131130adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
132 iftrue 4490 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
133132adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
134131, 133oveq12d 7387 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
13521adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
136129, 134, 1353eqtr4d 2774 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
137136ex 412 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
138 00id 11325 . . . . . . . . . . 11 (0 + 0) = 0
139 iffalse 4493 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = 0)
140 iffalse 4493 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = 0)
141139, 140oveq12d 7387 . . . . . . . . . . 11 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (0 + 0))
142138, 141, 193eqtr4a 2790 . . . . . . . . . 10 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
143137, 142pm2.61d1 180 . . . . . . . . 9 (𝜑 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
144127, 143eqtrid 2776 . . . . . . . 8 (𝜑 → (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
145144mpteq2dv 5196 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
146126, 145eqtrd 2764 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
1471, 146eqtr4id 2783 . . . . 5 (𝜑𝐺 = ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
148147fveq2d 6844 . . . 4 (𝜑 → (∫2𝐺) = (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
149111adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
150101, 139eqtrid 2776 . . . . . . 7 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
15118, 150syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
152 ibar 528 . . . . . . . . 9 (𝑥𝐴 → (0 ≤ (𝐹𝐵) ↔ (𝑥𝐴 ∧ 0 ≤ (𝐹𝐵))))
153152ifbid 4508 . . . . . . . 8 (𝑥𝐴 → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
154153mpteq2ia 5197 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
1553, 6mbfpos 25585 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) ∈ MblFn)
156154, 155eqeltrrid 2833 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
1579, 11, 149, 151, 156mbfss 25580 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
158112fmpttd 7069 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1595simp2d 1143 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ)
160123fmpttd 7069 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1615simp3d 1144 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)
162157, 158, 159, 160, 161itg2addnc 37661 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
163148, 162eqtrd 2764 . . 3 (𝜑 → (∫2𝐺) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
164159, 161readdcld 11179 . . 3 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) ∈ ℝ)
165163, 164eqeltrd 2828 . 2 (𝜑 → (∫2𝐺) ∈ ℝ)
16698, 165jca 511 1 (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  cdif 3908  cun 3909  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  ccnv 5630  dom cdm 5631  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cr 11043  0cc0 11044   + caddc 11047  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  -cneg 11382  (,)cioo 13282  [,)cico 13284  abscabs 15176  volcvol 25397  MblFncmbf 25548  2citg2 25550  𝐿1cibl 25551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-rest 17361  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-bases 22866  df-cmp 23307  df-ovol 25398  df-vol 25399  df-mbf 25553  df-itg1 25554  df-itg2 25555  df-ibl 25556  df-0p 25604
This theorem is referenced by:  iblabsnc  37671  iblmulc2nc  37672
  Copyright terms: Public domain W3C validator