MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibladdlem Structured version   Visualization version   GIF version

Theorem ibladdlem 25875
Description: Lemma for ibladd 25876. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
ibladd.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
ibladd.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
ibladd.3 ((𝜑𝑥𝐴) → 𝐷 = (𝐵 + 𝐶))
ibladd.4 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
ibladd.5 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
ibladd.6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
ibladd.7 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)
Assertion
Ref Expression
ibladdlem (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem ibladdlem
StepHypRef Expression
1 ifan 4601 . . . 4 if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) = if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0)
2 ibladd.3 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐷 = (𝐵 + 𝐶))
3 ibladd.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 ibladd.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
53, 4readdcld 11319 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℝ)
62, 5eqeltrd 2844 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐷 ∈ ℝ)
7 0re 11292 . . . . . . . . 9 0 ∈ ℝ
8 ifcl 4593 . . . . . . . . 9 ((𝐷 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ)
96, 7, 8sylancl 585 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ)
109rexrd 11340 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ*)
11 max1 13247 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐷 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐷, 𝐷, 0))
127, 6, 11sylancr 586 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐷, 𝐷, 0))
13 elxrge0 13517 . . . . . . 7 (if(0 ≤ 𝐷, 𝐷, 0) ∈ (0[,]+∞) ↔ (if(0 ≤ 𝐷, 𝐷, 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ 𝐷, 𝐷, 0)))
1410, 12, 13sylanbrc 582 . . . . . 6 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ∈ (0[,]+∞))
15 0e0iccpnf 13519 . . . . . . 7 0 ∈ (0[,]+∞)
1615a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
1714, 16ifclda 4583 . . . . 5 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ∈ (0[,]+∞))
1817adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ∈ (0[,]+∞))
191, 18eqeltrid 2848 . . 3 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ∈ (0[,]+∞))
2019fmpttd 7149 . 2 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)):ℝ⟶(0[,]+∞))
21 reex 11275 . . . . . . . 8 ℝ ∈ V
2221a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
23 ifan 4601 . . . . . . . . 9 if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)
24 ifcl 4593 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
253, 7, 24sylancl 585 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
267a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ ℝ)
2725, 26ifclda 4583 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ∈ ℝ)
2823, 27eqeltrid 2848 . . . . . . . 8 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ ℝ)
2928adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ ℝ)
30 ifan 4601 . . . . . . . . 9 if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)
31 ifcl 4593 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
324, 7, 31sylancl 585 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
3332, 26ifclda 4583 . . . . . . . . 9 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) ∈ ℝ)
3430, 33eqeltrid 2848 . . . . . . . 8 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ ℝ)
3534adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ ℝ)
36 eqidd 2741 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)))
37 eqidd 2741 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
3822, 29, 35, 36, 37offval2 7734 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) = (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
39 iftrue 4554 . . . . . . . . 9 (𝑥𝐴 → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
40 ibar 528 . . . . . . . . . . 11 (𝑥𝐴 → (0 ≤ 𝐵 ↔ (𝑥𝐴 ∧ 0 ≤ 𝐵)))
4140ifbid 4571 . . . . . . . . . 10 (𝑥𝐴 → if(0 ≤ 𝐵, 𝐵, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))
42 ibar 528 . . . . . . . . . . 11 (𝑥𝐴 → (0 ≤ 𝐶 ↔ (𝑥𝐴 ∧ 0 ≤ 𝐶)))
4342ifbid 4571 . . . . . . . . . 10 (𝑥𝐴 → if(0 ≤ 𝐶, 𝐶, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
4441, 43oveq12d 7466 . . . . . . . . 9 (𝑥𝐴 → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
4539, 44eqtr2d 2781 . . . . . . . 8 (𝑥𝐴 → (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
46 00id 11465 . . . . . . . . 9 (0 + 0) = 0
47 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ 0 ≤ 𝐵) → 𝑥𝐴)
4847con3i 154 . . . . . . . . . . 11 𝑥𝐴 → ¬ (𝑥𝐴 ∧ 0 ≤ 𝐵))
4948iffalsed 4559 . . . . . . . . . 10 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = 0)
50 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ 0 ≤ 𝐶) → 𝑥𝐴)
5150con3i 154 . . . . . . . . . . 11 𝑥𝐴 → ¬ (𝑥𝐴 ∧ 0 ≤ 𝐶))
5251iffalsed 4559 . . . . . . . . . 10 𝑥𝐴 → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = 0)
5349, 52oveq12d 7466 . . . . . . . . 9 𝑥𝐴 → (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (0 + 0))
54 iffalse 4557 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) = 0)
5546, 53, 543eqtr4a 2806 . . . . . . . 8 𝑥𝐴 → (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
5645, 55pm2.61i 182 . . . . . . 7 (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)
5756mpteq2i 5271 . . . . . 6 (𝑥 ∈ ℝ ↦ (if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) + if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
5838, 57eqtrdi 2796 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
5958fveq2d 6924 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))))
60 ibladd.4 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
6160, 3mbfdm2 25691 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
62 mblss 25585 . . . . . . 7 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
6361, 62syl 17 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
64 rembl 25594 . . . . . . 7 ℝ ∈ dom vol
6564a1i 11 . . . . . 6 (𝜑 → ℝ ∈ dom vol)
6628adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ ℝ)
67 eldifn 4155 . . . . . . . . 9 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
6867adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
6968intnanrd 489 . . . . . . 7 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ (𝑥𝐴 ∧ 0 ≤ 𝐵))
7069iffalsed 4559 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = 0)
7141mpteq2ia 5269 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))
723, 60mbfpos 25705 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
7371, 72eqeltrrid 2849 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∈ MblFn)
7463, 65, 66, 70, 73mbfss 25700 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∈ MblFn)
75 max1 13247 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
