MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabsr Structured version   Visualization version   GIF version

Theorem iblabsr 23804
Description: A measurable function is integrable iff its absolute value is integrable. (See iblabs 23803 for the forward implication.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabsr.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
iblabsr.2 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
iblabsr.3 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
Assertion
Ref Expression
iblabsr (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblabsr
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblabsr.2 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
2 ifan 4324 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0)
3 iblabsr.1 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐵𝑉)
41, 3mbfmptcl 23611 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
54adantlr 697 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
6 elfzelz 12559 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
76ad2antlr 709 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
8 ax-icn 10274 . . . . . . . . . . . . . . 15 i ∈ ℂ
9 ine0 10744 . . . . . . . . . . . . . . 15 i ≠ 0
10 expclz 13102 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
118, 9, 10mp3an12 1568 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
127, 11syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ∈ ℂ)
13 expne0i 13109 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
148, 9, 13mp3an12 1568 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
157, 14syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ≠ 0)
165, 12, 15divcld 11080 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (𝐵 / (i↑𝑘)) ∈ ℂ)
1716recld 14151 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) ∈ ℝ)
18 0re 10321 . . . . . . . . . . 11 0 ∈ ℝ
19 ifcl 4317 . . . . . . . . . . 11 (((ℜ‘(𝐵 / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ)
2017, 18, 19sylancl 576 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ)
2120rexrd 10368 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ*)
22 max1 12228 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (ℜ‘(𝐵 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
2318, 17, 22sylancr 577 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
24 elxrge0 12495 . . . . . . . . 9 (if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
2521, 23, 24sylanbrc 574 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ (0[,]+∞))
26 0e0iccpnf 12497 . . . . . . . . 9 0 ∈ (0[,]+∞)
2726a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
2825, 27ifclda 4307 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
292, 28syl5eqel 2885 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ (0[,]+∞))
3029adantr 468 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ (0[,]+∞))
3130fmpttd 6601 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
32 iblabsr.3 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
334abscld 14392 . . . . . . . 8 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
344absge0d 14400 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
3533, 34iblpos 23767 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)))
3632, 35mpbid 223 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ))
3736simprd 485 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
3837adantr 468 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
3933rexrd 10368 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ*)
40 elxrge0 12495 . . . . . . . . . 10 ((abs‘𝐵) ∈ (0[,]+∞) ↔ ((abs‘𝐵) ∈ ℝ* ∧ 0 ≤ (abs‘𝐵)))
4139, 34, 40sylanbrc 574 . . . . . . . . 9 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ (0[,]+∞))
4226a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
4341, 42ifclda 4307 . . . . . . . 8 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
4443adantr 468 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
4544fmpttd 6601 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞))
4645adantr 468 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞))
4716releabsd 14407 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) ≤ (abs‘(𝐵 / (i↑𝑘))))
485, 12, 15absdivd 14411 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐵 / (i↑𝑘))) = ((abs‘𝐵) / (abs‘(i↑𝑘))))
49 elfznn0 12650 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
5049ad2antlr 709 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℕ0)
51 absexp 14261 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
528, 50, 51sylancr 577 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
53 absi 14243 . . . . . . . . . . . . . . . . . 18 (abs‘i) = 1
5453oveq1i 6878 . . . . . . . . . . . . . . . . 17 ((abs‘i)↑𝑘) = (1↑𝑘)
55 1exp 13106 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
567, 55syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (1↑𝑘) = 1)
5754, 56syl5eq 2848 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘i)↑𝑘) = 1)
5852, 57eqtrd 2836 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(i↑𝑘)) = 1)
5958oveq2d 6884 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐵) / (abs‘(i↑𝑘))) = ((abs‘𝐵) / 1))
6033recnd 10347 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℂ)
6160adantlr 697 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℂ)
