Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ibladdnclem Structured version   Visualization version   GIF version

Theorem ibladdnclem 33778
Description: Lemma for ibladdnc 33779; cf ibladdlem 23800, whose fifth hypothesis is rendered unnecessary by the weakened hypotheses of itg2addnc 33776. (Contributed by Brendan Leahy, 31-Oct-2017.)
Hypotheses
Ref Expression
ibladdnclem.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
ibladdnclem.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
ibladdnclem.3 ((𝜑𝑥𝐴) → 𝐷 = (𝐵 + 𝐶))
ibladdnclem.4 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
ibladdnclem.6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
ibladdnclem.7 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)
Assertion
Ref Expression
ibladdnclem (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem ibladdnclem
StepHypRef Expression
1 ifan 4330 . . . 4 if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) = if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0)
2 ibladdnclem.3 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐷 = (𝐵 + 𝐶))
3 ibladdnclem.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 ibladdnclem.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
53, 4readdcld 10354 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℝ)
62, 5eqeltrd 2885 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐷 ∈ ℝ)
7 0re 10327 . . . . . . . . 9 0 ∈ ℝ
8 ifcl 4323 . . . . . . . . 9 ((𝐷 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ)
96, 7, 8sylancl 576 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ)
109rexrd 10374 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ*)
11 max1 12234 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐷 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐷, 𝐷, 0))
127, 6, 11sylancr 577 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐷, 𝐷, 0))
13 elxrge0 12501 . . . . . . 7 (if(0 ≤ 𝐷, 𝐷, 0) ∈ (0[,]+∞) ↔ (if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ 𝐷, 𝐷, 0)))
1410, 12, 13sylanbrc 574 . . . . . 6 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ∈ (0[,]+∞))
15 0e0iccpnf 12503 . . . . . . 7 0 ∈ (0[,]+∞)
1615a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
1714, 16ifclda 4313 . . . . 5 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ∈ (0[,]+∞))
1817adantr 468 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ∈ (0[,]+∞))
191, 18syl5eqel 2889 . . 3 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ∈ (0[,]+∞))
2019fmpttd 6607 . 2 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)):ℝ⟶(0[,]+∞))
21 reex 10312 . . . . . . . 8 ℝ ∈ V
2221a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
23 ifan 4330 . . . . . . . . 9 if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)
24 ifcl 4323 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
253, 7, 24sylancl 576 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
267a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ ℝ)
2725, 26ifclda 4313 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ∈ ℝ)
2823, 27syl5eqel 2889 . . . . . . . 8 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ ℝ)
2928adantr 468 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ ℝ)
30 ifan 4330 . . . . . . . . 9 if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)
31 ifcl 4323 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
324, 7, 31sylancl 576 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
3332, 26ifclda 4313 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) ∈ ℝ)
3430, 33syl5eqel 2889 . . . . . . . 8 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ ℝ)
3534adantr 468 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ ℝ)
36 eqidd 2807 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)))
37 eqidd 2807 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
3822, 29, 35, 36, 37offval2 7144 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) = (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
39 iftrue 4285 . . . . . . . . 9 (𝑥𝐴 → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
40 ibar 520 . . . . . . . . . . 11 (𝑥𝐴 → (0 ≤ 𝐵 ↔ (𝑥𝐴 ∧ 0 ≤ 𝐵)))
4140ifbid 4301 . . . . . . . . . 10 (𝑥𝐴 → if(0 ≤ 𝐵, 𝐵, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))
42 ibar 520 . . . . . . . . . . 11 (𝑥𝐴 → (0 ≤ 𝐶 ↔ (𝑥𝐴 ∧ 0 ≤ 𝐶)))
4342ifbid 4301 . . . . . . . . . 10 (𝑥𝐴 → if(0 ≤ 𝐶, 𝐶, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
4441, 43oveq12d 6892 . . . . . . . . 9 (𝑥𝐴 → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
4539, 44eqtr2d 2841 . . . . . . . 8 (𝑥𝐴 → (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
46 00id 10496 . . . . . . . . 9 (0 + 0) = 0
47 simpl 470 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ 0 ≤ 𝐵) → 𝑥𝐴)
