MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgss Structured version   Visualization version   GIF version

Theorem itgss 24976
Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgss.1 (𝜑𝐴𝐵)
itgss.2 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
Assertion
Ref Expression
itgss (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 13256 . . . 4 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
2 iffalse 4468 . . . . . . . . . . . . . 14 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
32ad2antll 726 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4 eldif 3897 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
5 itgss.2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
65adantlr 712 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
76oveq1d 7290 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (𝐶 / (i↑𝑘)) = (0 / (i↑𝑘)))
8 ax-icn 10930 . . . . . . . . . . . . . . . . . . . . . 22 i ∈ ℂ
9 ine0 11410 . . . . . . . . . . . . . . . . . . . . . 22 i ≠ 0
10 expclz 13807 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
118, 9, 10mp3an12 1450 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
12 expne0i 13815 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
138, 9, 12mp3an12 1450 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
1411, 13div0d 11750 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℤ → (0 / (i↑𝑘)) = 0)
1514ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (0 / (i↑𝑘)) = 0)
167, 15eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (𝐶 / (i↑𝑘)) = 0)
1716fveq2d 6778 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘0))
18 re0 14863 . . . . . . . . . . . . . . . . 17 (ℜ‘0) = 0
1917, 18eqtrdi 2794 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = 0)
2019ifeq1d 4478 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0))
21 ifid 4499 . . . . . . . . . . . . . . 15 if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0) = 0
2220, 21eqtrdi 2794 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
234, 22sylan2br 595 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
243, 23eqtr4d 2781 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2524expr 457 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → (¬ 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
26 iftrue 4465 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2725, 26pm2.61d2 181 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
28 iftrue 4465 . . . . . . . . . . 11 (𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2928adantl 482 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3027, 29eqtr4d 2781 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
31 itgss.1 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
3231adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → 𝐴𝐵)
3332sseld 3920 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝑥𝐴𝑥𝐵))
3433con3dimp 409 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → ¬ 𝑥𝐴)
3534, 2syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
36 iffalse 4468 . . . . . . . . . . 11 𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
3736adantl 482 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
3835, 37eqtr4d 2781 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
3930, 38pm2.61dan 810 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
40 ifan 4512 . . . . . . . 8 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
41 ifan 4512 . . . . . . . 8 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
4239, 40, 413eqtr4g 2803 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
4342mpteq2dv 5176 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
4443fveq2d 6778 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
4544oveq2d 7291 . . . 4 ((𝜑𝑘 ∈ ℤ) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
461, 45sylan2 593 . . 3 ((𝜑𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
4746sumeq2dv 15415 . 2 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
48 eqid 2738 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
4948dfitg 24934 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
5048dfitg 24934 . 2 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
5147, 49, 503eqtr4g 2803 1 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  ici 10873   · cmul 10876  cle 11010   / cdiv 11632  3c3 12029  cz 12319  ...cfz 13239  cexp 13782  cre 14808  Σcsu 15397  2citg2 24780  citg 24782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sum 15398  df-itg 24787
This theorem is referenced by:  itgss2  24977  areacirc  35870
  Copyright terms: Public domain W3C validator