| Step | Hyp | Ref
| Expression |
| 1 | | iblabsnclem.1 |
. . 3
⊢ 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0)) |
| 2 | | iblabsnclem.2 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈
𝐿1) |
| 3 | | iblabsnclem.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℝ) |
| 4 | 3 | iblrelem 25826 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0))) ∈ ℝ))) |
| 5 | 2, 4 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0))) ∈ ℝ)) |
| 6 | 5 | simp1d 1143 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ MblFn) |
| 7 | 6, 3 | mbfdm2 25672 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 8 | | mblss 25566 |
. . . . 5
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
| 9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 10 | | rembl 25575 |
. . . . 5
⊢ ℝ
∈ dom vol |
| 11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ∈ dom
vol) |
| 12 | 3 | recnd 11289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℂ) |
| 13 | 12 | abscld 15475 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐹‘𝐵)) ∈ ℝ) |
| 14 | | 0re 11263 |
. . . . 5
⊢ 0 ∈
ℝ |
| 15 | | ifcl 4571 |
. . . . 5
⊢
(((abs‘(𝐹‘𝐵)) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0) ∈ ℝ) |
| 16 | 13, 14, 15 | sylancl 586 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0) ∈ ℝ) |
| 17 | | eldifn 4132 |
. . . . . 6
⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) |
| 18 | 17 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
| 19 | | iffalse 4534 |
. . . . 5
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0) = 0) |
| 20 | 18, 19 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0) = 0) |
| 21 | | iftrue 4531 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0) = (abs‘(𝐹‘𝐵))) |
| 22 | 21 | mpteq2ia 5245 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0)) = (𝑥 ∈ 𝐴 ↦ (abs‘(𝐹‘𝐵))) |
| 23 | 13 | fmpttd 7135 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘(𝐹‘𝐵))):𝐴⟶ℝ) |
| 24 | 13 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐹‘𝐵)) ∈ ℝ) |
| 25 | 24 | biantrurd 532 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑦 < (abs‘(𝐹‘𝐵)) ↔ ((abs‘(𝐹‘𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹‘𝐵))))) |
| 26 | 3 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝐵) ∈ ℝ) |
| 27 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 28 | 26, 27 | absled 15469 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐹‘𝐵)) ≤ 𝑦 ↔ (-𝑦 ≤ (𝐹‘𝐵) ∧ (𝐹‘𝐵) ≤ 𝑦))) |
| 29 | 28 | notbid 318 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (¬ (abs‘(𝐹‘𝐵)) ≤ 𝑦 ↔ ¬ (-𝑦 ≤ (𝐹‘𝐵) ∧ (𝐹‘𝐵) ≤ 𝑦))) |
| 30 | 27, 24 | ltnled 11408 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑦 < (abs‘(𝐹‘𝐵)) ↔ ¬ (abs‘(𝐹‘𝐵)) ≤ 𝑦)) |
| 31 | | renegcl 11572 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ) |
| 32 | 31 | rexrd 11311 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ*) |
| 33 | 32 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → -𝑦 ∈ ℝ*) |
| 34 | | elioomnf 13484 |
. . . . . . . . . . . . . . 15
⊢ (-𝑦 ∈ ℝ*
→ ((𝐹‘𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ (𝐹‘𝐵) < -𝑦))) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝐵) ∈ (-∞(,)-𝑦) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ (𝐹‘𝐵) < -𝑦))) |
| 36 | 26 | biantrurd 532 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝐵) < -𝑦 ↔ ((𝐹‘𝐵) ∈ ℝ ∧ (𝐹‘𝐵) < -𝑦))) |
| 37 | 27 | renegcld 11690 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → -𝑦 ∈ ℝ) |
| 38 | 26, 37 | ltnled 11408 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝐵) < -𝑦 ↔ ¬ -𝑦 ≤ (𝐹‘𝐵))) |
| 39 | 35, 36, 38 | 3bitr2d 307 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝐵) ∈ (-∞(,)-𝑦) ↔ ¬ -𝑦 ≤ (𝐹‘𝐵))) |
| 40 | | rexr 11307 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
| 41 | 40 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
| 42 | | elioopnf 13483 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ*
→ ((𝐹‘𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ 𝑦 < (𝐹‘𝐵)))) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝐵) ∈ (𝑦(,)+∞) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ 𝑦 < (𝐹‘𝐵)))) |
| 44 | 26 | biantrurd 532 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑦 < (𝐹‘𝐵) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ 𝑦 < (𝐹‘𝐵)))) |
