MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibladdlem Structured version   Visualization version   GIF version

Theorem ibladdlem 25754
Description: Lemma for ibladd 25755. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
ibladd.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
ibladd.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
ibladd.3 ((𝜑𝑥𝐴) → 𝐷 = (𝐵 + 𝐶))
ibladd.4 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
ibladd.5 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
ibladd.6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
ibladd.7 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)
Assertion
Ref Expression
ibladdlem (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem ibladdlem
StepHypRef Expression
1 ifan 4538 . . . 4 if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) = if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0)
2 ibladd.3 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐷 = (𝐵 + 𝐶))
3 ibladd.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 ibladd.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
53, 4readdcld 11179 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℝ)
62, 5eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐷 ∈ ℝ)
7 0re 11152 . . . . . . . . 9 0 ∈ ℝ
8 ifcl 4530 . . . . . . . . 9 ((𝐷 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ)
96, 7, 8sylancl 586 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ)
109rexrd 11200 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ*)
11 max1 13121 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐷 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐷, 𝐷, 0))
127, 6, 11sylancr 587 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐷, 𝐷, 0))
13 elxrge0 13394 . . . . . . 7 (if(0 ≤ 𝐷, 𝐷, 0) ∈ (0[,]+∞) ↔ (if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ 𝐷, 𝐷, 0)))
1410, 12, 13sylanbrc 583 . . . . . 6 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ∈ (0[,]+∞))
15 0e0iccpnf 13396 . . . . . . 7 0 ∈ (0[,]+∞)
1615a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
1714, 16ifclda 4520 . . . . 5 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ∈ (0[,]+∞))
1817adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ∈ (0[,]+∞))
191, 18eqeltrid 2832 . . 3 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ∈ (0[,]+∞))
2019fmpttd 7069 . 2 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)):ℝ⟶(0[,]+∞))
21 reex 11135 . . . . . . . 8 ℝ ∈ V
2221a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
23 ifan 4538 . . . . . . . . 9 if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)
24 ifcl 4530 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
253, 7, 24sylancl 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
267a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ ℝ)
2725, 26ifclda 4520 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ∈ ℝ)
2823, 27eqeltrid 2832 . . . . . . . 8 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ ℝ)
2928adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ ℝ)
30 ifan 4538 . . . . . . . . 9 if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)
31 ifcl 4530 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
324, 7, 31sylancl 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
3332, 26ifclda 4520 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) ∈ ℝ)
3430, 33eqeltrid 2832 . . . . . . . 8 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ ℝ)
3534adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ ℝ)
36 eqidd 2730 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)))
37 eqidd 2730 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
3822, 29, 35, 36, 37offval2 7653 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) = (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
39 iftrue 4490 . . . . . . . . 9 (𝑥𝐴 → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
40 ibar 528 . . . . . . . . . . 11 (𝑥𝐴 → (0 ≤ 𝐵 ↔ (𝑥𝐴 ∧ 0 ≤ 𝐵)))
4140ifbid 4508 . . . . . . . . . 10 (𝑥𝐴 → if(0 ≤ 𝐵, 𝐵, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))
42 ibar 528 . . . . . . . . . . 11 (𝑥𝐴 → (0 ≤ 𝐶 ↔ (𝑥𝐴 ∧ 0 ≤ 𝐶)))
4342ifbid 4508 . . . . . . . . . 10 (𝑥𝐴 → if(0 ≤ 𝐶, 𝐶, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
4441, 43oveq12d 7387 . . . . . . . . 9 (𝑥𝐴 → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
4539, 44eqtr2d 2765 . . . . . . . 8 (𝑥𝐴 → (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
46 00id 11325 . . . . . . . . 9 (0 + 0) = 0
47 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ 0 ≤ 𝐵) → 𝑥𝐴)
4847con3i 154 . . . . . . . . . . 11 𝑥𝐴 → ¬ (𝑥𝐴 ∧ 0 ≤ 𝐵))
4948iffalsed 4495 . . . . . . . . . 10 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = 0)
50 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ 0 ≤ 𝐶) → 𝑥𝐴)
5150con3i 154 . . . . . . . . . . 11 𝑥𝐴 → ¬ (𝑥𝐴 ∧ 0 ≤ 𝐶))
5251iffalsed 4495 . . . . . . . . . 10 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = 0)
5349, 52oveq12d 7387 . . . . . . . . 9 𝑥𝐴 → (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (0 + 0))
54 iffalse 4493 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) = 0)
5546, 53, 543eqtr4a 2790 . . . . . . . 8 𝑥𝐴 → (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
5645, 55pm2.61i 182 . . . . . . 7 (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)
5756mpteq2i 5198 . . . . . 6 (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
5838, 57eqtrdi 2780 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
5958fveq2d 6844 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))))
60 ibladd.4 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
6160, 3mbfdm2 25571 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
62 mblss 25465 . . . . . . 7 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
6361, 62syl 17 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
64 rembl 25474 . . . . . . 7 ℝ ∈ dom vol
6564a1i 11 . . . . . 6 (𝜑 → ℝ ∈ dom vol)
6628adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ ℝ)
67 eldifn 4091 . . . . . . . . 9 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
6867adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
6968intnanrd 489 . . . . . . 7 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ (𝑥𝐴 ∧ 0 ≤ 𝐵))
7069iffalsed 4495 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = 0)
7141mpteq2ia 5197 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))
723, 60mbfpos 25585 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
7371, 72eqeltrrid 2833 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∈ MblFn)
7463, 65, 66, 70, 73mbfss 25580 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∈ MblFn)
