Step | Hyp | Ref
| Expression |
1 | | itgcn.2 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
2 | | iblmbf 24837 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
3 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
4 | | itgcn.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
5 | 3, 4 | mbfmptcl 24705 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
6 | 5 | abscld 15076 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) |
7 | 5 | absge0d 15084 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘𝐵)) |
8 | | elrege0 13115 |
. . . . . . 7
⊢
((abs‘𝐵)
∈ (0[,)+∞) ↔ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤
(abs‘𝐵))) |
9 | 6, 7, 8 | sylanbrc 582 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ (0[,)+∞)) |
10 | | 0e0icopnf 13119 |
. . . . . . 7
⊢ 0 ∈
(0[,)+∞) |
11 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,)+∞)) |
12 | 9, 11 | ifclda 4491 |
. . . . 5
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,)+∞)) |
13 | 12 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,)+∞)) |
14 | 13 | fmpttd 6971 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵),
0)):ℝ⟶(0[,)+∞)) |
15 | 3, 4 | mbfdm2 24706 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ dom vol) |
16 | | mblss 24600 |
. . . . 5
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
17 | 15, 16 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
18 | | rembl 24609 |
. . . . 5
⊢ ℝ
∈ dom vol |
19 | 18 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ∈ dom
vol) |
20 | 12 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,)+∞)) |
21 | | eldifn 4058 |
. . . . . 6
⊢ (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) |
22 | 21 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
23 | 22 | iffalsed 4467 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = 0) |
24 | | iftrue 4462 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) = (abs‘𝐵)) |
25 | 24 | mpteq2ia 5173 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) |
26 | 4, 1 | iblabs 24898 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈
𝐿1) |
27 | 6, 7 | iblpos 24862 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ))) |
28 | 26, 27 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ)) |
29 | 28 | simpld 494 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn) |
30 | 25, 29 | eqeltrid 2843 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) ∈ MblFn) |
31 | 17, 19, 20, 23, 30 | mbfss 24715 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) ∈ MblFn) |
32 | 28 | simprd 495 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ) |
33 | | itgcn.3 |
. . 3
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
34 | 14, 31, 32, 33 | itg2cn 24833 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶)) |
35 | | simprr 769 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → 𝑢 ⊆ 𝐴) |
36 | 35 | sselda 3917 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) ∧ 𝑥 ∈ 𝑢) → 𝑥 ∈ 𝐴) |
37 | 5 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
38 | 36, 37 | syldan 590 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) ∧ 𝑥 ∈ 𝑢) → 𝐵 ∈ ℂ) |
39 | 38 | abscld 15076 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) ∧ 𝑥 ∈ 𝑢) → (abs‘𝐵) ∈ ℝ) |
40 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → 𝑢 ∈ dom vol) |
41 | 37 | abscld 15076 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) |
42 | 26 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈
𝐿1) |
43 | 35, 40, 41, 42 | iblss 24874 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → (𝑥 ∈ 𝑢 ↦ (abs‘𝐵)) ∈
𝐿1) |
44 | 38 | absge0d 15084 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) ∧ 𝑥 ∈ 𝑢) → 0 ≤ (abs‘𝐵)) |
45 | 39, 43, 44 | itgposval 24865 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (abs‘𝐵), 0)))) |
46 | 35 | sseld 3916 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → (𝑥 ∈ 𝑢 → 𝑥 ∈ 𝐴)) |
47 | 46 | pm4.71d 561 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → (𝑥 ∈ 𝑢 ↔ (𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝐴))) |
48 | 47 | ifbid 4479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → if(𝑥 ∈ 𝑢, (abs‘𝐵), 0) = if((𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝐴), (abs‘𝐵), 0)) |
49 | | ifan 4509 |
. . . . . . . . . . . . . . 15
⊢ if((𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝐴), (abs‘𝐵), 0) = if(𝑥 ∈ 𝑢, if(𝑥 ∈ 𝐴, (abs‘𝐵), 0), 0) |
50 | 48, 49 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → if(𝑥 ∈ 𝑢, (abs‘𝐵), 0) = if(𝑥 ∈ 𝑢, if(𝑥 ∈ 𝐴, (abs‘𝐵), 0), 0)) |
51 | 50 | mpteq2dv 5172 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, if(𝑥 ∈ 𝐴, (abs‘𝐵), 0), 0))) |
52 | 51 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (abs‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, if(𝑥 ∈ 𝐴, (abs‘𝐵), 0), 0)))) |
53 | 45, 52 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, if(𝑥 ∈ 𝐴, (abs‘𝐵), 0), 0)))) |
54 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥 𝑦 ∈ 𝑢 |
55 | | nffvmpt1 6767 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦) |
56 | | nfcv 2906 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥0 |
57 | 54, 55, 56 | nfif 4486 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0) |
58 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦if(𝑥 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑥), 0) |
59 | | elequ1 2115 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑢 ↔ 𝑥 ∈ 𝑢)) |
60 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑥)) |
61 | 59, 60 | ifbieq1d 4480 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0) = if(𝑥 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑥), 0)) |
62 | 57, 58, 61 | cbvmpt 5181 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑥), 0)) |
63 | | fvex 6769 |
. . . . . . . . . . . . . . . . 17
⊢
(abs‘𝐵) ∈
V |
64 | | c0ex 10900 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
65 | 63, 64 | ifex 4506 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈ V |
66 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) |
67 | 66 | fvmpt2 6868 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) |
68 | 65, 67 | mpan2 687 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) |
69 | 68 | ifeq1d 4475 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → if(𝑥 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑥), 0) = if(𝑥 ∈ 𝑢, if(𝑥 ∈ 𝐴, (abs‘𝐵), 0), 0)) |
70 | 69 | mpteq2ia 5173 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, if(𝑥 ∈ 𝐴, (abs‘𝐵), 0), 0)) |
71 | 62, 70 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, if(𝑥 ∈ 𝐴, (abs‘𝐵), 0), 0)) |
72 | 71 | fveq2i 6759 |
. . . . . . . . . . 11
⊢
(∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, if(𝑥 ∈ 𝐴, (abs‘𝐵), 0), 0))) |
73 | 53, 72 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0)))) |
74 | 73 | breq1d 5080 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → (∫𝑢(abs‘𝐵) d𝑥 < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶)) |
75 | 74 | biimprd 247 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → ((∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)) |
76 | 75 | imim2d 57 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴)) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))) |
77 | 76 | expr 456 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ dom vol) → (𝑢 ⊆ 𝐴 → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))) |
78 | 77 | com23 86 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → (𝑢 ⊆ 𝐴 → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))) |
79 | 78 | imp4a 422 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((𝑢 ⊆ 𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))) |
80 | 79 | ralimdva 3102 |
. . 3
⊢ (𝜑 → (∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∀𝑢 ∈ dom vol((𝑢 ⊆ 𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))) |
81 | 80 | reximdv 3201 |
. 2
⊢ (𝜑 → (∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦 ∈ 𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((𝑢 ⊆ 𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))) |
82 | 34, 81 | mpd 15 |
1
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((𝑢 ⊆ 𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)) |