| 45 | 27, 26 | ltnled 11408 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑦 < (𝐹‘𝐵) ↔ ¬ (𝐹‘𝐵) ≤ 𝑦)) |
| 46 | 43, 44, 45 | 3bitr2d 307 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝐵) ∈ (𝑦(,)+∞) ↔ ¬ (𝐹‘𝐵) ≤ 𝑦)) |
| 47 | 39, 46 | orbi12d 919 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (((𝐹‘𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹‘𝐵) ∈ (𝑦(,)+∞)) ↔ (¬ -𝑦 ≤ (𝐹‘𝐵) ∨ ¬ (𝐹‘𝐵) ≤ 𝑦))) |
| 48 | | ianor 984 |
. . . . . . . . . . . 12
⊢ (¬
(-𝑦 ≤ (𝐹‘𝐵) ∧ (𝐹‘𝐵) ≤ 𝑦) ↔ (¬ -𝑦 ≤ (𝐹‘𝐵) ∨ ¬ (𝐹‘𝐵) ≤ 𝑦)) |
| 49 | 47, 48 | bitr4di 289 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (((𝐹‘𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹‘𝐵) ∈ (𝑦(,)+∞)) ↔ ¬ (-𝑦 ≤ (𝐹‘𝐵) ∧ (𝐹‘𝐵) ≤ 𝑦))) |
| 50 | 29, 30, 49 | 3bitr4rd 312 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (((𝐹‘𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹‘𝐵) ∈ (𝑦(,)+∞)) ↔ 𝑦 < (abs‘(𝐹‘𝐵)))) |
| 51 | | elioopnf 13483 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ*
→ ((abs‘(𝐹‘𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹‘𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹‘𝐵))))) |
| 52 | 41, 51 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐹‘𝐵)) ∈ (𝑦(,)+∞) ↔ ((abs‘(𝐹‘𝐵)) ∈ ℝ ∧ 𝑦 < (abs‘(𝐹‘𝐵))))) |
| 53 | 25, 50, 52 | 3bitr4rd 312 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐹‘𝐵)) ∈ (𝑦(,)+∞) ↔ ((𝐹‘𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹‘𝐵) ∈ (𝑦(,)+∞)))) |
| 54 | 53 | rabbidva 3443 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (abs‘(𝐹‘𝐵)) ∈ (𝑦(,)+∞)} = {𝑥 ∈ 𝐴 ∣ ((𝐹‘𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹‘𝐵) ∈ (𝑦(,)+∞))}) |
| 55 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ (abs‘(𝐹‘𝐵))) = (𝑥 ∈ 𝐴 ↦ (abs‘(𝐹‘𝐵))) |
| 56 | 55 | mptpreima 6258 |
. . . . . . . 8
⊢ (◡(𝑥 ∈ 𝐴 ↦ (abs‘(𝐹‘𝐵))) “ (𝑦(,)+∞)) = {𝑥 ∈ 𝐴 ∣ (abs‘(𝐹‘𝐵)) ∈ (𝑦(,)+∞)} |
| 57 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) |
| 58 | 57 | mptpreima 6258 |
. . . . . . . . . 10
⊢ (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-∞(,)-𝑦)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝐵) ∈ (-∞(,)-𝑦)} |
| 59 | 57 | mptpreima 6258 |
. . . . . . . . . 10
⊢ (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (𝑦(,)+∞)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝐵) ∈ (𝑦(,)+∞)} |
| 60 | 58, 59 | uneq12i 4166 |
. . . . . . . . 9
⊢ ((◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-∞(,)-𝑦)) ∪ (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (𝑦(,)+∞))) = ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝐵) ∈ (𝑦(,)+∞)}) |
| 61 | | unrab 4315 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝐵) ∈ (-∞(,)-𝑦)} ∪ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝐵) ∈ (𝑦(,)+∞)}) = {𝑥 ∈ 𝐴 ∣ ((𝐹‘𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹‘𝐵) ∈ (𝑦(,)+∞))} |
| 62 | 60, 61 | eqtri 2765 |
. . . . . . . 8
⊢ ((◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-∞(,)-𝑦)) ∪ (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (𝑦(,)+∞))) = {𝑥 ∈ 𝐴 ∣ ((𝐹‘𝐵) ∈ (-∞(,)-𝑦) ∨ (𝐹‘𝐵) ∈ (𝑦(,)+∞))} |
| 63 | 54, 56, 62 | 3eqtr4g 2802 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (◡(𝑥 ∈ 𝐴 ↦ (abs‘(𝐹‘𝐵))) “ (𝑦(,)+∞)) = ((◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-∞(,)-𝑦)) ∪ (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (𝑦(,)+∞)))) |
| 64 | | iblmbf 25802 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ 𝐿1 →
(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ MblFn) |
| 65 | 2, 64 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ MblFn) |
| 66 | 3 | fmpttd 7135 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℝ) |
| 67 | | mbfima 25665 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℝ) → (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol) |
| 68 | | mbfima 25665 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℝ) → (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (𝑦(,)+∞)) ∈ dom
vol) |
| 69 | | unmbl 25572 |
. . . . . . . . . 10
⊢ (((◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-∞(,)-𝑦)) ∈ dom vol ∧ (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (𝑦(,)+∞)) ∈ dom vol) → ((◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-∞(,)-𝑦)) ∪ (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (𝑦(,)+∞))) ∈ dom
vol) |
