MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcn Structured version   Visualization version   GIF version

Theorem itgcn 25771
Description: Transfer itg2cn 25689 to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itgcn.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcn.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgcn.3 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
itgcn (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐴   𝐵,𝑑,𝑢   𝐶,𝑑,𝑢   𝜑,𝑑,𝑢,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥,𝑢,𝑑)

Proof of Theorem itgcn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itgcn.2 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 25693 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcn.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 25562 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65abscld 15343 . . . . . . 7 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
75absge0d 15351 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
8 elrege0 13351 . . . . . . 7 ((abs‘𝐵) ∈ (0[,)+∞) ↔ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
96, 7, 8sylanbrc 583 . . . . . 6 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ (0[,)+∞))
10 0e0icopnf 13355 . . . . . . 7 0 ∈ (0[,)+∞)
1110a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
129, 11ifclda 4511 . . . . 5 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
1312adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
1413fmpttd 7048 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,)+∞))
153, 4mbfdm2 25563 . . . . 5 (𝜑𝐴 ∈ dom vol)
16 mblss 25457 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1715, 16syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
18 rembl 25466 . . . . 5 ℝ ∈ dom vol
1918a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
2012adantr 480 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
21 eldifn 4082 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
2221adantl 481 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
2322iffalsed 4486 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘𝐵), 0) = 0)
24 iftrue 4481 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
2524mpteq2ia 5186 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥𝐴 ↦ (abs‘𝐵))
264, 1iblabs 25755 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
276, 7iblpos 25719 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)))
2826, 27mpbid 232 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ))
2928simpld 494 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
3025, 29eqeltrid 2835 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∈ MblFn)
3117, 19, 20, 23, 30mbfss 25572 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∈ MblFn)
3228simprd 495 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
33 itgcn.3 . . 3 (𝜑𝐶 ∈ ℝ+)
3414, 31, 32, 33itg2cn 25689 . 2 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶))
35 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → 𝑢𝐴)
3635sselda 3934 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 𝑥𝐴)
375adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
3836, 37syldan 591 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 𝐵 ∈ ℂ)
3938abscld 15343 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → (abs‘𝐵) ∈ ℝ)
40 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → 𝑢 ∈ dom vol)
4137abscld 15343 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
4226adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
4335, 40, 41, 42iblss 25731 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢 ↦ (abs‘𝐵)) ∈ 𝐿1)
4438absge0d 15351 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 0 ≤ (abs‘𝐵))
4539, 43, 44itgposval 25722 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0))))
4635sseld 3933 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢𝑥𝐴))
4746pm4.71d 561 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢 ↔ (𝑥𝑢𝑥𝐴)))
4847ifbid 4499 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → if(𝑥𝑢, (abs‘𝐵), 0) = if((𝑥𝑢𝑥𝐴), (abs‘𝐵), 0))
49 ifan 4529 . . . . . . . . . . . . . . 15 if((𝑥𝑢𝑥𝐴), (abs‘𝐵), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)
5048, 49eqtrdi 2782 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → if(𝑥𝑢, (abs‘𝐵), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
5150mpteq2dv 5185 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)))
5251fveq2d 6826 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))))
5345, 52eqtrd 2766 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))))
54 nfv 1915 . . . . . . . . . . . . . . 15 𝑥 𝑦𝑢
55 nffvmpt1 6833 . . . . . . . . . . . . . . 15 𝑥((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦)
56 nfcv 2894 . . . . . . . . . . . . . . 15 𝑥0
5754, 55, 56nfif 4506 . . . . . . . . . . . . . 14 𝑥if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)
58 nfcv 2894 . . . . . . . . . . . . . 14 𝑦if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0)
59 elequ1 2118 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦𝑢𝑥𝑢))
60 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥))
6159, 60ifbieq1d 4500 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0) = if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0))
6257, 58, 61cbvmpt 5193 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0))
63 fvex 6835 . . . . . . . . . . . . . . . . 17 (abs‘𝐵) ∈ V
64 c0ex 11103 . . . . . . . . . . . . . . . . 17 0 ∈ V
6563, 64ifex 4526 . . . . . . . . . . . . . . . 16 if(𝑥𝐴, (abs‘𝐵), 0) ∈ V
66 eqid 2731 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))
6766fvmpt2 6940 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ if(𝑥𝐴, (abs‘𝐵), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥𝐴, (abs‘𝐵), 0))
6865, 67mpan2 691 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥𝐴, (abs‘𝐵), 0))
6968ifeq1d 4495 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7069mpteq2ia 5186 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7162, 70eqtri 2754 . . . . . . . . . . . 12 (𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7271fveq2i 6825 . . . . . . . . . . 11 (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)))
7353, 72eqtr4di 2784 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))))
7473breq1d 5101 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (∫𝑢(abs‘𝐵) d𝑥 < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶))
7574biimprd 248 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ((∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
7675imim2d 57 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
7776expr 456 . . . . . 6 ((𝜑𝑢 ∈ dom vol) → (𝑢𝐴 → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))))
7877com23 86 . . . . 5 ((𝜑𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → (𝑢𝐴 → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))))
7978imp4a 422 . . . 4 ((𝜑𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8079ralimdva 3144 . . 3 (𝜑 → (∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∀𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8180reximdv 3147 . 2 (𝜑 → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8234, 81mpd 15 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cdif 3899  wss 3902  ifcif 4475   class class class wbr 5091  cmpt 5172  dom cdm 5616  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  +∞cpnf 11140   < clt 11143  cle 11144  +crp 12887  [,)cico 13244  abscabs 15138  volcvol 25389  MblFncmbf 25540  2citg2 25542  𝐿1cibl 25543  citg 25544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10323  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-acn 9832  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-rlim 15393  df-sum 15591  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cn 23140  df-cnp 23141  df-cmp 23300  df-tx 23475  df-hmeo 23668  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-ovol 25390  df-vol 25391  df-mbf 25545  df-itg1 25546  df-itg2 25547  df-ibl 25548  df-itg 25549  df-0p 25596
This theorem is referenced by:  ftc1a  25969
  Copyright terms: Public domain W3C validator