Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . . . 7
⊢ ((𝑦 = (ℜ‘𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 = (ℜ‘𝐵)) |
2 | 1 | itgeq2dv 24946 |
. . . . . 6
⊢ (𝑦 = (ℜ‘𝐵) → ∫𝐴𝑦 d𝑥 = ∫𝐴(ℜ‘𝐵) d𝑥) |
3 | | oveq1 7282 |
. . . . . 6
⊢ (𝑦 = (ℜ‘𝐵) → (𝑦 · (vol‘𝐴)) = ((ℜ‘𝐵) · (vol‘𝐴))) |
4 | 2, 3 | eqeq12d 2754 |
. . . . 5
⊢ (𝑦 = (ℜ‘𝐵) → (∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) ↔ ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴)))) |
5 | | simplr 766 |
. . . . . . . 8
⊢ ((((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) ∧ 𝑥 ∈
𝐴) → 𝑦 ∈
ℝ) |
6 | | fconstmpt 5649 |
. . . . . . . . 9
⊢ (𝐴 × {𝑦}) = (𝑥 ∈ 𝐴 ↦ 𝑦) |
7 | | simpl1 1190 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → 𝐴 ∈
dom vol) |
8 | | simp2 1136 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (vol‘𝐴) ∈ ℝ) |
9 | 8 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (vol‘𝐴) ∈ ℝ) |
10 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → 𝑦 ∈
ℝ) |
11 | 10 | recnd 11003 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → 𝑦 ∈
ℂ) |
12 | | iblconst 24982 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝑦 ∈
ℂ) → (𝐴 ×
{𝑦}) ∈
𝐿1) |
13 | 7, 9, 11, 12 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (𝐴 ×
{𝑦}) ∈
𝐿1) |
14 | 6, 13 | eqeltrrid 2844 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (𝑥 ∈
𝐴 ↦ 𝑦) ∈
𝐿1) |
15 | 5, 14 | itgrevallem1 24959 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → ∫𝐴𝑦 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))))) |
16 | | ifan 4512 |
. . . . . . . . . . . 12
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0) |
17 | 16 | mpteq2i 5179 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0)) |
18 | 17 | fveq2i 6777 |
. . . . . . . . . 10
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) |
19 | | 0re 10977 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
20 | | ifcl 4504 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ) |
21 | 10, 19, 20 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ) |
22 | | max1 12919 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 𝑦
∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) |
23 | 19, 10, 22 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) |
24 | | elrege0 13186 |
. . . . . . . . . . . 12
⊢ (if(0
≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞) ↔ (if(0 ≤
𝑦, 𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤
𝑦, 𝑦, 0))) |
25 | 21, 23, 24 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞)) |
26 | | itg2const 24905 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ if(0 ≤ 𝑦,
𝑦, 0) ∈
(0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴))) |
27 | 7, 9, 25, 26 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴))) |
28 | 18, 27 | eqtrid 2790 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴))) |
29 | | ifan 4512 |
. . . . . . . . . . . 12
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0) |
30 | 29 | mpteq2i 5179 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0)) |
31 | 30 | fveq2i 6777 |
. . . . . . . . . 10
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) |
32 | | renegcl 11284 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ) |
33 | 32 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → -𝑦 ∈
ℝ) |
34 | | ifcl 4504 |
. . . . . . . . . . . . 13
⊢ ((-𝑦 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ) |
35 | 33, 19, 34 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ) |
36 | | max1 12919 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ -𝑦
∈ ℝ) → 0 ≤ if(0 ≤ -𝑦, -𝑦, 0)) |
37 | 19, 33, 36 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → 0 ≤ if(0 ≤ -𝑦, -𝑦, 0)) |
38 | | elrege0 13186 |
. . . . . . . . . . . 12
⊢ (if(0
≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞)
↔ (if(0 ≤ -𝑦,
-𝑦, 0) ∈ ℝ ∧
0 ≤ if(0 ≤ -𝑦, -𝑦, 0))) |
39 | 35, 37, 38 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞)) |
40 | | itg2const 24905 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ if(0 ≤ -𝑦,
-𝑦, 0) ∈
(0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))) |
41 | 7, 9, 39, 40 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))) |
42 | 31, 41 | eqtrid 2790 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))) |
43 | 28, 42 | oveq12d 7293 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)))) = ((if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)) − (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))) |
