MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcn Structured version   Visualization version   GIF version

Theorem itgcn 25209
Description: Transfer itg2cn 25128 to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itgcn.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcn.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgcn.3 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
itgcn (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐴   𝐵,𝑑,𝑢   𝐶,𝑑,𝑢   𝜑,𝑑,𝑢,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥,𝑢,𝑑)

Proof of Theorem itgcn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itgcn.2 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 25132 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcn.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 25000 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65abscld 15321 . . . . . . 7 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
75absge0d 15329 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
8 elrege0 13371 . . . . . . 7 ((abs‘𝐵) ∈ (0[,)+∞) ↔ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
96, 7, 8sylanbrc 583 . . . . . 6 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ (0[,)+∞))
10 0e0icopnf 13375 . . . . . . 7 0 ∈ (0[,)+∞)
1110a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
129, 11ifclda 4521 . . . . 5 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
1312adantr 481 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
1413fmpttd 7063 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,)+∞))
153, 4mbfdm2 25001 . . . . 5 (𝜑𝐴 ∈ dom vol)
16 mblss 24895 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1715, 16syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
18 rembl 24904 . . . . 5 ℝ ∈ dom vol
1918a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
2012adantr 481 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
21 eldifn 4087 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
2221adantl 482 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
2322iffalsed 4497 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘𝐵), 0) = 0)
24 iftrue 4492 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
2524mpteq2ia 5208 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥𝐴 ↦ (abs‘𝐵))
264, 1iblabs 25193 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
276, 7iblpos 25157 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)))
2826, 27mpbid 231 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ))
2928simpld 495 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
3025, 29eqeltrid 2842 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∈ MblFn)
3117, 19, 20, 23, 30mbfss 25010 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∈ MblFn)
3228simprd 496 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
33 itgcn.3 . . 3 (𝜑𝐶 ∈ ℝ+)
3414, 31, 32, 33itg2cn 25128 . 2 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶))
35 simprr 771 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → 𝑢𝐴)
3635sselda 3944 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 𝑥𝐴)
375adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
3836, 37syldan 591 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 𝐵 ∈ ℂ)
3938abscld 15321 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → (abs‘𝐵) ∈ ℝ)
40 simprl 769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → 𝑢 ∈ dom vol)
4137abscld 15321 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
4226adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
4335, 40, 41, 42iblss 25169 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢 ↦ (abs‘𝐵)) ∈ 𝐿1)
4438absge0d 15329 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 0 ≤ (abs‘𝐵))
4539, 43, 44itgposval 25160 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0))))
4635sseld 3943 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢𝑥𝐴))
4746pm4.71d 562 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢 ↔ (𝑥𝑢𝑥𝐴)))
4847ifbid 4509 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → if(𝑥𝑢, (abs‘𝐵), 0) = if((𝑥𝑢𝑥𝐴), (abs‘𝐵), 0))
49 ifan 4539 . . . . . . . . . . . . . . 15 if((𝑥𝑢𝑥𝐴), (abs‘𝐵), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)
5048, 49eqtrdi 2792 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → if(𝑥𝑢, (abs‘𝐵), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
5150mpteq2dv 5207 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)))
5251fveq2d 6846 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))))
5345, 52eqtrd 2776 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))))
54 nfv 1917 . . . . . . . . . . . . . . 15 𝑥 𝑦𝑢
55 nffvmpt1 6853 . . . . . . . . . . . . . . 15 𝑥((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦)
56 nfcv 2907 . . . . . . . . . . . . . . 15 𝑥0
5754, 55, 56nfif 4516 . . . . . . . . . . . . . 14 𝑥if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)
58 nfcv 2907 . . . . . . . . . . . . . 14 𝑦if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0)
59 elequ1 2113 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦𝑢𝑥𝑢))
60 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥))
6159, 60ifbieq1d 4510 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0) = if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0))
6257, 58, 61cbvmpt 5216 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0))
63 fvex 6855 . . . . . . . . . . . . . . . . 17 (abs‘𝐵) ∈ V
64 c0ex 11149 . . . . . . . . . . . . . . . . 17 0 ∈ V
6563, 64ifex 4536 . . . . . . . . . . . . . . . 16 if(𝑥𝐴, (abs‘𝐵), 0) ∈ V
66 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))
6766fvmpt2 6959 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ if(𝑥𝐴, (abs‘𝐵), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥𝐴, (abs‘𝐵), 0))
6865, 67mpan2 689 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥𝐴, (abs‘𝐵), 0))
6968ifeq1d 4505 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7069mpteq2ia 5208 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7162, 70eqtri 2764 . . . . . . . . . . . 12 (𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7271fveq2i 6845 . . . . . . . . . . 11 (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)))
7353, 72eqtr4di 2794 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))))
7473breq1d 5115 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (∫𝑢(abs‘𝐵) d𝑥 < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶))
7574biimprd 247 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ((∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
7675imim2d 57 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
7776expr 457 . . . . . 6 ((𝜑𝑢 ∈ dom vol) → (𝑢𝐴 → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))))
7877com23 86 . . . . 5 ((𝜑𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → (𝑢𝐴 → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))))
7978imp4a 423 . . . 4 ((𝜑𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8079ralimdva 3164 . . 3 (𝜑 → (∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∀𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8180reximdv 3167 . 2 (𝜑 → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8234, 81mpd 15 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  wss 3910  ifcif 4486   class class class wbr 5105  cmpt 5188  dom cdm 5633  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  +∞cpnf 11186   < clt 11189  cle 11190  +crp 12915  [,)cico 13266  abscabs 15119  volcvol 24827  MblFncmbf 24978  2citg2 24980  𝐿1cibl 24981  citg 24982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034
This theorem is referenced by:  ftc1a  25401
  Copyright terms: Public domain W3C validator