6261div1d 11072 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐵) / 1) = (abs‘𝐵))
6348, 59, 623eqtrd 2840 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐵 / (i↑𝑘))) = (abs‘𝐵))
6447, 63breqtrd 4863 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) ≤ (abs‘𝐵))
655absge0d 14400 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ (abs‘𝐵))
66 breq1 4840 . . . . . . . . . . . . 13 ((ℜ‘(𝐵 / (i↑𝑘))) = if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) → ((ℜ‘(𝐵 / (i↑𝑘))) ≤ (abs‘𝐵) ↔ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ (abs‘𝐵)))
67 breq1 4840 . . . . . . . . . . . . 13 (0 = if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) → (0 ≤ (abs‘𝐵) ↔ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ (abs‘𝐵)))
6866, 67ifboth 4311 . . . . . . . . . . . 12 (((ℜ‘(𝐵 / (i↑𝑘))) ≤ (abs‘𝐵) ∧ 0 ≤ (abs‘𝐵)) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ (abs‘𝐵))
6964, 65, 68syl2anc 575 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ (abs‘𝐵))
70 iftrue 4279 . . . . . . . . . . . 12 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
7170adantl 469 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
72 iftrue 4279 . . . . . . . . . . . 12 (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
7372adantl 469 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
7469, 71, 733brtr4d 4869 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0))
7574ex 399 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0)))
76 0le0 11387 . . . . . . . . . . 11 0 ≤ 0
7776a1i 11 . . . . . . . . . 10 𝑥𝐴 → 0 ≤ 0)
78 iffalse 4282 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) = 0)
79 iffalse 4282 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = 0)
8077, 78, 793brtr4d 4869 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0))
8175, 80pm2.61d1 172 . . . . . . . 8 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0))
822, 81syl5eqbr 4872 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0))
8382ralrimivw 3151 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0))
84 reex 10306 . . . . . . . 8 ℝ ∈ V
8584a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → ℝ ∈ V)
8639adantlr 697 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ*)
8786, 65, 40sylanbrc 574 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ (0[,]+∞))
8887, 27ifclda 4307 . . . . . . . 8 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
8988adantr 468 . . . . . . 7 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,]+∞))
90 eqidd 2803 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
91 eqidd 2803 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))
9285, 30, 89, 90, 91ofrfval2 7139 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ if(𝑥𝐴, (abs‘𝐵), 0)))
9383, 92mpbird 248 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))
94 itg2le 23714 . . . . 5 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))))
9531, 46, 93, 94syl3anc 1483 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))))
96 itg2lecl 23713 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
9731, 38, 95, 96syl3anc 1483 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
9897ralrimiva 3150 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
99 eqidd 2803 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
100 eqidd 2803 . . 3 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
10199, 100, 3isibl2 23741 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)))
1021, 98, 101mpbir2and 695 1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1637  wcel 2155  wne 2974  wral 3092  Vcvv 3387  ifcif 4273   class class class wbr 4837  cmpt 4916  wf 6091  cfv 6095  (class class class)co 6868  𝑟 cofr 7120  cc 10213  cr 10214  0cc0 10215  1c1 10216  ici 10217  +∞cpnf 10350  *cxr 10352  cle 10354   / cdiv 10963  3c3 11351  0cn0 11553  cz 11637  [,]cicc 12390  ...cfz 12543  cexp 13077  cre 14054  abscabs 14191  MblFncmbf 23589  2citg2 23591  𝐿1cibl 23592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-inf2 8779  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292  ax-pre-sup 10293  ax-addf 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-disj 4806  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-se 5265  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-isom 6104  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-of 7121  df-ofr 7122  df-om 7290  df-1st 7392  df-2nd 7393  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-2o 7791  df-oadd 7794  df-er 7973  df-map 8088  df-pm 8089  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-sup 8581  df-inf 8582  df-oi 8648  df-card 9042  df-cda 9269  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-div 10964  df-nn 11300  df-2 11358  df-3 11359  df-n0 11554  df-z 11638  df-uz 11899  df-q 12002  df-rp 12041  df-xadd 12157  df-ioo 12391  df-ico 12393  df-icc 12394  df-fz 12544  df-fzo 12684  df-fl 12811  df-seq 13019  df-exp 13078  df-hash 13332  df-cj 14056  df-re 14057  df-im 14058  df-sqrt 14192  df-abs 14193  df-clim 14436  df-sum 14634  df-xmet 19941  df-met 19942  df-ovol 23439  df-vol 23440  df-mbf 23594  df-itg1 23595  df-itg2 23596  df-ibl 23597  df-0p 23645
This theorem is referenced by:  bddmulibl  23813
  Copyright terms: Public domain W3C validator