75 max1 13121 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
767, 3, 75sylancr 587 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
77 elrege0 13391 . . . . . . . . . 10 (if(0 ≤ 𝐵, 𝐵, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝐵, 𝐵, 0)))
7825, 76, 77sylanbrc 583 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ (0[,)+∞))
79 0e0icopnf 13395 . . . . . . . . . 10 0 ∈ (0[,)+∞)
8079a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
8178, 80ifclda 4520 . . . . . . . 8 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ∈ (0[,)+∞))
8223, 81eqeltrid 2832 . . . . . . 7 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,)+∞))
8382adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,)+∞))
8483fmpttd 7069 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,)+∞))
85 ibladd.6 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
8634adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ ℝ)
8768, 52syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = 0)
8843mpteq2ia 5197 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
89 ibladd.5 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
904, 89mbfpos 25585 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ MblFn)
9188, 90eqeltrrid 2833 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ∈ MblFn)
9263, 65, 86, 87, 91mbfss 25580 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ∈ MblFn)
93 max1 13121 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
947, 4, 93sylancr 587 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
95 elrege0 13391 . . . . . . . . . 10 (if(0 ≤ 𝐶, 𝐶, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)))
9632, 94, 95sylanbrc 583 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ (0[,)+∞))
9796, 80ifclda 4520 . . . . . . . 8 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) ∈ (0[,)+∞))
9830, 97eqeltrid 2832 . . . . . . 7 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,)+∞))
9998adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,)+∞))
10099fmpttd 7069 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,)+∞))
101 ibladd.7 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)
10274, 84, 85, 92, 100, 101itg2add 25693 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))))
10359, 102eqtr3d 2766 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))))
10485, 101readdcld 11179 . . 3 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) ∈ ℝ)
105103, 104eqeltrd 2828 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) ∈ ℝ)
10625, 32readdcld 11179 . . . . . . . 8 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ)
107106rexrd 11200 . . . . . . 7 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ*)
10825, 32, 76, 94addge0d 11730 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
109 elxrge0 13394 . . . . . . 7 ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ (0[,]+∞) ↔ ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ* ∧ 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))
110107, 108, 109sylanbrc 583 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ (0[,]+∞))
111110, 16ifclda 4520 . . . . 5 (𝜑 → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) ∈ (0[,]+∞))
112111adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) ∈ (0[,]+∞))
113112fmpttd 7069 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)):ℝ⟶(0[,]+∞))
114 max2 13123 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(0 ≤ 𝐵, 𝐵, 0))
1157, 3, 114sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ≤ if(0 ≤ 𝐵, 𝐵, 0))
116 max2 13123 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
1177, 4, 116sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
1183, 4, 25, 32, 115, 117le2addd 11773 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
1192, 118eqbrtrd 5124 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐷 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
120 breq1 5105 . . . . . . . . . . 11 (𝐷 = if(0 ≤ 𝐷, 𝐷, 0) → (𝐷 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ↔ if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))
121 breq1 5105 . . . . . . . . . . 11 (0 = if(0 ≤ 𝐷, 𝐷, 0) → (0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ↔ if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))
122120, 121ifboth 4524 . . . . . . . . . 10 ((𝐷 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∧ 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) → if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
123119, 108, 122syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
124 iftrue 4490 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) = if(0 ≤ 𝐷, 𝐷, 0))
125124adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) = if(0 ≤ 𝐷, 𝐷, 0))
12639adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
127123, 125, 1263brtr4d 5134 . . . . . . . 8 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
128127ex 412 . . . . . . 7 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
129 0le0 12263 . . . . . . . . 9 0 ≤ 0
130129a1i 11 . . . . . . . 8 𝑥𝐴 → 0 ≤ 0)
131 iffalse 4493 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) = 0)
132130, 131, 543brtr4d 5134 . . . . . . 7 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
133128, 132pm2.61d1 180 . . . . . 6 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
1341, 133eqbrtrid 5137 . . . . 5 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
135134ralrimivw 3129 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
136 eqidd 2730 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)))
137 eqidd 2730 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
13822, 19, 112, 136, 137ofrfval2 7654 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
139135, 138mpbird 257 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
140 itg2le 25673 . . 3 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))))
14120, 113, 139, 140syl3anc 1373 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))))
142 itg2lecl 25672 . 2 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)
14320, 105, 141, 142syl3anc 1373 1 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cdif 3908  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  r cofr 7632  cr 11043  0cc0 11044   + caddc 11047  +∞cpnf 11181  *cxr 11183  cle 11185  [,)cico 13284  [,]cicc 13285  volcvol 25397  MblFncmbf 25548  2citg2 25550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-rest 17361  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-bases 22866  df-cmp 23307  df-ovol 25398  df-vol 25399  df-mbf 25553  df-itg1 25554  df-itg2 25555  df-0p 25604
This theorem is referenced by:  ibladd  25755
  Copyright terms: Public domain W3C validator