| 70 | 67, 68, 69 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℝ) → ((◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-∞(,)-𝑦)) ∪ (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (𝑦(,)+∞))) ∈ dom
vol) |
| 71 | 65, 66, 70 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-∞(,)-𝑦)) ∪ (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (𝑦(,)+∞))) ∈ dom
vol) |
| 72 | 71 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-∞(,)-𝑦)) ∪ (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (𝑦(,)+∞))) ∈ dom
vol) |
| 73 | 63, 72 | eqeltrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (◡(𝑥 ∈ 𝐴 ↦ (abs‘(𝐹‘𝐵))) “ (𝑦(,)+∞)) ∈ dom
vol) |
| 74 | | elioomnf 13484 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ ((abs‘(𝐹‘𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹‘𝐵)) ∈ ℝ ∧ (abs‘(𝐹‘𝐵)) < 𝑦))) |
| 75 | 41, 74 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐹‘𝐵)) ∈ (-∞(,)𝑦) ↔ ((abs‘(𝐹‘𝐵)) ∈ ℝ ∧ (abs‘(𝐹‘𝐵)) < 𝑦))) |
| 76 | 24 | biantrurd 532 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐹‘𝐵)) < 𝑦 ↔ ((abs‘(𝐹‘𝐵)) ∈ ℝ ∧ (abs‘(𝐹‘𝐵)) < 𝑦))) |
| 77 | 26, 27 | absltd 15468 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐹‘𝐵)) < 𝑦 ↔ (-𝑦 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) < 𝑦))) |
| 78 | 75, 76, 77 | 3bitr2d 307 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐹‘𝐵)) ∈ (-∞(,)𝑦) ↔ (-𝑦 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) < 𝑦))) |
| 79 | 26 | biantrurd 532 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((-𝑦 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) < 𝑦) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) < 𝑦)))) |
| 80 | 78, 79 | bitrd 279 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐹‘𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) < 𝑦)))) |
| 81 | | 3anass 1095 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝐵) ∈ ℝ ∧ -𝑦 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) < 𝑦) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ (-𝑦 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) < 𝑦))) |
| 82 | 80, 81 | bitr4di 289 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐹‘𝐵)) ∈ (-∞(,)𝑦) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ -𝑦 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) < 𝑦))) |
| 83 | | elioo2 13428 |
. . . . . . . . . . . 12
⊢ ((-𝑦 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → ((𝐹‘𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ -𝑦 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) < 𝑦))) |
| 84 | 32, 40, 83 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ → ((𝐹‘𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ -𝑦 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) < 𝑦))) |
| 85 | 84 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝐵) ∈ (-𝑦(,)𝑦) ↔ ((𝐹‘𝐵) ∈ ℝ ∧ -𝑦 < (𝐹‘𝐵) ∧ (𝐹‘𝐵) < 𝑦))) |
| 86 | 82, 85 | bitr4d 282 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐹‘𝐵)) ∈ (-∞(,)𝑦) ↔ (𝐹‘𝐵) ∈ (-𝑦(,)𝑦))) |
| 87 | 86 | rabbidva 3443 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → {𝑥 ∈ 𝐴 ∣ (abs‘(𝐹‘𝐵)) ∈ (-∞(,)𝑦)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝐵) ∈ (-𝑦(,)𝑦)}) |
| 88 | 55 | mptpreima 6258 |
. . . . . . . 8
⊢ (◡(𝑥 ∈ 𝐴 ↦ (abs‘(𝐹‘𝐵))) “ (-∞(,)𝑦)) = {𝑥 ∈ 𝐴 ∣ (abs‘(𝐹‘𝐵)) ∈ (-∞(,)𝑦)} |
| 89 | 57 | mptpreima 6258 |
. . . . . . . 8
⊢ (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-𝑦(,)𝑦)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝐵) ∈ (-𝑦(,)𝑦)} |
| 90 | 87, 88, 89 | 3eqtr4g 2802 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (◡(𝑥 ∈ 𝐴 ↦ (abs‘(𝐹‘𝐵))) “ (-∞(,)𝑦)) = (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-𝑦(,)𝑦))) |
| 91 | | mbfima 25665 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)):𝐴⟶ℝ) → (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol) |
| 92 | 65, 66, 91 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol) |
| 93 | 92 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (◡(𝑥 ∈ 𝐴 ↦ (𝐹‘𝐵)) “ (-𝑦(,)𝑦)) ∈ dom vol) |
| 94 | 90, 93 | eqeltrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (◡(𝑥 ∈ 𝐴 ↦ (abs‘(𝐹‘𝐵))) “ (-∞(,)𝑦)) ∈ dom vol) |
| 95 | 23, 7, 73, 94 | ismbf2d 25675 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘(𝐹‘𝐵))) ∈ MblFn) |
| 96 | 22, 95 | eqeltrid 2845 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0)) ∈ MblFn) |
| 97 | 9, 11, 16, 20, 96 | mbfss 25681 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0)) ∈ MblFn) |
