| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iblabsr.2 | . 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | 
| 2 |  | ifan 4578 | . . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) | 
| 3 |  | iblabsr.1 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | 
| 4 | 1, 3 | mbfmptcl 25672 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 5 | 4 | adantlr 715 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 6 |  | ax-icn 11215 | . . . . . . . . . . . . . 14
⊢ i ∈
ℂ | 
| 7 |  | ine0 11699 | . . . . . . . . . . . . . 14
⊢ i ≠
0 | 
| 8 |  | elfzelz 13565 | . . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) | 
| 9 | 8 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑘 ∈ ℤ) | 
| 10 |  | expclz 14126 | . . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈
ℂ) | 
| 11 | 6, 7, 9, 10 | mp3an12i 1466 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (i↑𝑘) ∈ ℂ) | 
| 12 |  | expne0i 14136 | . . . . . . . . . . . . . 14
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) | 
| 13 | 6, 7, 9, 12 | mp3an12i 1466 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (i↑𝑘) ≠ 0) | 
| 14 | 5, 11, 13 | divcld 12044 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (𝐵 / (i↑𝑘)) ∈ ℂ) | 
| 15 | 14 | recld 15234 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) ∈ ℝ) | 
| 16 |  | 0re 11264 | . . . . . . . . . . 11
⊢ 0 ∈
ℝ | 
| 17 |  | ifcl 4570 | . . . . . . . . . . 11
⊢
(((ℜ‘(𝐵 /
(i↑𝑘))) ∈ ℝ
∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ) | 
| 18 | 15, 16, 17 | sylancl 586 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ) | 
| 19 | 18 | rexrd 11312 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈
ℝ*) | 
| 20 |  | max1 13228 | . . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (ℜ‘(𝐵 / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤
(ℜ‘(𝐵 /
(i↑𝑘))),
(ℜ‘(𝐵 /
(i↑𝑘))),
0)) | 
| 21 | 16, 15, 20 | sylancr 587 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤
(ℜ‘(𝐵 /
(i↑𝑘))),
(ℜ‘(𝐵 /
(i↑𝑘))),
0)) | 
| 22 |  | elxrge0 13498 | . . . . . . . . 9
⊢ (if(0
≤ (ℜ‘(𝐵 /
(i↑𝑘))),
(ℜ‘(𝐵 /
(i↑𝑘))), 0) ∈
(0[,]+∞) ↔ (if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈ ℝ* ∧ 0
≤ if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) | 
| 23 | 19, 21, 22 | sylanbrc 583 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈
(0[,]+∞)) | 
| 24 |  | 0e0iccpnf 13500 | . . . . . . . . 9
⊢ 0 ∈
(0[,]+∞) | 
| 25 | 24 | a1i 11 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) | 
| 26 | 23, 25 | ifclda 4560 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ∈
(0[,]+∞)) | 
| 27 | 2, 26 | eqeltrid 2844 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈
(0[,]+∞)) | 
| 28 | 27 | adantr 480 | . . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ∈
(0[,]+∞)) | 
| 29 | 28 | fmpttd 7134 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))),
0)):ℝ⟶(0[,]+∞)) | 
| 30 |  | iblabsr.3 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈
𝐿1) | 
| 31 | 4 | abscld 15476 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) | 
| 32 | 4 | absge0d 15484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘𝐵)) | 
| 33 | 31, 32 | iblpos 25829 | . . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ))) | 
| 34 | 30, 33 | mpbid 232 | . . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ)) | 
| 35 | 34 | simprd 495 | . . . . 5
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ) | 
| 36 | 35 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ) | 
| 37 | 31 | rexrd 11312 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈
ℝ*) | 
| 38 |  | elxrge0 13498 | . . . . . . . . . 10
⊢
((abs‘𝐵)
∈ (0[,]+∞) ↔ ((abs‘𝐵) ∈ ℝ* ∧ 0 ≤
(abs‘𝐵))) | 
| 39 | 37, 32, 38 | sylanbrc 583 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ (0[,]+∞)) | 
| 40 | 24 | a1i 11 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) | 
| 41 | 39, 40 | ifclda 4560 | . . . . . . . 8
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,]+∞)) | 
| 42 | 41 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,]+∞)) | 
| 43 | 42 | fmpttd 7134 | . . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵),
0)):ℝ⟶(0[,]+∞)) | 
| 44 | 43 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵),
0)):ℝ⟶(0[,]+∞)) | 
| 45 | 14 | releabsd 15491 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) ≤ (abs‘(𝐵 / (i↑𝑘)))) | 
| 46 | 5, 11, 13 | absdivd 15495 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 / (i↑𝑘))) = ((abs‘𝐵) / (abs‘(i↑𝑘)))) | 
| 47 |  | elfznn0 13661 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℕ0) | 
| 48 | 47 | ad2antlr 727 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑘 ∈ ℕ0) | 
| 49 |  | absexp 15344 | . . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ 𝑘
∈ ℕ0) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘)) | 
| 50 | 6, 48, 49 | sylancr 587 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘)) | 
| 51 |  | absi 15326 | . . . . . . . . . . . . . . . . . 18
⊢
(abs‘i) = 1 | 
