MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgss Structured version   Visualization version   GIF version

Theorem itgss 25848
Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgss.1 (𝜑𝐴𝐵)
itgss.2 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
Assertion
Ref Expression
itgss (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 13565 . . . 4 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
2 iffalse 4533 . . . . . . . . . . . . . 14 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
32ad2antll 729 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4 eldif 3960 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
5 itgss.2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
65adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
76oveq1d 7447 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (𝐶 / (i↑𝑘)) = (0 / (i↑𝑘)))
8 ax-icn 11215 . . . . . . . . . . . . . . . . . . . . . 22 i ∈ ℂ
9 ine0 11699 . . . . . . . . . . . . . . . . . . . . . 22 i ≠ 0
10 expclz 14126 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
118, 9, 10mp3an12 1452 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
12 expne0i 14136 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
138, 9, 12mp3an12 1452 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
1411, 13div0d 12043 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℤ → (0 / (i↑𝑘)) = 0)
1514ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (0 / (i↑𝑘)) = 0)
167, 15eqtrd 2776 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (𝐶 / (i↑𝑘)) = 0)
1716fveq2d 6909 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘0))
18 re0 15192 . . . . . . . . . . . . . . . . 17 (ℜ‘0) = 0
1917, 18eqtrdi 2792 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = 0)
2019ifeq1d 4544 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0))
21 ifid 4565 . . . . . . . . . . . . . . 15 if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0) = 0
2220, 21eqtrdi 2792 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
234, 22sylan2br 595 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
243, 23eqtr4d 2779 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2524expr 456 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → (¬ 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
26 iftrue 4530 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2725, 26pm2.61d2 181 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
28 iftrue 4530 . . . . . . . . . . 11 (𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2928adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3027, 29eqtr4d 2779 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
31 itgss.1 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
3231adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → 𝐴𝐵)
3332sseld 3981 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝑥𝐴𝑥𝐵))
3433con3dimp 408 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → ¬ 𝑥𝐴)
3534, 2syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
36 iffalse 4533 . . . . . . . . . . 11 𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
3736adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
3835, 37eqtr4d 2779 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
3930, 38pm2.61dan 812 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
40 ifan 4578 . . . . . . . 8 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
41 ifan 4578 . . . . . . . 8 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
4239, 40, 413eqtr4g 2801 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
4342mpteq2dv 5243 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
4443fveq2d 6909 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
4544oveq2d 7448 . . . 4 ((𝜑𝑘 ∈ ℤ) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
461, 45sylan2 593 . . 3 ((𝜑𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
4746sumeq2dv 15739 . 2 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
48 eqid 2736 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
4948dfitg 25805 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
5048dfitg 25805 . 2 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
5147, 49, 503eqtr4g 2801 1 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  cdif 3947  wss 3950  ifcif 4524   class class class wbr 5142  cmpt 5224  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  ici 11158   · cmul 11161  cle 11297   / cdiv 11921  3c3 12323  cz 12615  ...cfz 13548  cexp 14103  cre 15137  Σcsu 15723  2citg2 25652  citg 25654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sum 15724  df-itg 25659
This theorem is referenced by:  itgss2  25849  areacirc  37721
  Copyright terms: Public domain W3C validator