MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblre Structured version   Visualization version   GIF version

Theorem iblre 24394
Description: Integrability of a real function. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypothesis
Ref Expression
iblrelem.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
iblre (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblre
StepHypRef Expression
1 iblrelem.1 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
21mbfposb 24254 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)))
3 ifan 4518 . . . . . . . . 9 if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)
43mpteq2i 5158 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))
54fveq2i 6673 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)))
65eleq1i 2903 . . . . . 6 ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))) ∈ ℝ)
7 ifan 4518 . . . . . . . . 9 if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)
87mpteq2i 5158 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
98fveq2i 6673 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)))
109eleq1i 2903 . . . . . 6 ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) ∈ ℝ)
116, 10anbi12i 628 . . . . 5 (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ) ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) ∈ ℝ))
1211a1i 11 . . . 4 (𝜑 → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ) ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) ∈ ℝ)))
132, 12anbi12d 632 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)) ↔ (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) ∈ ℝ))))
14 3anass 1091 . . 3 (((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)))
15 an4 654 . . 3 ((((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))) ∈ ℝ) ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) ∈ ℝ)) ↔ (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) ∈ ℝ)))
1613, 14, 153bitr4g 316 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ) ↔ (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))) ∈ ℝ) ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) ∈ ℝ))))
171iblrelem 24391 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)))
18 0re 10643 . . . . 5 0 ∈ ℝ
19 ifcl 4511 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
201, 18, 19sylancl 588 . . . 4 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
21 max1 12579 . . . . 5 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
2218, 1, 21sylancr 589 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
2320, 22iblpos 24393 . . 3 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))) ∈ ℝ)))
241renegcld 11067 . . . . 5 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
25 ifcl 4511 . . . . 5 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2624, 18, 25sylancl 588 . . . 4 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
27 max1 12579 . . . . 5 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
2818, 24, 27sylancr 589 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
2926, 28iblpos 24393 . . 3 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) ∈ ℝ)))
3023, 29anbi12d 632 . 2 (𝜑 → (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1) ↔ (((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))) ∈ ℝ) ∧ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) ∈ ℝ))))
3116, 17, 303bitr4d 313 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  ifcif 4467   class class class wbr 5066  cmpt 5146  cfv 6355  cr 10536  0cc0 10537  cle 10676  -cneg 10871  MblFncmbf 24215  2citg2 24217  𝐿1cibl 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xadd 12509  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-xmet 20538  df-met 20539  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-0p 24271
This theorem is referenced by:  iblneg  24403  itgneg  24404  itgaddlem2  24424  itgmulc2lem2  24433  itgaddnclem2  34966  itgmulc2nclem2  34974
  Copyright terms: Public domain W3C validator