MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcn Structured version   Visualization version   GIF version

Theorem itgcn 24114
Description: Transfer itg2cn 24035 to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
itgcn.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcn.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgcn.3 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
itgcn (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐴   𝐵,𝑑,𝑢   𝐶,𝑑,𝑢   𝜑,𝑑,𝑢,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥,𝑢,𝑑)

Proof of Theorem itgcn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itgcn.2 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 24039 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcn.1 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 23908 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65abscld 14618 . . . . . . 7 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
75absge0d 14626 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
8 elrege0 12681 . . . . . . 7 ((abs‘𝐵) ∈ (0[,)+∞) ↔ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
96, 7, 8sylanbrc 583 . . . . . 6 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ (0[,)+∞))
10 0e0icopnf 12685 . . . . . . 7 0 ∈ (0[,)+∞)
1110a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
129, 11ifclda 4409 . . . . 5 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
1312adantr 481 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
1413fmpttd 6733 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,)+∞))
153, 4mbfdm2 23909 . . . . 5 (𝜑𝐴 ∈ dom vol)
16 mblss 23803 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1715, 16syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
18 rembl 23812 . . . . 5 ℝ ∈ dom vol
1918a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
2012adantr 481 . . . 4 ((𝜑𝑥𝐴) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
21 eldifn 4020 . . . . . 6 (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑥𝐴)
2221adantl 482 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑥𝐴)
2322iffalsed 4386 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → if(𝑥𝐴, (abs‘𝐵), 0) = 0)
24 iftrue 4381 . . . . . 6 (𝑥𝐴 → if(𝑥𝐴, (abs‘𝐵), 0) = (abs‘𝐵))
2524mpteq2ia 5045 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥𝐴 ↦ (abs‘𝐵))
264, 1iblabs 24100 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
276, 7iblpos 24064 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)))
2826, 27mpbid 233 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ))
2928simpld 495 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
3025, 29syl5eqel 2885 . . . 4 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∈ MblFn)
3117, 19, 20, 23, 30mbfss 23918 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) ∈ MblFn)
3228simprd 496 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
33 itgcn.3 . . 3 (𝜑𝐶 ∈ ℝ+)
3414, 31, 32, 33itg2cn 24035 . 2 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶))
35 simprr 769 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → 𝑢𝐴)
3635sselda 3884 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 𝑥𝐴)
375adantlr 711 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
3836, 37syldan 591 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 𝐵 ∈ ℂ)
3938abscld 14618 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → (abs‘𝐵) ∈ ℝ)
40 simprl 767 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → 𝑢 ∈ dom vol)
4137abscld 14618 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
4226adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
4335, 40, 41, 42iblss 24076 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢 ↦ (abs‘𝐵)) ∈ 𝐿1)
4438absge0d 14626 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) ∧ 𝑥𝑢) → 0 ≤ (abs‘𝐵))
4539, 43, 44itgposval 24067 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0))))
4635sseld 3883 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢𝑥𝐴))
4746pm4.71d 562 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥𝑢 ↔ (𝑥𝑢𝑥𝐴)))
4847ifbid 4397 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → if(𝑥𝑢, (abs‘𝐵), 0) = if((𝑥𝑢𝑥𝐴), (abs‘𝐵), 0))
49 ifan 4426 . . . . . . . . . . . . . . 15 if((𝑥𝑢𝑥𝐴), (abs‘𝐵), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)
5048, 49syl6eq 2845 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → if(𝑥𝑢, (abs‘𝐵), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
5150mpteq2dv 5050 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)))
5251fveq2d 6534 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (abs‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))))
5345, 52eqtrd 2829 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))))
54 nfv 1890 . . . . . . . . . . . . . . 15 𝑥 𝑦𝑢
55 nffvmpt1 6541 . . . . . . . . . . . . . . 15 𝑥((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦)
56 nfcv 2947 . . . . . . . . . . . . . . 15 𝑥0
5754, 55, 56nfif 4404 . . . . . . . . . . . . . 14 𝑥if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)
58 nfcv 2947 . . . . . . . . . . . . . 14 𝑦if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0)
59 elequ1 2086 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦𝑢𝑥𝑢))
60 fveq2 6530 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥))
6159, 60ifbieq1d 4398 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0) = if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0))
6257, 58, 61cbvmpt 5054 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0))
63 fvex 6543 . . . . . . . . . . . . . . . . 17 (abs‘𝐵) ∈ V
64 c0ex 10470 . . . . . . . . . . . . . . . . 17 0 ∈ V
6563, 64ifex 4423 . . . . . . . . . . . . . . . 16 if(𝑥𝐴, (abs‘𝐵), 0) ∈ V
66 eqid 2793 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))
6766fvmpt2 6636 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ if(𝑥𝐴, (abs‘𝐵), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥𝐴, (abs‘𝐵), 0))
6865, 67mpan2 687 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥) = if(𝑥𝐴, (abs‘𝐵), 0))
6968ifeq1d 4393 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0) = if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7069mpteq2ia 5045 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7162, 70eqtri 2817 . . . . . . . . . . . 12 (𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0))
7271fveq2i 6533 . . . . . . . . . . 11 (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, if(𝑥𝐴, (abs‘𝐵), 0), 0)))
7353, 72syl6eqr 2847 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ∫𝑢(abs‘𝐵) d𝑥 = (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))))
7473breq1d 4966 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (∫𝑢(abs‘𝐵) d𝑥 < 𝐶 ↔ (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶))
7574biimprd 249 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → ((∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
7675imim2d 57 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ 𝑢𝐴)) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
7776expr 457 . . . . . 6 ((𝜑𝑢 ∈ dom vol) → (𝑢𝐴 → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))))
7877com23 86 . . . . 5 ((𝜑𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → (𝑢𝐴 → ((vol‘𝑢) < 𝑑 → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))))
7978imp4a 423 . . . 4 ((𝜑𝑢 ∈ dom vol) → (((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8079ralimdva 3142 . . 3 (𝜑 → (∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∀𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8180reximdv 3233 . 2 (𝜑 → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑦 ∈ ℝ ↦ if(𝑦𝑢, ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))‘𝑦), 0))) < 𝐶) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶)))
8234, 81mpd 15 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢𝐴 ∧ (vol‘𝑢) < 𝑑) → ∫𝑢(abs‘𝐵) d𝑥 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1520  wcel 2079  wral 3103  wrex 3104  Vcvv 3432  cdif 3851  wss 3854  ifcif 4375   class class class wbr 4956  cmpt 5035  dom cdm 5435  cfv 6217  (class class class)co 7007  cc 10370  cr 10371  0cc0 10372  +∞cpnf 10507   < clt 10510  cle 10511  +crp 12228  [,)cico 12579  abscabs 14415  volcvol 23735  MblFncmbf 23886  2citg2 23888  𝐿1cibl 23889  citg 23890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cc 9692  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-disj 4925  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-ofr 7259  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-omul 7949  df-er 8130  df-map 8249  df-pm 8250  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-dju 9165  df-card 9203  df-acn 9206  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-ioc 12582  df-ico 12583  df-icc 12584  df-fz 12732  df-fzo 12873  df-fl 13000  df-mod 13076  df-seq 13208  df-exp 13268  df-hash 13529  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-clim 14667  df-rlim 14668  df-sum 14865  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-hom 16406  df-cco 16407  df-rest 16513  df-topn 16514  df-0g 16532  df-gsum 16533  df-topgen 16534  df-pt 16535  df-prds 16538  df-xrs 16592  df-qtop 16597  df-imas 16598  df-xps 16600  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-submnd 17763  df-mulg 17970  df-cntz 18176  df-cmn 18623  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-cnfld 20216  df-top 21174  df-topon 21191  df-topsp 21213  df-bases 21226  df-cn 21507  df-cnp 21508  df-cmp 21667  df-tx 21842  df-hmeo 22035  df-xms 22601  df-ms 22602  df-tms 22603  df-cncf 23157  df-ovol 23736  df-vol 23737  df-mbf 23891  df-itg1 23892  df-itg2 23893  df-ibl 23894  df-itg 23895  df-0p 23942
This theorem is referenced by:  ftc1a  24305
  Copyright terms: Public domain W3C validator