Step | Hyp | Ref
| Expression |
1 | | itgsplit.a |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
2 | | iblmbf 25037 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
4 | | ssun1 4123 |
. . . . . . . . . . . 12
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
5 | | itgsplit.u |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
6 | 4, 5 | sseqtrrid 3988 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
7 | 6 | sselda 3935 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
8 | | itgsplit.c |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ 𝑉) |
9 | 7, 8 | syldan 592 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
10 | 3, 9 | mbfdm2 24906 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ dom vol) |
11 | 10 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝐴 ∈ dom vol) |
12 | | itgsplit.b |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈
𝐿1) |
13 | | iblmbf 25037 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
15 | | ssun2 4124 |
. . . . . . . . . . . 12
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
16 | 15, 5 | sseqtrrid 3988 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
17 | 16 | sselda 3935 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
18 | 17, 8 | syldan 592 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
19 | 14, 18 | mbfdm2 24906 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ dom vol) |
20 | 19 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝐵 ∈ dom vol) |
21 | | itgsplit.i |
. . . . . . . 8
⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
22 | 21 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
23 | 5 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝑈 = (𝐴 ∪ 𝐵)) |
24 | 5 | eleq2d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝑈 ↔ 𝑥 ∈ (𝐴 ∪ 𝐵))) |
25 | | elun 4099 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
26 | 24, 25 | bitrdi 287 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ 𝑈 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) |
27 | 26 | biimpa 478 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
28 | 3, 9 | mbfmptcl 24905 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
29 | 14, 18 | mbfmptcl 24905 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) |
30 | 28, 29 | jaodan 956 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) → 𝐶 ∈ ℂ) |
31 | 27, 30 | syldan 592 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
32 | 31 | adantlr 713 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
33 | | ax-icn 11035 |
. . . . . . . . . . . . . 14
⊢ i ∈
ℂ |
34 | | elfznn0 13454 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℕ0) |
35 | 34 | adantl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝑘 ∈ ℕ0) |
36 | | expcl 13905 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ 𝑘
∈ ℕ0) → (i↑𝑘) ∈ ℂ) |
37 | 33, 35, 36 | sylancr 588 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (i↑𝑘) ∈
ℂ) |
38 | 37 | adantr 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (i↑𝑘) ∈ ℂ) |
39 | | ine0 11515 |
. . . . . . . . . . . . . 14
⊢ i ≠
0 |
40 | | elfzelz 13361 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
41 | 40 | adantl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝑘 ∈ ℤ) |
42 | | expne0i 13920 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) |
43 | 33, 39, 41, 42 | mp3an12i 1465 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (i↑𝑘) ≠ 0) |
44 | 43 | adantr 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (i↑𝑘) ≠ 0) |
45 | 32, 38, 44 | divcld 11856 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (𝐶 / (i↑𝑘)) ∈ ℂ) |
46 | 45 | recld 15004 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) |
47 | | 0re 11082 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
48 | | ifcl 4522 |
. . . . . . . . . 10
⊢
(((ℜ‘(𝐶 /
(i↑𝑘))) ∈ ℝ
∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ) |
49 | 46, 47, 48 | sylancl 587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ) |
50 | 49 | rexrd 11130 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
ℝ*) |
51 | | max1 13024 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
52 | 47, 46, 51 | sylancr 588 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → 0 ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
53 | | elxrge0 13294 |
. . . . . . . 8
⊢ (if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ∈
(0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0
≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
54 | 50, 52, 53 | sylanbrc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
55 | | ifan 4530 |
. . . . . . . 8
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
56 | 55 | mpteq2i 5201 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
57 | | ifan 4530 |
. . . . . . . 8
⊢ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
58 | 57 | mpteq2i 5201 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
59 | | ifan 4530 |
. . . . . . . 8
⊢ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
60 | 59 | mpteq2i 5201 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝑈 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
61 | | eqidd 2738 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
62 | | eqidd 2738 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
63 | 61, 62, 1, 9 | iblitg 25038 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
64 | 40, 63 | sylan2 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
65 | | eqidd 2738 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
66 | | eqidd 2738 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
67 | 65, 66, 12, 18 | iblitg 25038 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
68 | 40, 67 | sylan2 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
69 | 11, 20, 22, 23, 54, 56, 58, 60, 64, 68 | itg2split 25019 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0))) +
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))) |
70 | 69 | oveq2d 7357 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0))) +
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))) |
71 | 63 | recnd 11108 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℂ) |
72 | 40, 71 | sylan2 594 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℂ) |
73 | 68 | recnd 11108 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℂ) |
74 | 37, 72, 73 | adddid 11104 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) ·
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) + (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0))))) =
(((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) + ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))))) |
75 | 70, 74 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = (((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) +
((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))) |
76 | 75 | sumeq2dv 15514 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝑈 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) =
Σ𝑘 ∈
(0...3)(((i↑𝑘)
· (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) + ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))))) |
77 | | fzfid 13798 |
. . . 4
⊢ (𝜑 → (0...3) ∈
Fin) |
78 | 37, 72 | mulcld 11100 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) ∈ ℂ) |
79 | 37, 73 | mulcld 11100 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) ∈ ℂ) |
80 | 77, 78, 79 | fsumadd 15551 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (0...3)(((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) +
((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))) = (Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) +
Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))) |
81 | 76, 80 | eqtrd 2777 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝑈 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) =
(Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) + Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))))) |
82 | | eqid 2737 |
. . 3
⊢
(ℜ‘(𝐶 /
(i↑𝑘))) =
(ℜ‘(𝐶 /
(i↑𝑘))) |
83 | 82 | dfitg 25039 |
. 2
⊢
∫𝑈𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝑈 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
84 | 82 | dfitg 25039 |
. . 3
⊢
∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
85 | 82 | dfitg 25039 |
. . 3
⊢
∫𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
86 | 84, 85 | oveq12i 7353 |
. 2
⊢
(∫𝐴𝐶 d𝑥 + ∫𝐵𝐶 d𝑥) = (Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) +
Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))) |
87 | 81, 83, 86 | 3eqtr4g 2802 |
1
⊢ (𝜑 → ∫𝑈𝐶 d𝑥 = (∫𝐴𝐶 d𝑥 + ∫𝐵𝐶 d𝑥)) |