MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgss Structured version   Visualization version   GIF version

Theorem itgss 25862
Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgss.1 (𝜑𝐴𝐵)
itgss.2 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
Assertion
Ref Expression
itgss (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgss
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 13561 . . . 4 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
2 iffalse 4540 . . . . . . . . . . . . . 14 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
32ad2antll 729 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4 eldif 3973 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
5 itgss.2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
65adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
76oveq1d 7446 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (𝐶 / (i↑𝑘)) = (0 / (i↑𝑘)))
8 ax-icn 11212 . . . . . . . . . . . . . . . . . . . . . 22 i ∈ ℂ
9 ine0 11696 . . . . . . . . . . . . . . . . . . . . . 22 i ≠ 0
10 expclz 14122 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
118, 9, 10mp3an12 1450 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
12 expne0i 14132 . . . . . . . . . . . . . . . . . . . . . 22 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
138, 9, 12mp3an12 1450 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
1411, 13div0d 12040 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℤ → (0 / (i↑𝑘)) = 0)
1514ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (0 / (i↑𝑘)) = 0)
167, 15eqtrd 2775 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (𝐶 / (i↑𝑘)) = 0)
1716fveq2d 6911 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘0))
18 re0 15188 . . . . . . . . . . . . . . . . 17 (ℜ‘0) = 0
1917, 18eqtrdi 2791 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → (ℜ‘(𝐶 / (i↑𝑘))) = 0)
2019ifeq1d 4550 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0))
21 ifid 4571 . . . . . . . . . . . . . . 15 if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0) = 0
2220, 21eqtrdi 2791 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥 ∈ (𝐵𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
234, 22sylan2br 595 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
243, 23eqtr4d 2778 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐴)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2524expr 456 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → (¬ 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
26 iftrue 4537 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2725, 26pm2.61d2 181 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
28 iftrue 4537 . . . . . . . . . . 11 (𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
2928adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
3027, 29eqtr4d 2778 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
31 itgss.1 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
3231adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → 𝐴𝐵)
3332sseld 3994 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℤ) → (𝑥𝐴𝑥𝐵))
3433con3dimp 408 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → ¬ 𝑥𝐴)
3534, 2syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
36 iffalse 4540 . . . . . . . . . . 11 𝑥𝐵 → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
3736adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
3835, 37eqtr4d 2778 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ ¬ 𝑥𝐵) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
3930, 38pm2.61dan 813 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
40 ifan 4584 . . . . . . . 8 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
41 ifan 4584 . . . . . . . 8 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
4239, 40, 413eqtr4g 2800 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
4342mpteq2dv 5250 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
4443fveq2d 6911 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
4544oveq2d 7447 . . . 4 ((𝜑𝑘 ∈ ℤ) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
461, 45sylan2 593 . . 3 ((𝜑𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
4746sumeq2dv 15735 . 2 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))))
48 eqid 2735 . . 3 (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))
4948dfitg 25819 . 2 𝐴𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
5048dfitg 25819 . 2 𝐵𝐶 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
5147, 49, 503eqtr4g 2800 1 (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cdif 3960  wss 3963  ifcif 4531   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  ici 11155   · cmul 11158  cle 11294   / cdiv 11918  3c3 12320  cz 12611  ...cfz 13544  cexp 14099  cre 15133  Σcsu 15719  2citg2 25665  citg 25667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sum 15720  df-itg 25672
This theorem is referenced by:  itgss2  25863  areacirc  37700
  Copyright terms: Public domain W3C validator