MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcn Structured version   Visualization version   GIF version

Theorem itgcn 25353
Description: Transfer itg2cn 25272 to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itgcn.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcn.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgcn.3 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
itgcn (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐴   𝐵,𝑑,𝑢   𝐶,𝑑,𝑢   𝜑,𝑑,𝑢,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥,𝑢,𝑑)

Proof of Theorem itgcn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itgcn.2 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 25276 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcn.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 25144 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65abscld 15379 . . . . . . 7 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
75absge0d 15387 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
8 elrege0 13427 . . . . . . 7 ((abs‘𝐵) ∈ (0[,)+∞) ↔ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
96, 7, 8sylanbrc 583 . . . . . 6 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ (0[,)+∞))
10 0e0icopnf 13431 . . . . . . 7 0 ∈ (0[,)+∞)
1110a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
129, 11ifclda 4562 . . . . 5 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
1312adantr 481 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
1413fmpttd 7111 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,)+∞))
153, 4mbfdm2 25145 . . . . 5 (𝜑𝐴 ∈ dom vol)
16 mblss 25039 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1715, 16syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
18 rembl 25048 . . . . 5 ℝ ∈ dom vol
1918a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
2012adantr 481 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
21 eldifn 4126 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
2221adantl 482 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
2322iffalsed 4538 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘𝐵), 0) = 0)
24 iftrue 4533 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
2524mpteq2ia 5250 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥𝐴 ↦ (abs‘𝐵))
264, 1iblabs 25337 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
276, 7iblpos 25301 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)))
2826, 27mpbid 231 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ))
2928simpld 495 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
3025, 29eqeltrid 2837 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∈ MblFn)
3117, 19, 20, 23, 30mbfss 25154 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∈ MblFn)
3228simprd 496 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
33 itgcn.3 . . 3 (𝜑𝐶 ∈ ℝ+)
3414, 31, 32, 33itg2cn 25272 . 2 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶))
35 simprr 771 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → 𝑢𝐴)
3635sselda 3981 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 𝑥𝐴)
375adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
3836, 37syldan 591 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 𝐵 ∈ ℂ)
3938abscld 15379 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → (abs‘𝐵) ∈ ℝ)
40 simprl 769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → 𝑢 ∈ dom vol)
4137abscld 15379 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
4226adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
4335, 40, 41, 42iblss 25313 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢 ↦ (abs‘𝐵)) ∈ 𝐿1)
4438absge0d 15387 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 0 ≤ (abs‘𝐵))
4539, 43, 44itgposval 25304 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0))))
4635sseld 3980 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢𝑥𝐴))
4746pm4.71d 562 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢 ↔ (𝑥𝑢𝑥𝐴)))
4847ifbid 4550 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → if(𝑥𝑢, (abs‘𝐵), 0) = if((𝑥𝑢𝑥𝐴), (abs‘𝐵), 0))
49 ifan 4580 . . . . . . . . . . . . . . 15 if((𝑥𝑢𝑥𝐴), (abs‘𝐵), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)
5048, 49eqtrdi 2788 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → if(𝑥𝑢, (abs‘𝐵), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
5150mpteq2dv 5249 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)))
5251fveq2d 6892 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))))
5345, 52eqtrd 2772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))))
54 nfv 1917 . . . . . . . . . . . . . . 15 𝑥 𝑦𝑢
55 nffvmpt1 6899 . . . . . . . . . . . . . . 15 𝑥((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦)
56 nfcv 2903 . . . . . . . . . . . . . . 15 𝑥0
5754, 55, 56nfif 4557 . . . . . . . . . . . . . 14 𝑥if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)
58 nfcv 2903 . . . . . . . . . . . . . 14 𝑦if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0)
59 elequ1 2113 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦𝑢𝑥𝑢))
60 fveq2 6888 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥))
6159, 60ifbieq1d 4551 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0) = if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0))
6257, 58, 61cbvmpt 5258 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0))
63 fvex 6901 . . . . . . . . . . . . . . . . 17 (abs‘𝐵) ∈ V
64 c0ex 11204 . . . . . . . . . . . . . . . . 17 0 ∈ V
6563, 64ifex 4577 . . . . . . . . . . . . . . . 16 if(𝑥𝐴, (abs‘𝐵), 0) ∈ V
66 eqid 2732 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))
6766fvmpt2 7006 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ if(𝑥𝐴, (abs‘𝐵), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥𝐴, (abs‘𝐵), 0))
6865, 67mpan2 689 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥𝐴, (abs‘𝐵), 0))
6968ifeq1d 4546 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7069mpteq2ia 5250 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7162, 70eqtri 2760 . . . . . . . . . . . 12 (𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7271fveq2i 6891 . . . . . . . . . . 11 (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)))
7353, 72eqtr4di 2790 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))))
7473breq1d 5157 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (∫𝑢(abs‘𝐵) d𝑥 < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶))
7574biimprd 247 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ((∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
7675imim2d 57 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
7776expr 457 . . . . . 6 ((𝜑𝑢 ∈ dom vol) → (𝑢𝐴 → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))))
7877com23 86 . . . . 5 ((𝜑𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → (𝑢𝐴 → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))))
7978imp4a 423 . . . 4 ((𝜑𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8079ralimdva 3167 . . 3 (𝜑 → (∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∀𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8180reximdv 3170 . 2 (𝜑 → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8234, 81mpd 15 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  cdif 3944  wss 3947  ifcif 4527   class class class wbr 5147  cmpt 5230  dom cdm 5675  cfv 6540  (class class class)co 7405  cc 11104  cr 11105  0cc0 11106  +∞cpnf 11241   < clt 11244  cle 11245  +crp 12970  [,)cico 13322  abscabs 15177  volcvol 24971  MblFncmbf 25122  2citg2 25124  𝐿1cibl 25125  citg 25126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cc 10426  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cn 22722  df-cnp 22723  df-cmp 22882  df-tx 23057  df-hmeo 23250  df-xms 23817  df-ms 23818  df-tms 23819  df-cncf 24385  df-ovol 24972  df-vol 24973  df-mbf 25127  df-itg1 25128  df-itg2 25129  df-ibl 25130  df-itg 25131  df-0p 25178
This theorem is referenced by:  ftc1a  25545
  Copyright terms: Public domain W3C validator