Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcn Structured version   Visualization version   GIF version

Theorem itgcn 24489
 Description: Transfer itg2cn 24408 to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itgcn.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcn.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgcn.3 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
itgcn (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐴   𝐵,𝑑,𝑢   𝐶,𝑑,𝑢   𝜑,𝑑,𝑢,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥,𝑢,𝑑)

Proof of Theorem itgcn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itgcn.2 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 24412 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcn.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 24281 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65abscld 14808 . . . . . . 7 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
75absge0d 14816 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
8 elrege0 12852 . . . . . . 7 ((abs‘𝐵) ∈ (0[,)+∞) ↔ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
96, 7, 8sylanbrc 586 . . . . . 6 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ (0[,)+∞))
10 0e0icopnf 12856 . . . . . . 7 0 ∈ (0[,)+∞)
1110a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
129, 11ifclda 4462 . . . . 5 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
1312adantr 484 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
1413fmpttd 6866 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,)+∞))
153, 4mbfdm2 24282 . . . . 5 (𝜑𝐴 ∈ dom vol)
16 mblss 24176 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1715, 16syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
18 rembl 24185 . . . . 5 ℝ ∈ dom vol
1918a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
2012adantr 484 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
21 eldifn 4058 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
2221adantl 485 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
2322iffalsed 4439 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘𝐵), 0) = 0)
24 iftrue 4434 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
2524mpteq2ia 5125 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥𝐴 ↦ (abs‘𝐵))
264, 1iblabs 24473 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
276, 7iblpos 24437 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)))
2826, 27mpbid 235 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ))
2928simpld 498 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
3025, 29eqeltrid 2894 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∈ MblFn)
3117, 19, 20, 23, 30mbfss 24291 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∈ MblFn)
3228simprd 499 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
33 itgcn.3 . . 3 (𝜑𝐶 ∈ ℝ+)
3414, 31, 32, 33itg2cn 24408 . 2 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶))
35 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → 𝑢𝐴)
3635sselda 3917 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 𝑥𝐴)
375adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
3836, 37syldan 594 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 𝐵 ∈ ℂ)
3938abscld 14808 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → (abs‘𝐵) ∈ ℝ)
40 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → 𝑢 ∈ dom vol)
4137abscld 14808 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
4226adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
4335, 40, 41, 42iblss 24449 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢 ↦ (abs‘𝐵)) ∈ 𝐿1)
4438absge0d 14816 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 0 ≤ (abs‘𝐵))
4539, 43, 44itgposval 24440 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0))))
4635sseld 3916 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢𝑥𝐴))
4746pm4.71d 565 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢 ↔ (𝑥𝑢𝑥𝐴)))
4847ifbid 4450 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → if(𝑥𝑢, (abs‘𝐵), 0) = if((𝑥𝑢𝑥𝐴), (abs‘𝐵), 0))
49 ifan 4479 . . . . . . . . . . . . . . 15 if((𝑥𝑢𝑥𝐴), (abs‘𝐵), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)
5048, 49eqtrdi 2849 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → if(𝑥𝑢, (abs‘𝐵), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
5150mpteq2dv 5130 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)))
5251fveq2d 6659 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))))
5345, 52eqtrd 2833 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))))
54 nfv 1915 . . . . . . . . . . . . . . 15 𝑥 𝑦𝑢
55 nffvmpt1 6666 . . . . . . . . . . . . . . 15 𝑥((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦)
