MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgreval Structured version   Visualization version   GIF version

Theorem itgreval 25714
Description: Decompose the integral of a real function into positive and negative parts. (Contributed by Mario Carneiro, 31-Jul-2014.)
Hypotheses
Ref Expression
iblrelem.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgreval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgreval (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgreval
StepHypRef Expression
1 iblrelem.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgreval.2 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
31, 2itgrevallem1 25712 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))))
4 0re 11136 . . . . . 6 0 ∈ ℝ
5 ifcl 4524 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
61, 4, 5sylancl 586 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
71iblrelem 25708 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)))
82, 7mpbid 232 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))
98simp1d 1142 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
101, 9mbfpos 25568 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
11 ifan 4532 . . . . . . . . 9 if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)
1211mpteq2i 5191 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))
1312fveq2i 6829 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)))
148simp2d 1143 . . . . . . 7 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
1513, 14eqeltrrid 2833 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))) ∈ ℝ)
16 max1 13105 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
174, 1, 16sylancr 587 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
186, 17iblpos 25710 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))) ∈ ℝ)))
1910, 15, 18mpbir2and 713 . . . . 5 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1)
206, 19, 17itgposval 25713 . . . 4 (𝜑 → ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0))))
2120, 13eqtr4di 2782 . . 3 (𝜑 → ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))))
221renegcld 11565 . . . . . 6 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
23 ifcl 4524 . . . . . 6 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
2422, 4, 23sylancl 586 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
251, 9mbfneg 25567 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ MblFn)
2622, 25mbfpos 25568 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
27 ifan 4532 . . . . . . . . 9 if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)
2827mpteq2i 5191 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
2928fveq2i 6829 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)))
308simp3d 1144 . . . . . . 7 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)
3129, 30eqeltrrid 2833 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) ∈ ℝ)
32 max1 13105 . . . . . . . 8 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
334, 22, 32sylancr 587 . . . . . . 7 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
3424, 33iblpos 25710 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) ∈ ℝ)))
3526, 31, 34mpbir2and 713 . . . . 5 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)
3624, 35, 33itgposval 25713 . . . 4 (𝜑 → ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))))
3736, 29eqtr4di 2782 . . 3 (𝜑 → ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))
3821, 37oveq12d 7371 . 2 (𝜑 → (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))))
393, 38eqtr4d 2767 1 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ifcif 4478   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  cle 11169  cmin 11365  -cneg 11366  MblFncmbf 25531  2citg2 25533  𝐿1cibl 25534  citg 25535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xadd 13033  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-xmet 21272  df-met 21273  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-itg2 25538  df-ibl 25539  df-itg 25540  df-0p 25587
This theorem is referenced by:  itgneg  25721  itgitg1  25726  itgaddlem2  25741  itgmulc2lem2  25750  itgaddnclem2  37658  itgmulc2nclem2  37666
  Copyright terms: Public domain W3C validator