MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgss Structured version   Visualization version   GIF version

Theorem itgss 25719
Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgss.1 (𝜑𝐴𝐵)
itgss.2 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
Assertion
Ref Expression
itgss (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 13491 . . . 4 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
2 iffalse 4499 . . . . . . . . . . . . . 14 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
32ad2antll 729 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4 eldif 3926 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
5 itgss.2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
65adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
76oveq1d 7404 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (𝐶 / (i↑𝑘)) = (0 / (i↑𝑘)))
8 ax-icn 11133 . . . . . . . . . . . . . . . . . . . . . 22 i ∈ ℂ
9 ine0 11619 . . . . . . . . . . . . . . . . . . . . . 22 i ≠ 0
10 expclz 14055 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
118, 9, 10mp3an12 1453 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
12 expne0i 14065 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
138, 9, 12mp3an12 1453 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
1411, 13div0d 11963 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℤ → (0 / (i↑𝑘)) = 0)
1514ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (0 / (i↑𝑘)) = 0)
167, 15eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (𝐶 / (i↑𝑘)) = 0)
1716fveq2d 6864 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘0))
18 re0 15124 . . . . . . . . . . . . . . . . 17 (ℜ‘0) = 0
1917, 18eqtrdi 2781 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = 0)
2019ifeq1d 4510 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0))
21 ifid 4531 . . . . . . . . . . . . . . 15 if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0) = 0
2220, 21eqtrdi 2781 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
234, 22sylan2br 595 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
243, 23eqtr4d 2768 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2524expr 456 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → (¬ 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
26 iftrue 4496 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2725, 26pm2.61d2 181 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
28 iftrue 4496 . . . . . . . . . . 11 (𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2928adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3027, 29eqtr4d 2768 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
31 itgss.1 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
3231adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → 𝐴𝐵)
3332sseld 3947 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝑥𝐴𝑥𝐵))
3433con3dimp 408 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → ¬ 𝑥𝐴)
3534, 2syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
36 iffalse 4499 . . . . . . . . . . 11 𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
3736adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
3835, 37eqtr4d 2768 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
3930, 38pm2.61dan 812 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
40 ifan 4544 . . . . . . . 8 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
41 ifan 4544 . . . . . . . 8 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
4239, 40, 413eqtr4g 2790 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
4342mpteq2dv 5203 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
4443fveq2d 6864 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
4544oveq2d 7405 . . . 4 ((𝜑𝑘 ∈ ℤ) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
461, 45sylan2 593 . . 3 ((𝜑𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
4746sumeq2dv 15674 . 2 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
48 eqid 2730 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
4948dfitg 25676 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
5048dfitg 25676 . 2 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
5147, 49, 503eqtr4g 2790 1 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3913  wss 3916  ifcif 4490   class class class wbr 5109  cmpt 5190  cfv 6513  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074  ici 11076   · cmul 11079  cle 11215   / cdiv 11841  3c3 12243  cz 12535  ...cfz 13474  cexp 14032  cre 15069  Σcsu 15658  2citg2 25523  citg 25525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sum 15659  df-itg 25530
This theorem is referenced by:  itgss2  25720  areacirc  37702
  Copyright terms: Public domain W3C validator