56 nfcv 2955 . . . . . . . . . . . . . . 15 𝑥0
5754, 55, 56nfif 4457 . . . . . . . . . . . . . 14 𝑥if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)
58 nfcv 2955 . . . . . . . . . . . . . 14 𝑦if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0)
59 elequ1 2118 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦𝑢𝑥𝑢))
60 fveq2 6655 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥))
6159, 60ifbieq1d 4451 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0) = if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0))
6257, 58, 61cbvmpt 5135 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0))
63 fvex 6668 . . . . . . . . . . . . . . . . 17 (abs‘𝐵) ∈ V
64 c0ex 10642 . . . . . . . . . . . . . . . . 17 0 ∈ V
6563, 64ifex 4476 . . . . . . . . . . . . . . . 16 if(𝑥𝐴, (abs‘𝐵), 0) ∈ V
66 eqid 2798 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))
6766fvmpt2 6766 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ if(𝑥𝐴, (abs‘𝐵), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥𝐴, (abs‘𝐵), 0))
6865, 67mpan2 690 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥𝐴, (abs‘𝐵), 0))
6968ifeq1d 4446 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7069mpteq2ia 5125 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7162, 70eqtri 2821 . . . . . . . . . . . 12 (𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7271fveq2i 6658 . . . . . . . . . . 11 (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)))
7353, 72eqtr4di 2851 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))))
7473breq1d 5044 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (∫𝑢(abs‘𝐵) d𝑥 < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶))
7574biimprd 251 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ((∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
7675imim2d 57 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
7776expr 460 . . . . . 6 ((𝜑𝑢 ∈ dom vol) → (𝑢𝐴 → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))))
7877com23 86 . . . . 5 ((𝜑𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → (𝑢𝐴 → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))))
7978imp4a 426 . . . 4 ((𝜑𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8079ralimdva 3144 . . 3 (𝜑 → (∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∀𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8180reximdv 3233 . 2 (𝜑 → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8234, 81mpd 15 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  Vcvv 3442   ∖ cdif 3880   ⊆ wss 3883  ifcif 4428   class class class wbr 5034   ↦ cmpt 5114  dom cdm 5523  ‘cfv 6332  (class class class)co 7145  ℂcc 10542  ℝcr 10543  0cc0 10544  +∞cpnf 10679   < clt 10682   ≤ cle 10683  ℝ+crp 12397  [,)cico 12748  abscabs 14605  volcvol 24108  MblFncmbf 24259  ∫2citg2 24261  𝐿1cibl 24262  ∫citg 24263 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-inf2 9106  ax-cc 9864  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622  ax-addf 10623  ax-mulf 10624 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-disj 5000  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-ofr 7401  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-omul 8108  df-er 8290  df-map 8409  df-pm 8410  df-ixp 8463  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-uz 12252  df-q 12357  df-rp 12398  df-xneg 12515  df-xadd 12516  df-xmul 12517  df-ioo 12750  df-ioc 12751  df-ico 12752  df-icc 12753  df-fz 12906  df-fzo 13049  df-fl 13177  df-mod 13253  df-seq 13385  df-exp 13446  df-hash 13707  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-clim 14857  df-rlim 14858  df-sum 15055  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-starv 16592  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-ds 16599  df-unif 16600  df-hom 16601  df-cco 16602  df-rest 16708  df-topn 16709  df-0g 16727  df-gsum 16728  df-topgen 16729  df-pt 16730  df-prds 16733  df-xrs 16787  df-qtop 16792  df-imas 16793  df-xps 16795  df-mre 16869  df-mrc 16870  df-acs 16872  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-submnd 17969  df-mulg 18238  df-cntz 18460  df-cmn 18921  df-psmet 20104  df-xmet 20105  df-met 20106  df-bl 20107  df-mopn 20108  df-cnfld 20113  df-top 21540  df-topon 21557  df-topsp 21579  df-bases 21592  df-cn 21873  df-cnp 21874  df-cmp 22033  df-tx 22208  df-hmeo 22401  df-xms 22968  df-ms 22969  df-tms 22970  df-cncf 23524  df-ovol 24109  df-vol 24110  df-mbf 24264  df-itg1 24265  df-itg2 24266  df-ibl 24267  df-itg 24268  df-0p 24315 This theorem is referenced by:  ftc1a  24681
 Copyright terms: Public domain W3C validator