| 98 | 1, 97 | eqeltrid 2845 |
. 2
⊢ (𝜑 → 𝐺 ∈ MblFn) |
| 99 | | reex 11246 |
. . . . . . . . 9
⊢ ℝ
∈ V |
| 100 | 99 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ∈
V) |
| 101 | | ifan 4579 |
. . . . . . . . . 10
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) |
| 102 | | ifcl 4571 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0) ∈ ℝ) |
| 103 | 3, 14, 102 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0) ∈ ℝ) |
| 104 | | max1 13227 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ (𝐹‘𝐵) ∈ ℝ) → 0 ≤ if(0 ≤
(𝐹‘𝐵), (𝐹‘𝐵), 0)) |
| 105 | 14, 3, 104 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0)) |
| 106 | | elrege0 13494 |
. . . . . . . . . . . 12
⊢ (if(0
≤ (𝐹‘𝐵), (𝐹‘𝐵), 0) ∈ (0[,)+∞) ↔ (if(0
≤ (𝐹‘𝐵), (𝐹‘𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤
(𝐹‘𝐵), (𝐹‘𝐵), 0))) |
| 107 | 103, 105,
106 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0) ∈
(0[,)+∞)) |
| 108 | | 0e0icopnf 13498 |
. . . . . . . . . . . 12
⊢ 0 ∈
(0[,)+∞) |
| 109 | 108 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,)+∞)) |
| 110 | 107, 109 | ifclda 4561 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) ∈
(0[,)+∞)) |
| 111 | 101, 110 | eqeltrid 2845 |
. . . . . . . . 9
⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0) ∈
(0[,)+∞)) |
| 112 | 111 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0) ∈
(0[,)+∞)) |
| 113 | | ifan 4579 |
. . . . . . . . . 10
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0) |
| 114 | 3 | renegcld 11690 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(𝐹‘𝐵) ∈ ℝ) |
| 115 | | ifcl 4571 |
. . . . . . . . . . . . 13
⊢ ((-(𝐹‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0) ∈ ℝ) |
| 116 | 114, 14, 115 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0) ∈ ℝ) |
| 117 | | max1 13227 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ -(𝐹‘𝐵) ∈ ℝ) → 0 ≤ if(0 ≤
-(𝐹‘𝐵), -(𝐹‘𝐵), 0)) |
| 118 | 14, 114, 117 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0)) |
| 119 | | elrege0 13494 |
. . . . . . . . . . . 12
⊢ (if(0
≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0) ∈ (0[,)+∞) ↔ (if(0
≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤
-(𝐹‘𝐵), -(𝐹‘𝐵), 0))) |
| 120 | 116, 118,
119 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0) ∈
(0[,)+∞)) |
| 121 | 120, 109 | ifclda 4561 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0) ∈
(0[,)+∞)) |
| 122 | 113, 121 | eqeltrid 2845 |
. . . . . . . . 9
⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0) ∈
(0[,)+∞)) |
| 123 | 122 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0) ∈
(0[,)+∞)) |
| 124 | | eqidd 2738 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0))) |
| 125 | | eqidd 2738 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0))) |
| 126 | 100, 112,
123, 124, 125 | offval2 7717 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0))) = (𝑥 ∈ ℝ ↦ (if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0) + if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0)))) |
| 127 | 101, 113 | oveq12i 7443 |
. . . . . . . . 9
⊢
(if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0) + if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0)) = (if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) + if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0)) |
| 128 | | max0add 15349 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝐵) ∈ ℝ → (if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0) + if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0)) = (abs‘(𝐹‘𝐵))) |
| 129 | 3, 128 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0) + if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0)) = (abs‘(𝐹‘𝐵))) |
| 130 | | iftrue 4531 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) = if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0)) |
| 131 | 130 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) = if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0)) |
| 132 | | iftrue 4531 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0) = if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0)) |
| 133 | 132 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0) = if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0)) |
