| Step | Hyp | Ref
| Expression |
| 1 | | itgsplit.a |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
| 2 | | iblmbf 25802 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 4 | | ssun1 4178 |
. . . . . . . . . . . 12
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| 5 | | itgsplit.u |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
| 6 | 4, 5 | sseqtrrid 4027 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
| 7 | 6 | sselda 3983 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑈) |
| 8 | | itgsplit.c |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ 𝑉) |
| 9 | 7, 8 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| 10 | 3, 9 | mbfdm2 25672 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 11 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝐴 ∈ dom vol) |
| 12 | | itgsplit.b |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈
𝐿1) |
| 13 | | iblmbf 25802 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
| 15 | | ssun2 4179 |
. . . . . . . . . . . 12
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
| 16 | 15, 5 | sseqtrrid 4027 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
| 17 | 16 | sselda 3983 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
| 18 | 17, 8 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
| 19 | 14, 18 | mbfdm2 25672 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ dom vol) |
| 20 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝐵 ∈ dom vol) |
| 21 | | itgsplit.i |
. . . . . . . 8
⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
| 22 | 21 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (vol*‘(𝐴 ∩ 𝐵)) = 0) |
| 23 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝑈 = (𝐴 ∪ 𝐵)) |
| 24 | 5 | eleq2d 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝑈 ↔ 𝑥 ∈ (𝐴 ∪ 𝐵))) |
| 25 | | elun 4153 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
| 26 | 24, 25 | bitrdi 287 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ 𝑈 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) |
| 27 | 26 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
| 28 | 3, 9 | mbfmptcl 25671 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 29 | 14, 18 | mbfmptcl 25671 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 30 | 28, 29 | jaodan 960 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) → 𝐶 ∈ ℂ) |
| 31 | 27, 30 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
| 32 | 31 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) |
| 33 | | ax-icn 11214 |
. . . . . . . . . . . . . 14
⊢ i ∈
ℂ |
| 34 | | elfznn0 13660 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℕ0) |
| 35 | 34 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝑘 ∈ ℕ0) |
| 36 | | expcl 14120 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ 𝑘
∈ ℕ0) → (i↑𝑘) ∈ ℂ) |
| 37 | 33, 35, 36 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (i↑𝑘) ∈
ℂ) |
| 38 | 37 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (i↑𝑘) ∈ ℂ) |
| 39 | | ine0 11698 |
. . . . . . . . . . . . . 14
⊢ i ≠
0 |
| 40 | | elfzelz 13564 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
| 41 | 40 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝑘 ∈ ℤ) |
| 42 | | expne0i 14135 |
. . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) |
| 43 | 33, 39, 41, 42 | mp3an12i 1467 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (i↑𝑘) ≠ 0) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (i↑𝑘) ≠ 0) |
| 45 | 32, 38, 44 | divcld 12043 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (𝐶 / (i↑𝑘)) ∈ ℂ) |
| 46 | 45 | recld 15233 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) |
| 47 | | 0re 11263 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 48 | | ifcl 4571 |
. . . . . . . . . 10
⊢
(((ℜ‘(𝐶 /
(i↑𝑘))) ∈ ℝ
∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ) |
| 49 | 46, 47, 48 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ) |
| 50 | 49 | rexrd 11311 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
ℝ*) |
| 51 | | max1 13227 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ (ℜ‘(𝐶 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
| 52 | 47, 46, 51 | sylancr 587 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → 0 ≤ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)) |
| 53 | | elxrge0 13497 |
. . . . . . . 8
⊢ (if(0
≤ (ℜ‘(𝐶 /
(i↑𝑘))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0) ∈
(0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0
≤ if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 54 | 50, 52, 53 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝑈) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
| 55 | | ifan 4579 |
. . . . . . . 8
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 56 | 55 | mpteq2i 5247 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 57 | | ifan 4579 |
. . . . . . . 8
⊢ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 58 | 57 | mpteq2i 5247 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 59 | | ifan 4579 |
. . . . . . . 8
⊢ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 60 | 59 | mpteq2i 5247 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝑈 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑈, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 61 | | eqidd 2738 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 62 | | eqidd 2738 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 63 | 61, 62, 1, 9 | iblitg 25803 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 64 | 40, 63 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 65 | | eqidd 2738 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 66 | | eqidd 2738 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 67 | 65, 66, 12, 18 | iblitg 25803 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 68 | 40, 67 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 69 | 11, 20, 22, 23, 54, 56, 58, 60, 64, 68 | itg2split 25784 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0))) +
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))) |
| 70 | 69 | oveq2d 7447 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0))) +
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))) |
| 71 | 63 | recnd 11289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℂ) |
| 72 | 40, 71 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℂ) |
| 73 | 68 | recnd 11289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℂ) |
| 74 | 37, 72, 73 | adddid 11285 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) ·
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) + (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0))))) =
(((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) + ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))))) |
| 75 | 70, 74 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝑈 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = (((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) +
((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))) |
| 76 | 75 | sumeq2dv 15738 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝑈 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) =
Σ𝑘 ∈
(0...3)(((i↑𝑘)
· (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) + ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))))) |
| 77 | | fzfid 14014 |
. . . 4
⊢ (𝜑 → (0...3) ∈
Fin) |
| 78 | 37, 72 | mulcld 11281 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) ∈ ℂ) |
| 79 | 37, 73 | mulcld 11281 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) ∈ ℂ) |
| 80 | 77, 78, 79 | fsumadd 15776 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (0...3)(((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) +
((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))) = (Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) +
Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))) |
| 81 | 76, 80 | eqtrd 2777 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝑈 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) =
(Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) + Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))))) |
| 82 | | eqid 2737 |
. . 3
⊢
(ℜ‘(𝐶 /
(i↑𝑘))) =
(ℜ‘(𝐶 /
(i↑𝑘))) |
| 83 | 82 | dfitg 25804 |
. 2
⊢
∫𝑈𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝑈 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
| 84 | 82 | dfitg 25804 |
. . 3
⊢
∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
| 85 | 82 | dfitg 25804 |
. . 3
⊢
∫𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
| 86 | 84, 85 | oveq12i 7443 |
. 2
⊢
(∫𝐴𝐶 d𝑥 + ∫𝐵𝐶 d𝑥) = (Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) +
Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))) |
| 87 | 81, 83, 86 | 3eqtr4g 2802 |
1
⊢ (𝜑 → ∫𝑈𝐶 d𝑥 = (∫𝐴𝐶 d𝑥 + ∫𝐵𝐶 d𝑥)) |