4847con3i 151 . . . . . . . . . . 11 𝑥𝐴 → ¬ (𝑥𝐴 ∧ 0 ≤ 𝐵))
4948iffalsed 4290 . . . . . . . . . 10 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = 0)
50 simpl 470 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ 0 ≤ 𝐶) → 𝑥𝐴)
5150con3i 151 . . . . . . . . . . 11 𝑥𝐴 → ¬ (𝑥𝐴 ∧ 0 ≤ 𝐶))
5251iffalsed 4290 . . . . . . . . . 10 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = 0)
5349, 52oveq12d 6892 . . . . . . . . 9 𝑥𝐴 → (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (0 + 0))
54 iffalse 4288 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) = 0)
5546, 53, 543eqtr4a 2866 . . . . . . . 8 𝑥𝐴 → (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
5645, 55pm2.61i 176 . . . . . . 7 (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)
5756mpteq2i 4935 . . . . . 6 (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
5838, 57syl6eq 2856 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
5958fveq2d 6412 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))))
60 ibladdnclem.4 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
6160, 3mbfdm2 23618 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
62 mblss 23512 . . . . . . 7 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
6361, 62syl 17 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
64 rembl 23521 . . . . . . 7 ℝ ∈ dom vol
6564a1i 11 . . . . . 6 (𝜑 → ℝ ∈ dom vol)
6628adantr 468 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ ℝ)
67 eldifn 3932 . . . . . . . . 9 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
6867adantl 469 . . . . . . . 8 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
6968intnanrd 479 . . . . . . 7 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ (𝑥𝐴 ∧ 0 ≤ 𝐵))
7069iffalsed 4290 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = 0)
7141mpteq2ia 4934 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))
723, 60mbfpos 23632 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
7371, 72syl5eqelr 2890 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∈ MblFn)
7463, 65, 66, 70, 73mbfss 23627 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∈ MblFn)
75 max1 12234 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
767, 3, 75sylancr 577 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
77 elrege0 12498 . . . . . . . . . 10 (if(0 ≤ 𝐵, 𝐵, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝐵, 𝐵, 0)))
7825, 76, 77sylanbrc 574 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ (0[,)+∞))
79 0e0icopnf 12502 . . . . . . . . . 10 0 ∈ (0[,)+∞)
8079a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
8178, 80ifclda 4313 . . . . . . . 8 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ∈ (0[,)+∞))
8223, 81syl5eqel 2889 . . . . . . 7 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,)+∞))
8382adantr 468 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,)+∞))
8483fmpttd 6607 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,)+∞))
85 ibladdnclem.6 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
86 max1 12234 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
877, 4, 86sylancr 577 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
88 elrege0 12498 . . . . . . . . . 10 (if(0 ≤ 𝐶, 𝐶, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)))
8932, 87, 88sylanbrc 574 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ (0[,)+∞))
9089, 80ifclda 4313 . . . . . . . 8 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) ∈ (0[,)+∞))
9130, 90syl5eqel 2889 . . . . . . 7 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,)+∞))
9291adantr 468 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,)+∞))
9392fmpttd 6607 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,)+∞))
94 ibladdnclem.7 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)
9574, 84, 85, 93, 94itg2addnc 33776 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))))
9659, 95eqtr3d 2842 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))))
9785, 94readdcld 10354 . . 3 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) ∈ ℝ)
9896, 97eqeltrd 2885 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) ∈ ℝ)
9925, 32readdcld 10354 . . . . . . . 8 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ)
10099rexrd 10374 . . . . . . 7 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ*)
10125, 32, 76, 87addge0d 10888 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
102 elxrge0 12501 . . . . . . 7 ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ (0[,]+∞) ↔ ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ* ∧ 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))
103100, 101, 102sylanbrc 574 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ (0[,]+∞))