| 52 | 51 | oveq1i 7442 | . . . . . . . . . . . . . . . . 17
⊢
((abs‘i)↑𝑘) = (1↑𝑘) | 
| 53 |  | 1exp 14133 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ →
(1↑𝑘) =
1) | 
| 54 | 9, 53 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (1↑𝑘) = 1) | 
| 55 | 52, 54 | eqtrid 2788 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘i)↑𝑘) = 1) | 
| 56 | 50, 55 | eqtrd 2776 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘(i↑𝑘)) = 1) | 
| 57 | 56 | oveq2d 7448 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐵) / (abs‘(i↑𝑘))) = ((abs‘𝐵) / 1)) | 
| 58 | 31 | recnd 11290 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℂ) | 
| 59 | 58 | adantlr 715 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℂ) | 
| 60 | 59 | div1d 12036 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐵) / 1) = (abs‘𝐵)) | 
| 61 | 46, 57, 60 | 3eqtrd 2780 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 / (i↑𝑘))) = (abs‘𝐵)) | 
| 62 | 45, 61 | breqtrd 5168 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) ≤ (abs‘𝐵)) | 
| 63 | 5 | absge0d 15484 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘𝐵)) | 
| 64 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢
((ℜ‘(𝐵 /
(i↑𝑘))) = if(0 ≤
(ℜ‘(𝐵 /
(i↑𝑘))),
(ℜ‘(𝐵 /
(i↑𝑘))), 0) →
((ℜ‘(𝐵 /
(i↑𝑘))) ≤
(abs‘𝐵) ↔ if(0
≤ (ℜ‘(𝐵 /
(i↑𝑘))),
(ℜ‘(𝐵 /
(i↑𝑘))), 0) ≤
(abs‘𝐵))) | 
| 65 |  | breq1 5145 | . . . . . . . . . . . . 13
⊢ (0 = if(0
≤ (ℜ‘(𝐵 /
(i↑𝑘))),
(ℜ‘(𝐵 /
(i↑𝑘))), 0) → (0
≤ (abs‘𝐵) ↔
if(0 ≤ (ℜ‘(𝐵
/ (i↑𝑘))),
(ℜ‘(𝐵 /
(i↑𝑘))), 0) ≤
(abs‘𝐵))) | 
| 66 | 64, 65 | ifboth 4564 | . . . . . . . . . . . 12
⊢
(((ℜ‘(𝐵 /
(i↑𝑘))) ≤
(abs‘𝐵) ∧ 0 ≤
(abs‘𝐵)) → if(0
≤ (ℜ‘(𝐵 /
(i↑𝑘))),
(ℜ‘(𝐵 /
(i↑𝑘))), 0) ≤
(abs‘𝐵)) | 
| 67 | 62, 63, 66 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ (abs‘𝐵)) | 
| 68 |  | iftrue 4530 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) | 
| 69 | 68 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) | 
| 70 |  | iftrue 4530 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = (abs‘𝐵)) | 
| 71 | 70 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = (abs‘𝐵)) | 
| 72 | 67, 69, 71 | 3brtr4d 5174 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) | 
| 73 | 72 | ex 412 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))) | 
| 74 |  | 0le0 12368 | . . . . . . . . . . 11
⊢ 0 ≤
0 | 
| 75 | 74 | a1i 11 | . . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → 0 ≤ 0) | 
| 76 |  | iffalse 4533 | . . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) = 0) | 
| 77 |  | iffalse 4533 | . . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = 0) | 
| 78 | 75, 76, 77 | 3brtr4d 5174 | . . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) | 
| 79 | 73, 78 | pm2.61d1 180 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐵 / (i↑𝑘))), (ℜ‘(𝐵 / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) | 
| 80 | 2, 79 | eqbrtrid 5177 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) | 
| 81 | 80 | ralrimivw 3149 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) | 
| 82 |  | reex 11247 | . . . . . . . 8
⊢ ℝ
∈ V | 
| 83 | 82 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ℝ ∈
V) | 
| 84 | 37 | adantlr 715 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈
ℝ*) | 
| 85 | 84, 63, 38 | sylanbrc 583 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ (0[,]+∞)) | 
| 86 | 85, 25 | ifclda 4560 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,]+∞)) | 
| 87 | 86 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,]+∞)) | 
| 88 |  | eqidd 2737 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) | 
| 89 |  | eqidd 2737 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))) | 
| 90 | 83, 28, 87, 88, 89 | ofrfval2 7719 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))) | 
| 91 | 81, 90 | mpbird 257 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))) | 
| 92 |  | itg2le 25775 | . . . . 5
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 /
(i↑𝑘)))),
(ℜ‘(𝐵 /
(i↑𝑘))),
0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 /
(i↑𝑘)))),
(ℜ‘(𝐵 /
(i↑𝑘))), 0))
∘r ≤ (𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0)))) | 
| 93 | 29, 44, 91, 92 | syl3anc 1372 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0)))) | 
| 94 |  | itg2lecl 25774 | . . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 /
(i↑𝑘)))),
(ℜ‘(𝐵 /
(i↑𝑘))),
0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0)))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) | 
| 95 | 29, 36, 93, 94 | syl3anc 1372 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) | 
| 96 | 95 | ralrimiva 3145 | . 2
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) | 
| 97 |  | eqidd 2737 | . . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) | 
| 98 |  | eqidd 2737 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))) | 
| 99 | 97, 98, 3 | isibl2 25802 | . 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))) | 
| 100 | 1, 96, 99 | mpbir2and 713 | 1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |