MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgconst Structured version   Visualization version   GIF version

Theorem itgconst 25726
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
itgconst ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (𝐵 · (vol‘𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itgconst
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . 7 ((𝑦 = (ℜ‘𝐵) ∧ 𝑥𝐴) → 𝑦 = (ℜ‘𝐵))
21itgeq2dv 25689 . . . . . 6 (𝑦 = (ℜ‘𝐵) → ∫𝐴𝑦 d𝑥 = ∫𝐴(ℜ‘𝐵) d𝑥)
3 oveq1 7396 . . . . . 6 (𝑦 = (ℜ‘𝐵) → (𝑦 · (vol‘𝐴)) = ((ℜ‘𝐵) · (vol‘𝐴)))
42, 3eqeq12d 2746 . . . . 5 (𝑦 = (ℜ‘𝐵) → (∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) ↔ ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴))))
5 simplr 768 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
6 fconstmpt 5702 . . . . . . . . 9 (𝐴 × {𝑦}) = (𝑥𝐴𝑦)
7 simpl1 1192 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ dom vol)
8 simp2 1137 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (vol‘𝐴) ∈ ℝ)
98adantr 480 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (vol‘𝐴) ∈ ℝ)
10 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
1110recnd 11208 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
12 iblconst 25725 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝑦 ∈ ℂ) → (𝐴 × {𝑦}) ∈ 𝐿1)
137, 9, 11, 12syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (𝐴 × {𝑦}) ∈ 𝐿1)
146, 13eqeltrrid 2834 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (𝑥𝐴𝑦) ∈ 𝐿1)
155, 14itgrevallem1 25702 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ∫𝐴𝑦 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)))))
16 ifan 4544 . . . . . . . . . . . 12 if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0)
1716mpteq2i 5205 . . . . . . . . . . 11 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))
1817fveq2i 6863 . . . . . . . . . 10 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0)))
19 0re 11182 . . . . . . . . . . . . 13 0 ∈ ℝ
20 ifcl 4536 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
2110, 19, 20sylancl 586 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
22 max1 13151 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
2319, 10, 22sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
24 elrege0 13421 . . . . . . . . . . . 12 (if(0 ≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)))
2521, 23, 24sylanbrc 583 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞))
26 itg2const 25647 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ if(0 ≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)))
277, 9, 25, 26syl3anc 1373 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)))
2818, 27eqtrid 2777 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)))
29 ifan 4544 . . . . . . . . . . . 12 if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0) = if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0)
3029mpteq2i 5205 . . . . . . . . . . 11 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))
3130fveq2i 6863 . . . . . . . . . 10 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0)))
32 renegcl 11491 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
3332adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ)
34 ifcl 4536 . . . . . . . . . . . . 13 ((-𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ)
3533, 19, 34sylancl 586 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ)
36 max1 13151 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ -𝑦, -𝑦, 0))
3719, 33, 36sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ -𝑦, -𝑦, 0))
38 elrege0 13421 . . . . . . . . . . . 12 (if(0 ≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -𝑦, -𝑦, 0)))
3935, 37, 38sylanbrc 583 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞))
40 itg2const 25647 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ if(0 ≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))
417, 9, 39, 40syl3anc 1373 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))
4231, 41eqtrid 2777 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))
4328, 42oveq12d 7407 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)))) = ((if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)) − (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))))
4421recnd 11208 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℂ)
4535recnd 11208 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℂ)
468recnd 11208 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (vol‘𝐴) ∈ ℂ)
4746adantr 480 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (vol‘𝐴) ∈ ℂ)
4844, 45, 47subdird 11641 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ((if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) · (vol‘𝐴)) = ((if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)) − (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))))
