| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . . . 7
⊢ ((𝑦 = (ℜ‘𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 = (ℜ‘𝐵)) |
| 2 | 1 | itgeq2dv 25818 |
. . . . . 6
⊢ (𝑦 = (ℜ‘𝐵) → ∫𝐴𝑦 d𝑥 = ∫𝐴(ℜ‘𝐵) d𝑥) |
| 3 | | oveq1 7439 |
. . . . . 6
⊢ (𝑦 = (ℜ‘𝐵) → (𝑦 · (vol‘𝐴)) = ((ℜ‘𝐵) · (vol‘𝐴))) |
| 4 | 2, 3 | eqeq12d 2752 |
. . . . 5
⊢ (𝑦 = (ℜ‘𝐵) → (∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) ↔ ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴)))) |
| 5 | | simplr 768 |
. . . . . . . 8
⊢ ((((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) ∧ 𝑥 ∈
𝐴) → 𝑦 ∈
ℝ) |
| 6 | | fconstmpt 5746 |
. . . . . . . . 9
⊢ (𝐴 × {𝑦}) = (𝑥 ∈ 𝐴 ↦ 𝑦) |
| 7 | | simpl1 1191 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → 𝐴 ∈
dom vol) |
| 8 | | simp2 1137 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (vol‘𝐴) ∈ ℝ) |
| 9 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (vol‘𝐴) ∈ ℝ) |
| 10 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → 𝑦 ∈
ℝ) |
| 11 | 10 | recnd 11290 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → 𝑦 ∈
ℂ) |
| 12 | | iblconst 25854 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝑦 ∈
ℂ) → (𝐴 ×
{𝑦}) ∈
𝐿1) |
| 13 | 7, 9, 11, 12 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (𝐴 ×
{𝑦}) ∈
𝐿1) |
| 14 | 6, 13 | eqeltrrid 2845 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (𝑥 ∈
𝐴 ↦ 𝑦) ∈
𝐿1) |
| 15 | 5, 14 | itgrevallem1 25831 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → ∫𝐴𝑦 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))))) |
| 16 | | ifan 4578 |
. . . . . . . . . . . 12
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0) |
| 17 | 16 | mpteq2i 5246 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0)) |
| 18 | 17 | fveq2i 6908 |
. . . . . . . . . 10
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) |
| 19 | | 0re 11264 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
| 20 | | ifcl 4570 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ) |
| 21 | 10, 19, 20 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ) |
| 22 | | max1 13228 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 𝑦
∈ ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) |
| 23 | 19, 10, 22 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) |
| 24 | | elrege0 13495 |
. . . . . . . . . . . 12
⊢ (if(0
≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞) ↔ (if(0 ≤
𝑦, 𝑦, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤
𝑦, 𝑦, 0))) |
| 25 | 21, 23, 24 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ (0[,)+∞)) |
| 26 | | itg2const 25776 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ if(0 ≤ 𝑦,
𝑦, 0) ∈
(0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴))) |
| 27 | 7, 9, 25, 26 | syl3anc 1372 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ 𝑦, 𝑦, 0), 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴))) |
| 28 | 18, 27 | eqtrid 2788 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴))) |
| 29 | | ifan 4578 |
. . . . . . . . . . . 12
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0) |
| 30 | 29 | mpteq2i 5246 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0)) |
| 31 | 30 | fveq2i 6908 |
. . . . . . . . . 10
⊢
(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) |
| 32 | | renegcl 11573 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → -𝑦 ∈
ℝ) |
| 34 | | ifcl 4570 |
. . . . . . . . . . . . 13
⊢ ((-𝑦 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ) |
| 35 | 33, 19, 34 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℝ) |
| 36 | | max1 13228 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ -𝑦
∈ ℝ) → 0 ≤ if(0 ≤ -𝑦, -𝑦, 0)) |
| 37 | 19, 33, 36 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → 0 ≤ if(0 ≤ -𝑦, -𝑦, 0)) |
| 38 | | elrege0 13495 |
. . . . . . . . . . . 12
⊢ (if(0
≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞)
↔ (if(0 ≤ -𝑦,
-𝑦, 0) ∈ ℝ ∧
0 ≤ if(0 ≤ -𝑦, -𝑦, 0))) |
| 39 | 35, 37, 38 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ (0[,)+∞)) |
| 40 | | itg2const 25776 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ if(0 ≤ -𝑦,
-𝑦, 0) ∈
(0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))) |
| 41 | 7, 9, 39, 40 | syl3anc 1372 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ -𝑦, -𝑦, 0), 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))) |
| 42 | 31, 41 | eqtrid 2788 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))) = (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴))) |
| 43 | 28, 42 | oveq12d 7450 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0)))) = ((if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)) − (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))) |
