MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabslem Structured version   Visualization version   GIF version

Theorem iblabslem 25863
Description: Lemma for iblabs 25864. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabs.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabs.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblabs.3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
iblabs.4 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
iblabs.5 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
Assertion
Ref Expression
iblabslem (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)

Proof of Theorem iblabslem
StepHypRef Expression
1 iblabs.3 . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
2 iblabs.4 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1)
3 iblabs.5 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℝ)
43iblrelem 25826 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)))
52, 4mpbid 232 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ))
65simp1d 1143 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn)
76, 3mbfdm2 25672 . . . . 5 (𝜑𝐴 ∈ dom vol)
8 mblss 25566 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
97, 8syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
10 rembl 25575 . . . . 5 ℝ ∈ dom vol
1110a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
12 iftrue 4531 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
1312adantl 481 . . . . 5 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = (abs‘(𝐹𝐵)))
143recnd 11289 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝐵) ∈ ℂ)
1514abscld 15475 . . . . 5 ((𝜑𝑥𝐴) → (abs‘(𝐹𝐵)) ∈ ℝ)
1613, 15eqeltrd 2841 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) ∈ ℝ)
17 eldifn 4132 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
1817adantl 481 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
19 iffalse 4534 . . . . 5 𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
2018, 19syl 17 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘(𝐹𝐵)), 0) = 0)
2112mpteq2ia 5245 . . . . . 6 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵)))
22 absf 15376 . . . . . . . 8 abs:ℂ⟶ℝ
2322a1i 11 . . . . . . 7 (𝜑 → abs:ℂ⟶ℝ)
2423, 14cofmpt 7152 . . . . . 6 (𝜑 → (abs ∘ (𝑥𝐴 ↦ (𝐹𝐵))) = (𝑥𝐴 ↦ (abs‘(𝐹𝐵))))
2521, 24eqtr4id 2796 . . . . 5 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) = (abs ∘ (𝑥𝐴 ↦ (𝐹𝐵))))
2614fmpttd 7135 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℂ)
27 ax-resscn 11212 . . . . . . . . 9 ℝ ⊆ ℂ
28 ssid 4006 . . . . . . . . 9 ℂ ⊆ ℂ
29 cncfss 24925 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
3027, 28, 29mp2an 692 . . . . . . . 8 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
31 abscncf 24927 . . . . . . . 8 abs ∈ (ℂ–cn→ℝ)
3230, 31sselii 3980 . . . . . . 7 abs ∈ (ℂ–cn→ℂ)
3332a1i 11 . . . . . 6 (𝜑 → abs ∈ (ℂ–cn→ℂ))
34 cncombf 25693 . . . . . 6 (((𝑥𝐴 ↦ (𝐹𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐹𝐵)):𝐴⟶ℂ ∧ abs ∈ (ℂ–cn→ℂ)) → (abs ∘ (𝑥𝐴 ↦ (𝐹𝐵))) ∈ MblFn)
356, 26, 33, 34syl3anc 1373 . . . . 5 (𝜑 → (abs ∘ (𝑥𝐴 ↦ (𝐹𝐵))) ∈ MblFn)
3625, 35eqeltrd 2841 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
379, 11, 16, 20, 36mbfss 25681 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)) ∈ MblFn)
381, 37eqeltrid 2845 . 2 (𝜑𝐺 ∈ MblFn)
39 reex 11246 . . . . . . . . 9 ℝ ∈ V
4039a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
41 ifan 4579 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0)
42 0re 11263 . . . . . . . . . . . . 13 0 ∈ ℝ
43 ifcl 4571 . . . . . . . . . . . . 13 (((𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
443, 42, 43sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ)
45 max1 13227 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
4642, 3, 45sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
47 elrege0 13494 . . . . . . . . . . . 12 (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)))
4844, 46, 47sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) ∈ (0[,)+∞))
49 0e0icopnf 13498 . . . . . . . . . . . 12 0 ∈ (0[,)+∞)
5049a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
5148, 50ifclda 4561 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) ∈ (0[,)+∞))
5241, 51eqeltrid 2845 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
5352adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
54 ifan 4579 . . . . . . . . . 10 if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) = if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)
553renegcld 11690 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(𝐹𝐵) ∈ ℝ)
56 ifcl 4571 . . . . . . . . . . . . 13 ((-(𝐹𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
5755, 42, 56sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ)
58 max1 13227 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -(𝐹𝐵) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
5942, 55, 58sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
60 elrege0 13494 . . . . . . . . . . . 12 (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
6157, 59, 60sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) ∈ (0[,)+∞))
6261, 50ifclda 4561 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) ∈ (0[,)+∞))