767, 3, 75sylancr 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
77 elrege0 13514 . . . . . . . . . 10 (if(0 ≤ 𝐵, 𝐵, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝐵, 𝐵, 0)))
7825, 76, 77sylanbrc 582 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ (0[,)+∞))
79 0e0icopnf 13518 . . . . . . . . . 10 0 ∈ (0[,)+∞)
8079a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
8178, 80ifclda 4583 . . . . . . . 8 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ∈ (0[,)+∞))
8223, 81eqeltrid 2848 . . . . . . 7 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,)+∞))
8382adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,)+∞))
8483fmpttd 7149 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,)+∞))
85 ibladd.6 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
8634adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ ℝ)
8768, 52syl 17 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = 0)
8843mpteq2ia 5269 . . . . . . 7 (𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) = (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
89 ibladd.5 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
904, 89mbfpos 25705 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)) ∈ MblFn)
9188, 90eqeltrrid 2849 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ∈ MblFn)
9263, 65, 86, 87, 91mbfss 25700 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ∈ MblFn)
93 max1 13247 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
947, 4, 93sylancr 586 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
95 elrege0 13514 . . . . . . . . . 10 (if(0 ≤ 𝐶, 𝐶, 0) ∈ (0[,)+∞) ↔ (if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)))
9632, 94, 95sylanbrc 582 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ (0[,)+∞))
9796, 80ifclda 4583 . . . . . . . 8 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) ∈ (0[,)+∞))
9830, 97eqeltrid 2848 . . . . . . 7 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,)+∞))
9998adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,)+∞))
10099fmpttd 7149 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,)+∞))
101 ibladd.7 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)
10274, 84, 85, 92, 100, 101itg2add 25814 . . . 4 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘f + (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))))
10359, 102eqtr3d 2782 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))))
10485, 101readdcld 11319 . . 3 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) ∈ ℝ)
105103, 104eqeltrd 2844 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) ∈ ℝ)
10625, 32readdcld 11319 . . . . . . . 8 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ)
107106rexrd 11340 . . . . . . 7 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ*)
10825, 32, 76, 94addge0d 11866 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
109 elxrge0 13517 . . . . . . 7 ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ (0[,]+∞) ↔ ((if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ* ∧ 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))
110107, 108, 109sylanbrc 582 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ (0[,]+∞))
111110, 16ifclda 4583 . . . . 5 (𝜑 → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) ∈ (0[,]+∞))
112111adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) ∈ (0[,]+∞))
113112fmpttd 7149 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)):ℝ⟶(0[,]+∞))
114 max2 13249 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(0 ≤ 𝐵, 𝐵, 0))
1157, 3, 114sylancr 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ≤ if(0 ≤ 𝐵, 𝐵, 0))
116 max2 13249 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
1177, 4, 116sylancr 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
1183, 4, 25, 32, 115, 117le2addd 11909 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
1192, 118eqbrtrd 5188 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐷 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
120 breq1 5169 . . . . . . . . . . 11 (𝐷 = if(0 ≤ 𝐷, 𝐷, 0) → (𝐷 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ↔ if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))
121 breq1 5169 . . . . . . . . . . 11 (0 = if(0 ≤ 𝐷, 𝐷, 0) → (0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ↔ if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))
122120, 121ifboth 4587 . . . . . . . . . 10 ((𝐷 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∧ 0 ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) → if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
123119, 108, 122syl2anc 583 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(0 ≤ 𝐷, 𝐷, 0) ≤ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
124 iftrue 4554 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) = if(0 ≤ 𝐷, 𝐷, 0))
125124adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) = if(0 ≤ 𝐷, 𝐷, 0))
12639adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0) = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))
127123, 125, 1263brtr4d 5198 . . . . . . . 8 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
128127ex 412 . . . . . . 7 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
129 0le0 12394 . . . . . . . . 9 0 ≤ 0
130129a1i 11 . . . . . . . 8 𝑥𝐴 → 0 ≤ 0)
131 iffalse 4557 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) = 0)
132130, 131, 543brtr4d 5198 . . . . . . 7 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
133128, 132pm2.61d1 180 . . . . . 6 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐷, 𝐷, 0), 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
1341, 133eqbrtrid 5201 . . . . 5 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
135134ralrimivw 3156 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))
136 eqidd 2741 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)))
137 eqidd 2741 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
13822, 19, 112, 136, 137ofrfval2 7735 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0) ≤ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
139135, 138mpbird 257 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))
140 itg2le 25794 . . 3 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))))
14120, 113, 139, 140syl3anc 1371 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))))
142 itg2lecl 25793 . 2 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)
14320, 105, 141, 142syl3anc 1371 1 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐷), 𝐷, 0))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  r cofr 7713  cr 11183  0cc0 11184   + caddc 11187  +∞cpnf 11321  *cxr 11323  cle 11325  [,)cico 13409  [,]cicc 13410  volcvol 25517  MblFncmbf 25668  2citg2 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-0p 25724
This theorem is referenced by:  ibladd  25876
  Copyright terms: Public domain W3C validator