| 44 | 21 | recnd 11290 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℂ) |
| 45 | 35 | recnd 11290 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → if(0 ≤ -𝑦, -𝑦, 0) ∈ ℂ) |
| 46 | 8 | recnd 11290 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (vol‘𝐴) ∈ ℂ) |
| 47 | 46 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (vol‘𝐴) ∈ ℂ) |
| 48 | 44, 45, 47 | subdird 11721 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → ((if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) · (vol‘𝐴)) = ((if(0 ≤ 𝑦, 𝑦, 0) · (vol‘𝐴)) − (if(0 ≤ -𝑦, -𝑦, 0) · (vol‘𝐴)))) |
| 49 | | max0sub 13239 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → (if(0
≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) = 𝑦) |
| 50 | 49 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) = 𝑦) |
| 51 | 50 | oveq1d 7447 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → ((if(0 ≤ 𝑦, 𝑦, 0) − if(0 ≤ -𝑦, -𝑦, 0)) · (vol‘𝐴)) = (𝑦 · (vol‘𝐴))) |
| 52 | 43, 48, 51 | 3eqtr2rd 2783 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → (𝑦 ·
(vol‘𝐴)) =
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝑦), -𝑦, 0))))) |
| 53 | 15, 52 | eqtr4d 2779 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑦 ∈
ℝ) → ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴))) |
| 54 | 53 | ralrimiva 3145 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ∀𝑦
∈ ℝ ∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴))) |
| 55 | | recl 15150 |
. . . . . 6
⊢ (𝐵 ∈ ℂ →
(ℜ‘𝐵) ∈
ℝ) |
| 56 | 55 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (ℜ‘𝐵) ∈ ℝ) |
| 57 | 4, 54, 56 | rspcdva 3622 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ∫𝐴(ℜ‘𝐵) d𝑥 = ((ℜ‘𝐵) · (vol‘𝐴))) |
| 58 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑦 = (ℑ‘𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 = (ℑ‘𝐵)) |
| 59 | 58 | itgeq2dv 25818 |
. . . . . . . 8
⊢ (𝑦 = (ℑ‘𝐵) → ∫𝐴𝑦 d𝑥 = ∫𝐴(ℑ‘𝐵) d𝑥) |
| 60 | | oveq1 7439 |
. . . . . . . 8
⊢ (𝑦 = (ℑ‘𝐵) → (𝑦 · (vol‘𝐴)) = ((ℑ‘𝐵) · (vol‘𝐴))) |
| 61 | 59, 60 | eqeq12d 2752 |
. . . . . . 7
⊢ (𝑦 = (ℑ‘𝐵) → (∫𝐴𝑦 d𝑥 = (𝑦 · (vol‘𝐴)) ↔ ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴)))) |
| 62 | | imcl 15151 |
. . . . . . . 8
⊢ (𝐵 ∈ ℂ →
(ℑ‘𝐵) ∈
ℝ) |
| 63 | 62 | 3ad2ant3 1135 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (ℑ‘𝐵) ∈ ℝ) |
| 64 | 61, 54, 63 | rspcdva 3622 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ∫𝐴(ℑ‘𝐵) d𝑥 = ((ℑ‘𝐵) · (vol‘𝐴))) |
| 65 | 64 | oveq2d 7448 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) = (i · ((ℑ‘𝐵) · (vol‘𝐴)))) |
| 66 | | ax-icn 11215 |
. . . . . . 7
⊢ i ∈
ℂ |
| 67 | 66 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → i ∈ ℂ) |
| 68 | 63 | recnd 11290 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (ℑ‘𝐵) ∈ ℂ) |
| 69 | 67, 68, 46 | mulassd 11285 |
. . . . 5
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ((i · (ℑ‘𝐵)) · (vol‘𝐴)) = (i · ((ℑ‘𝐵) · (vol‘𝐴)))) |
| 70 | 65, 69 | eqtr4d 2779 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) = ((i · (ℑ‘𝐵)) · (vol‘𝐴))) |
| 71 | 57, 70 | oveq12d 7450 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (((ℜ‘𝐵) · (vol‘𝐴)) + ((i · (ℑ‘𝐵)) · (vol‘𝐴)))) |
| 72 | 56 | recnd 11290 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (ℜ‘𝐵) ∈ ℂ) |
| 73 | | mulcl 11240 |
. . . . 5
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i ·
(ℑ‘𝐵)) ∈
ℂ) |
| 74 | 66, 68, 73 | sylancr 587 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ) |
| 75 | 72, 74, 46 | adddird 11287 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴)) = (((ℜ‘𝐵) · (vol‘𝐴)) + ((i ·
(ℑ‘𝐵)) ·
(vol‘𝐴)))) |
| 76 | 71, 75 | eqtr4d 2779 |
. 2
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (((ℜ‘𝐵) + (i · (ℑ‘𝐵))) · (vol‘𝐴))) |
| 77 | | simpl3 1193 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) ∧ 𝑥 ∈
𝐴) → 𝐵 ∈ ℂ) |
| 78 | | fconstmpt 5746 |
. . . 4
⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 79 | | iblconst 25854 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (𝐴 ×
{𝐵}) ∈
𝐿1) |
| 80 | 78, 79 | eqeltrrid 2845 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (𝑥 ∈
𝐴 ↦ 𝐵) ∈
𝐿1) |
| 81 | 77, 80 | itgcnval 25836 |
. 2
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) |
| 82 | | replim 15156 |
. . . 4
⊢ (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i ·
(ℑ‘𝐵)))) |
| 83 | 82 | 3ad2ant3 1135 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → 𝐵 =
((ℜ‘𝐵) + (i
· (ℑ‘𝐵)))) |
| 84 | 83 | oveq1d 7447 |
. 2
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → (𝐵 ·
(vol‘𝐴)) =
(((ℜ‘𝐵) + (i
· (ℑ‘𝐵))) · (vol‘𝐴))) |
| 85 | 76, 81, 84 | 3eqtr4d 2786 |
1
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ ∧ 𝐵 ∈
ℂ) → ∫𝐴𝐵 d𝑥 = (𝐵 · (vol‘𝐴))) |