49 max0sub 13162 . . . . . . . . . 10 (𝑦 ∈ ℝ → (if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) = 𝑦)
5049adantl 481 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) = 𝑦)
5150oveq1d 7404 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ((if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) · (vol‘𝐴)) = (𝑦 · (vol‘𝐴)))
5243, 48, 513eqtr2rd 2772 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → (𝑦 · (vol‘𝐴)) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)))))
5315, 52eqtr4d 2768 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ) → ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)))
5453ralrimiva 3126 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ℝ ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)))
55 recl 15082 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
56553ad2ant3 1135 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
574, 54, 56rspcdva 3592 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴)))
58 simpl 482 . . . . . . . . 9 ((𝑦 = (ℑ‘𝐵) ∧ 𝑥𝐴) → 𝑦 = (ℑ‘𝐵))
5958itgeq2dv 25689 . . . . . . . 8 (𝑦 = (ℑ‘𝐵) → ∫𝐴𝑦 d𝑥 = ∫𝐴(ℑ‘𝐵) d𝑥)
60 oveq1 7396 . . . . . . . 8 (𝑦 = (ℑ‘𝐵) → (𝑦 · (vol‘𝐴)) = ((ℑ‘𝐵) · (vol‘𝐴)))
6159, 60eqeq12d 2746 . . . . . . 7 (𝑦 = (ℑ‘𝐵) → (∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) ↔ ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴))))
62 imcl 15083 . . . . . . . 8 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
63623ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
6461, 54, 63rspcdva 3592 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴)))
6564oveq2d 7405 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) = (i · ((ℑ‘𝐵) · (vol‘𝐴))))
66 ax-icn 11133 . . . . . . 7 i ∈ ℂ
6766a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
6863recnd 11208 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
6967, 68, 46mulassd 11203 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐵)) · (vol‘𝐴)) = (i · ((ℑ‘𝐵) · (vol‘𝐴))))
7065, 69eqtr4d 2768 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) = ((i · (ℑ‘𝐵)) · (vol‘𝐴)))
7157, 70oveq12d 7407 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (((ℜ‘𝐵) · (vol‘𝐴)) + ((i · (ℑ‘𝐵)) · (vol‘𝐴))))
7256recnd 11208 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
73 mulcl 11158 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
7466, 68, 73sylancr 587 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
7572, 74, 46adddird 11205 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴)) = (((ℜ‘𝐵) · (vol‘𝐴)) + ((i · (ℑ‘𝐵)) · (vol‘𝐴))))
7671, 75eqtr4d 2768 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴)))
77 simpl3 1194 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
78 fconstmpt 5702 . . . 4 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
79 iblconst 25725 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ 𝐿1)
8078, 79eqeltrrid 2834 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ∈ 𝐿1)
8177, 80itgcnval 25707 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
82 replim 15088 . . . 4 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
83823ad2ant3 1135 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
8483oveq1d 7404 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐵 · (vol‘𝐴)) = (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴)))
8576, 81, 843eqtr4d 2775 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → ∫𝐴𝐵 d𝑥 = (𝐵 · (vol‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ifcif 4490  {csn 4591   class class class wbr 5109  cmpt 5190   × cxp 5638  dom cdm 5640  cfv 6513  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074  ici 11076   + caddc 11077   · cmul 11079  +∞cpnf 11211  cle 11215  cmin 11411  -cneg 11412  [,)cico 13314  cre 15069  cim 15070  volcvol 25370  2citg2 25523  𝐿1cibl 25524  citg 25525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-disj 5077  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-ofr 7656  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-oi 9469  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-n0 12449  df-z 12536  df-uz 12800  df-q 12914  df-rp 12958  df-xadd 13079  df-ioo 13316  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-sum 15659  df-xmet 21263  df-met 21264  df-ovol 25371  df-vol 25372  df-mbf 25526  df-itg1 25527  df-itg2 25528  df-ibl 25529  df-itg 25530  df-0p 25577
This theorem is referenced by:  ftc1lem4  25952  itgulm  26323  itgexpif  34603  ftc1cnnclem  37680  arearect  43197  areaquad  43198  wallispilem2  46057  fourierdlem87  46184  sqwvfoura  46219  etransclem23  46248
  Copyright terms: Public domain W3C validator