104103, 16ifclda 4313 . . . . 5 (𝜑 → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) ∈ (0[,]+∞))
105104adantr 468 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) ∈ (0[,]+∞))
106105fmpttd 6607 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)):ℝ⟶(0[,]+∞))
107 max2 12236 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(0 ≤ 𝐵, 𝐵, 0))
1087, 3, 107sylancr 577 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ≤ if(0 ≤ 𝐵, 𝐵, 0))
109 max2 12236 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
1107, 4, 109sylancr 577 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
1113, 4, 25, 32, 108, 110le2addd 10931 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
1122, 111eqbrtrd 4866 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐷 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
113 breq1 4847 . . . . . . . . . . 11 (𝐷 = if(0 ≤ 𝐷, 𝐷, 0) → (𝐷 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ↔ if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))
114 breq1 4847 . . . . . . . . . . 11 (0 = if(0 ≤ 𝐷, 𝐷, 0) → (0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ↔ if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))
115113, 114ifboth 4317 . . . . . . . . . 10 ((𝐷 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∧ 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) → if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
116112, 101, 115syl2anc 575 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
117 iftrue 4285 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) = if(0 ≤ 𝐷, 𝐷, 0))
118117adantl 469 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) = if(0 ≤ 𝐷, 𝐷, 0))
11939adantl 469 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
120116, 118, 1193brtr4d 4876 . . . . . . . 8 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
121120ex 399 . . . . . . 7 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
122 0le0 11393 . . . . . . . . 9 0 ≤ 0
123122a1i 11 . . . . . . . 8 𝑥𝐴 → 0 ≤ 0)
124 iffalse 4288 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) = 0)
125123, 124, 543brtr4d 4876 . . . . . . 7 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
126121, 125pm2.61d1 172 . . . . . 6 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
1271, 126syl5eqbr 4879 . . . . 5 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
128127ralrimivw 3155 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
129 eqidd 2807 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)))
130 eqidd 2807 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
13122, 19, 105, 129, 130ofrfval2 7145 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
132128, 131mpbird 248 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
133 itg2le 23720 . . 3 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))))
13420, 106, 132, 133syl3anc 1483 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))))
135 itg2lecl 23719 . 2 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)
13620, 98, 134, 135syl3anc 1483 1 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1637  wcel 2156  wral 3096  Vcvv 3391  cdif 3766  wss 3769  ifcif 4279   class class class wbr 4844  cmpt 4923  dom cdm 5311  wf 6097  cfv 6101  (class class class)co 6874  𝑓 cof 7125  𝑟 cofr 7126  cr 10220  0cc0 10221   + caddc 10224  +∞cpnf 10356  *cxr 10358  cle 10360  [,)cico 12395  [,]cicc 12396  volcvol 23444  MblFncmbf 23595  2citg2 23597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-inf2 8785  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-pre-sup 10299  ax-addf 10300
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-disj 4813  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-of 7127  df-ofr 7128  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-2o 7797  df-oadd 7800  df-er 7979  df-map 8094  df-pm 8095  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-fi 8556  df-sup 8587  df-inf 8588  df-oi 8654  df-card 9048  df-cda 9275  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-div 10970  df-nn 11306  df-2 11364  df-3 11365  df-n0 11560  df-z 11644  df-uz 11905  df-q 12008  df-rp 12047  df-xneg 12162  df-xadd 12163  df-xmul 12164  df-ioo 12397  df-ico 12399  df-icc 12400  df-fz 12550  df-fzo 12690  df-fl 12817  df-seq 13025  df-exp 13084  df-hash 13338  df-cj 14062  df-re 14063  df-im 14064  df-sqrt 14198  df-abs 14199  df-clim 14442  df-sum 14640  df-rest 16288  df-topgen 16309  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-top 20912  df-topon 20929  df-bases 20964  df-cmp 21404  df-ovol 23445  df-vol 23446  df-mbf 23600  df-itg1 23601  df-itg2 23602
This theorem is referenced by:  ibladdnc  33779
  Copyright terms: Public domain W3C validator