44 | 21 | recnd 11003 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℂ) |
45 | 35 | recnd 11003 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℂ) |
46 | 8 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (vol‘𝐴) ∈ ℂ) |
47 | 46 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (vol‘𝐴) ∈ ℂ) |
48 | 44, 45, 47 | subdird 11432 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → ((if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) · (vol‘𝐴)) = ((if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)) − (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))) |
49 | | max0sub 12930 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → (if(0
≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) = 𝑦) |
50 | 49 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) = 𝑦) |
51 | 50 | oveq1d 7290 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → ((if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) · (vol‘𝐴)) = (𝑦 · (vol‘𝐴))) |
52 | 43, 48, 51 | 3eqtr2rd 2785 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (𝑦 ·
(vol‘𝐴)) =
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))))) |
53 | 15, 52 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴))) |
54 | 53 | ralrimiva 3103 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ∀𝑦
∈ ℝ ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴))) |
55 | | recl 14821 |
. . . . . 6
⊢ (𝐵 ∈ ℂ →
(ℜ‘𝐵) ∈
ℝ) |
56 | 55 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (ℜ‘𝐵) ∈ ℝ) |
57 | 4, 54, 56 | rspcdva 3562 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴))) |
58 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑦 = (ℑ‘𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 = (ℑ‘𝐵)) |
59 | 58 | itgeq2dv 24946 |
. . . . . . . 8
⊢ (𝑦 = (ℑ‘𝐵) → ∫𝐴𝑦 d𝑥 = ∫𝐴(ℑ‘𝐵) d𝑥) |
60 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑦 = (ℑ‘𝐵) → (𝑦 · (vol‘𝐴)) = ((ℑ‘𝐵) · (vol‘𝐴))) |
61 | 59, 60 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑦 = (ℑ‘𝐵) → (∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) ↔ ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴)))) |
62 | | imcl 14822 |
. . . . . . . 8
⊢ (𝐵 ∈ ℂ →
(ℑ‘𝐵) ∈
ℝ) |
63 | 62 | 3ad2ant3 1134 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (ℑ‘𝐵) ∈ ℝ) |
64 | 61, 54, 63 | rspcdva 3562 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴))) |
65 | 64 | oveq2d 7291 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) = (i · ((ℑ‘𝐵) · (vol‘𝐴)))) |
66 | | ax-icn 10930 |
. . . . . . 7
⊢ i ∈
ℂ |
67 | 66 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → i ∈ ℂ) |
68 | 63 | recnd 11003 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (ℑ‘𝐵) ∈ ℂ) |
69 | 67, 68, 46 | mulassd 10998 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ((i · (ℑ‘𝐵)) · (vol‘𝐴)) = (i · ((ℑ‘𝐵) · (vol‘𝐴)))) |
70 | 65, 69 | eqtr4d 2781 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) = ((i · (ℑ‘𝐵)) · (vol‘𝐴))) |
71 | 57, 70 | oveq12d 7293 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (((ℜ‘𝐵) · (vol‘𝐴)) + ((i · (ℑ‘𝐵)) · (vol‘𝐴)))) |
72 | 56 | recnd 11003 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (ℜ‘𝐵) ∈ ℂ) |
73 | | mulcl 10955 |
. . . . 5
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i ·
(ℑ‘𝐵)) ∈
ℂ) |
74 | 66, 68, 73 | sylancr 587 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ) |
75 | 72, 74, 46 | adddird 11000 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴)) = (((ℜ‘𝐵) · (vol‘𝐴)) + ((i ·
(ℑ‘𝐵)) ·
(vol‘𝐴)))) |
76 | 71, 75 | eqtr4d 2781 |
. 2
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴))) |
77 | | simpl3 1192 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑥 ∈
𝐴) → 𝐵 ∈ ℂ) |
78 | | fconstmpt 5649 |
. . . 4
⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
79 | | iblconst 24982 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (𝐴 ×
{𝐵}) ∈
𝐿1) |
80 | 78, 79 | eqeltrrid 2844 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (𝑥 ∈
𝐴 ↦ 𝐵) ∈
𝐿1) |
81 | 77, 80 | itgcnval 24964 |
. 2
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) |
82 | | replim 14827 |
. . . 4
⊢ (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i ·
(ℑ‘𝐵)))) |
83 | 82 | 3ad2ant3 1134 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → 𝐵 =
((ℜ‘𝐵) + (i
· (ℑ‘𝐵)))) |
84 | 83 | oveq1d 7290 |
. 2
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (𝐵 ·
(vol‘𝐴)) =
(((ℜ‘𝐵) + (i
· (ℑ‘𝐵))) · (vol‘𝐴))) |
85 | 76, 81, 84 | 3eqtr4d 2788 |
1
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ∫𝐴𝐵 d𝑥 = (𝐵 · (vol‘𝐴))) |