Step | Hyp | Ref
| Expression |
1 | | elfzelz 13256 |
. . . 4
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
2 | | iffalse 4468 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
3 | 2 | ad2antll 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
4 | | eldif 3897 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) |
5 | | itgss.2 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
6 | 5 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
7 | 6 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (𝐶 / (i↑𝑘)) = (0 / (i↑𝑘))) |
8 | | ax-icn 10930 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ i ∈
ℂ |
9 | | ine0 11410 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ i ≠
0 |
10 | | expclz 13807 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈
ℂ) |
11 | 8, 9, 10 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℤ →
(i↑𝑘) ∈
ℂ) |
12 | | expne0i 13815 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) |
13 | 8, 9, 12 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℤ →
(i↑𝑘) ≠
0) |
14 | 11, 13 | div0d 11750 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℤ → (0 /
(i↑𝑘)) =
0) |
15 | 14 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (0 / (i↑𝑘)) = 0) |
16 | 7, 15 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (𝐶 / (i↑𝑘)) = 0) |
17 | 16 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘0)) |
18 | | re0 14863 |
. . . . . . . . . . . . . . . . 17
⊢
(ℜ‘0) = 0 |
19 | 17, 18 | eqtrdi 2794 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = 0) |
20 | 19 | ifeq1d 4478 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0)) |
21 | | ifid 4499 |
. . . . . . . . . . . . . . 15
⊢ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))), 0, 0) =
0 |
22 | 20, 21 | eqtrdi 2794 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0) |
23 | 4, 22 | sylan2br 595 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0) |
24 | 3, 23 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
25 | 24 | expr 457 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ 𝐵) → (¬ 𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
26 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
27 | 25, 26 | pm2.61d2 181 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
28 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐵 → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
29 | 28 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
30 | 27, 29 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
31 | | itgss.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
32 | 31 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝐴 ⊆ 𝐵) |
33 | 32 | sseld 3920 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
34 | 33 | con3dimp 409 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ 𝐴) |
35 | 34, 2 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
36 | | iffalse 4468 |
. . . . . . . . . . 11
⊢ (¬
𝑥 ∈ 𝐵 → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
37 | 36 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
38 | 35, 37 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ ¬ 𝑥 ∈ 𝐵) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
39 | 30, 38 | pm2.61dan 810 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
40 | | ifan 4512 |
. . . . . . . 8
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
41 | | ifan 4512 |
. . . . . . . 8
⊢ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
42 | 39, 40, 41 | 3eqtr4g 2803 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
43 | 42 | mpteq2dv 5176 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
44 | 43 | fveq2d 6778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
45 | 44 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))))) |
46 | 1, 45 | sylan2 593 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0))))) |
47 | 46 | sumeq2dv 15415 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))), 0)))) =
Σ𝑘 ∈
(0...3)((i↑𝑘) ·
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))) |
48 | | eqid 2738 |
. . 3
⊢
(ℜ‘(𝐶 /
(i↑𝑘))) =
(ℜ‘(𝐶 /
(i↑𝑘))) |
49 | 48 | dfitg 24934 |
. 2
⊢
∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
50 | 48 | dfitg 24934 |
. 2
⊢
∫𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐵 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
51 | 47, 49, 50 | 3eqtr4g 2803 |
1
⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) |