MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabsr Structured version   Visualization version   GIF version

Theorem iblabsr 24431
Description: A measurable function is integrable iff its absolute value is integrable. (See iblabs 24430 for the forward implication.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabsr.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabsr.2 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
iblabsr.3 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
Assertion
Ref Expression
iblabsr (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblabsr
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblabsr.2 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
2 ifan 4490 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0)
3 iblabsr.1 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐵𝑉)
41, 3mbfmptcl 24238 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
54adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
6 ax-icn 10585 . . . . . . . . . . . . . 14 i ∈ ℂ
7 ine0 11064 . . . . . . . . . . . . . 14 i ≠ 0
8 elfzelz 12902 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
98ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
10 expclz 13450 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
116, 7, 9, 10mp3an12i 1462 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ∈ ℂ)
12 expne0i 13457 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
136, 7, 9, 12mp3an12i 1462 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ≠ 0)
145, 11, 13divcld 11405 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (𝐵 / (i↑𝑘)) ∈ ℂ)
1514recld 14544 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) ∈ ℝ)
16 0re 10632 . . . . . . . . . . 11 0 ∈ ℝ
17 ifcl 4483 . . . . . . . . . . 11 (((ℜ‘(𝐵 / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ)
1815, 16, 17sylancl 589 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ)
1918rexrd 10680 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ*)
20 max1 12566 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (ℜ‘(𝐵 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
2116, 15, 20sylancr 590 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
22 elxrge0 12835 . . . . . . . . 9 (if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
2319, 21, 22sylanbrc 586 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ (0[,]+∞))
24 0e0iccpnf 12837 . . . . . . . . 9 0 ∈ (0[,]+∞)
2524a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
2623, 25ifclda 4473 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
272, 26eqeltrid 2918 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ (0[,]+∞))
2827adantr 484 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ (0[,]+∞))
2928fmpttd 6861 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
30 iblabsr.3 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
314abscld 14787 . . . . . . . 8 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
324absge0d 14795 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
3331, 32iblpos 24394 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)))
3430, 33mpbid 235 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ))
3534simprd 499 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
3635adantr 484 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
3731rexrd 10680 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ*)
38 elxrge0 12835 . . . . . . . . . 10 ((abs‘𝐵) ∈ (0[,]+∞) ↔ ((abs‘𝐵) ∈ ℝ* ∧ 0 ≤ (abs‘𝐵)))
3937, 32, 38sylanbrc 586 . . . . . . . . 9 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ (0[,]+∞))
4024a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
4139, 40ifclda 4473 . . . . . . . 8 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
4241adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
4342fmpttd 6861 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞))
4443adantr 484 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞))
4514releabsd 14802 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) ≤ (abs‘(𝐵 / (i↑𝑘))))
465, 11, 13absdivd 14806 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐵 / (i↑𝑘))) = ((abs‘𝐵) / (abs‘(i↑𝑘))))
47 elfznn0 12995 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
4847ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℕ0)
49 absexp 14655 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
506, 48, 49sylancr 590 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
51 absi 14637 . . . . . . . . . . . . . . . . . 18 (abs‘i) = 1
5251oveq1i 7150 . . . . . . . . . . . . . . . . 17 ((abs‘i)↑𝑘) = (1↑𝑘)
53 1exp 13454 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
549, 53syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (1↑𝑘) = 1)
5552, 54syl5eq 2869 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘i)↑𝑘) = 1)
5650, 55eqtrd 2857 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(i↑𝑘)) = 1)
5756oveq2d 7156 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐵) / (abs‘(i↑𝑘))) = ((abs‘𝐵) / 1))
5831recnd 10658 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℂ)
5958adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℂ)
6059div1d 11397 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐵) / 1) = (abs‘𝐵))
6146, 57, 603eqtrd 2861 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐵 / (i↑𝑘))) = (abs‘𝐵))
6245, 61breqtrd 5068 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) ≤ (abs‘𝐵))
635absge0d 14795 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ (abs‘𝐵))
64 breq1 5045 . . . . . . . . . . . . 13 ((ℜ‘(𝐵 / (i↑𝑘))) = if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) → ((ℜ‘(𝐵 / (i↑𝑘))) ≤ (abs‘𝐵) ↔ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ (abs‘𝐵)))
65 breq1 5045 . . . . . . . . . . . . 13 (0 = if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) → (0 ≤ (abs‘𝐵) ↔ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ (abs‘𝐵)))
6664, 65ifboth 4477 . . . . . . . . . . . 12 (((ℜ‘(𝐵 / (i↑𝑘))) ≤ (abs‘𝐵) ∧ 0 ≤ (abs‘𝐵)) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ (abs‘𝐵))
6762, 63, 66syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ (abs‘𝐵))
68 iftrue 4445 . . . . . . . . . . . 12 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
6968adantl 485 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
70 iftrue 4445 . . . . . . . . . . . 12 (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
7170adantl 485 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
7267, 69, 713brtr4d 5074 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0))
7372ex 416 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0)))
74 0le0 11726 . . . . . . . . . . 11 0 ≤ 0
7574a1i 11 . . . . . . . . . 10 𝑥𝐴 → 0 ≤ 0)
76 iffalse 4448 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) = 0)
77 iffalse 4448 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = 0)
7875, 76, 773brtr4d 5074 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0))
7973, 78pm2.61d1 183 . . . . . . . 8 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0))
802, 79eqbrtrid 5077 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0))
8180ralrimivw 3175 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0))
82 reex 10617 . . . . . . . 8 ℝ ∈ V
8382a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → ℝ ∈ V)
8437adantlr 714 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ*)
8584, 63, 38sylanbrc 586 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ (0[,]+∞))
8685, 25ifclda 4473 . . . . . . . 8 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
8786adantr 484 . . . . . . 7 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
88 eqidd 2823 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
89 eqidd 2823 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))
9083, 28, 87, 88, 89ofrfval2 7412 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0)))
9181, 90mpbird 260 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))
92 itg2le 24341 . . . . 5 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))))
9329, 44, 91, 92syl3anc 1368 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))))
94 itg2lecl 24340 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
9529, 36, 93, 94syl3anc 1368 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
9695ralrimiva 3174 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
97 eqidd 2823 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
98 eqidd 2823 . . 3 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
9997, 98, 3isibl2 24368 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)))
1001, 96, 99mpbir2and 712 1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2114  wne 3011  wral 3130  Vcvv 3469  ifcif 4439   class class class wbr 5042  cmpt 5122  wf 6330  cfv 6334  (class class class)co 7140  r cofr 7393  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528  +∞cpnf 10661  *cxr 10663  cle 10665   / cdiv 11286  3c3 11681  0cn0 11885  cz 11969  [,]cicc 12729  ...cfz 12885  cexp 13425  cre 14447  abscabs 14584  MblFncmbf 24216  2citg2 24218  𝐿1cibl 24219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-ofr 7395  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034  df-xmet 20082  df-met 20083  df-ovol 24066  df-vol 24067  df-mbf 24221  df-itg1 24222  df-itg2 24223  df-ibl 24224  df-0p 24272
This theorem is referenced by:  bddmulibl  24440
  Copyright terms: Public domain W3C validator