| 134 | 131, 133 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) + if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0)) = (if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0) + if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0))) |
| 135 | 21 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0) = (abs‘(𝐹‘𝐵))) |
| 136 | 129, 134,
135 | 3eqtr4d 2787 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) + if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0)) = if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0)) |
| 137 | 136 | ex 412 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) + if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0)) = if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0))) |
| 138 | | 00id 11436 |
. . . . . . . . . . 11
⊢ (0 + 0) =
0 |
| 139 | | iffalse 4534 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) = 0) |
| 140 | | iffalse 4534 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0) = 0) |
| 141 | 139, 140 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) + if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0)) = (0 + 0)) |
| 142 | 138, 141,
19 | 3eqtr4a 2803 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) + if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0)) = if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0)) |
| 143 | 137, 142 | pm2.61d1 180 |
. . . . . . . . 9
⊢ (𝜑 → (if(𝑥 ∈ 𝐴, if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0), 0) + if(𝑥 ∈ 𝐴, if(0 ≤ -(𝐹‘𝐵), -(𝐹‘𝐵), 0), 0)) = if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0)) |
| 144 | 127, 143 | eqtrid 2789 |
. . . . . . . 8
⊢ (𝜑 → (if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0) + if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0)) = if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0)) |
| 145 | 144 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0) + if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0))) |
| 146 | 126, 145 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐹‘𝐵)), 0))) |
| 147 | 1, 146 | eqtr4id 2796 |
. . . . 5
⊢ (𝜑 → 𝐺 = ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0)))) |
| 148 | 147 | fveq2d 6910 |
. . . 4
⊢ (𝜑 →
(∫2‘𝐺)
= (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0))))) |
| 149 | 111 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0) ∈
(0[,)+∞)) |
| 150 | 101, 139 | eqtrid 2789 |
. . . . . . 7
⊢ (¬
𝑥 ∈ 𝐴 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0) = 0) |
| 151 | 18, 150 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0) = 0) |
| 152 | | ibar 528 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (0 ≤ (𝐹‘𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)))) |
| 153 | 152 | ifbid 4549 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0)) |
| 154 | 153 | mpteq2ia 5245 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 ↦ if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0)) = (𝑥 ∈ 𝐴 ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0)) |
| 155 | 3, 6 | mbfpos 25686 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ (𝐹‘𝐵), (𝐹‘𝐵), 0)) ∈ MblFn) |
| 156 | 154, 155 | eqeltrrid 2846 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0)) ∈ MblFn) |
| 157 | 9, 11, 149, 151, 156 | mbfss 25681 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0)) ∈ MblFn) |
| 158 | 112 | fmpttd 7135 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵),
0)):ℝ⟶(0[,)+∞)) |
| 159 | 5 | simp2d 1144 |
. . . . 5
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0))) ∈ ℝ) |
| 160 | 123 | fmpttd 7135 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵),
0)):ℝ⟶(0[,)+∞)) |
| 161 | 5 | simp3d 1145 |
. . . . 5
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0))) ∈ ℝ) |
| 162 | 157, 158,
159, 160, 161 | itg2addnc 37681 |
. . . 4
⊢ (𝜑 →
(∫2‘((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0))))) |
| 163 | 148, 162 | eqtrd 2777 |
. . 3
⊢ (𝜑 →
(∫2‘𝐺)
= ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0))))) |
| 164 | 159, 161 | readdcld 11290 |
. . 3
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (𝐹‘𝐵)), (𝐹‘𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -(𝐹‘𝐵)), -(𝐹‘𝐵), 0)))) ∈ ℝ) |
| 165 | 163, 164 | eqeltrd 2841 |
. 2
⊢ (𝜑 →
(∫2‘𝐺)
∈ ℝ) |
| 166 | 98, 165 | jca 511 |
1
⊢ (𝜑 → (𝐺 ∈ MblFn ∧
(∫2‘𝐺)
∈ ℝ)) |