6354, 62eqeltrid 2845 . . . . . . . . 9 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
6463adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
65 eqidd 2738 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)))
66 eqidd 2738 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))
6740, 53, 64, 65, 66offval2 7717 . . . . . . 7 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
6841, 54oveq12i 7443 . . . . . . . . 9 (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0))
69 max0add 15349 . . . . . . . . . . . . 13 ((𝐹𝐵) ∈ ℝ → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
703, 69syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (abs‘(𝐹𝐵)))
71 iftrue 4531 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
7271adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0))
73 iftrue 4531 . . . . . . . . . . . . . 14 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
7473adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0))
7572, 74oveq12d 7449 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) + if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)))
7670, 75, 133eqtr4d 2787 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
7776ex 412 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
78 00id 11436 . . . . . . . . . . 11 (0 + 0) = 0
79 iffalse 4534 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) = 0)
80 iffalse 4534 . . . . . . . . . . . 12 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0) = 0)
8179, 80oveq12d 7449 . . . . . . . . . . 11 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = (0 + 0))
8278, 81, 193eqtr4a 2803 . . . . . . . . . 10 𝑥𝐴 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
8377, 82pm2.61d1 180 . . . . . . . . 9 (𝜑 → (if(𝑥𝐴, if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0), 0) + if(𝑥𝐴, if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
8468, 83eqtrid 2789 . . . . . . . 8 (𝜑 → (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) = if(𝑥𝐴, (abs‘(𝐹𝐵)), 0))
8584mpteq2dv 5244 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) + if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
8667, 85eqtrd 2777 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐹𝐵)), 0)))
871, 86eqtr4id 2796 . . . . 5 (𝜑𝐺 = ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))))
8887fveq2d 6910 . . . 4 (𝜑 → (∫2𝐺) = (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
8952adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) ∈ (0[,)+∞))
9041, 79eqtrid 2789 . . . . . . 7 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
9118, 90syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0) = 0)
92 ibar 528 . . . . . . . . 9 (𝑥𝐴 → (0 ≤ (𝐹𝐵) ↔ (𝑥𝐴 ∧ 0 ≤ (𝐹𝐵))))
9392ifbid 4549 . . . . . . . 8 (𝑥𝐴 → if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
9493mpteq2ia 5245 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))
953, 6mbfpos 25686 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (𝐹𝐵), (𝐹𝐵), 0)) ∈ MblFn)
9694, 95eqeltrrid 2846 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
979, 11, 89, 91, 96mbfss 25681 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∈ MblFn)
9853fmpttd 7135 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
995simp2d 1144 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) ∈ ℝ)
10063adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) ∈ (0[,)+∞))
10154, 80eqtrid 2789 . . . . . . 7 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) = 0)
10218, 101syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0) = 0)
103 ibar 528 . . . . . . . . 9 (𝑥𝐴 → (0 ≤ -(𝐹𝐵) ↔ (𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵))))
104103ifbid 4549 . . . . . . . 8 (𝑥𝐴 → if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))
105104mpteq2ia 5245 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))
1063, 6mbfneg 25685 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ -(𝐹𝐵)) ∈ MblFn)
10755, 106mbfpos 25686 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(𝐹𝐵), -(𝐹𝐵), 0)) ∈ MblFn)
108105, 107eqeltrrid 2846 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) ∈ MblFn)
1099, 11, 100, 102, 108mbfss 25681 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)) ∈ MblFn)
11064fmpttd 7135 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)):ℝ⟶(0[,)+∞))
1115simp3d 1145 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0))) ∈ ℝ)
11297, 98, 99, 109, 110, 111itg2add 25794 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
11388, 112eqtrd 2777 . . 3 (𝜑 → (∫2𝐺) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))))
11499, 111readdcld 11290 . . 3 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (𝐹𝐵)), (𝐹𝐵), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(𝐹𝐵)), -(𝐹𝐵), 0)))) ∈ ℝ)
115113, 114eqeltrd 2841 . 2 (𝜑 → (∫2𝐺) ∈ ℝ)
11638, 115jca 511 1 (𝜑 → (𝐺 ∈ MblFn ∧ (∫2𝐺) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  dom cdm 5685  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  cr 11154  0cc0 11155   + caddc 11158  +∞cpnf 11292  cle 11296  -cneg 11493  [,)cico 13389  abscabs 15273  cnccncf 24902  volcvol 25498  MblFncmbf 25649  2citg2 25651  𝐿1cibl 25652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-0p 25705
This theorem is referenced by:  iblabs  25864
  Copyright terms: Public domain W3C validator