| Step | Hyp | Ref
| Expression |
| 1 | | iblss2.1 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 2 | | iblss2.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ dom vol) |
| 3 | | iblss2.3 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| 4 | | iblss2.4 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
| 5 | | iblss2.5 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
| 6 | | iblmbf 25720 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 7 | 5, 6 | syl 17 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 8 | 1, 2, 3, 4, 7 | mbfss 25599 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn) |
| 9 | 1 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝐴 ⊆ 𝐵) |
| 10 | 9 | sselda 3958 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 11 | 10 | iftrued 4508 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 12 | | iftrue 4506 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 13 | 12 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 14 | 11, 13 | eqtr4d 2773 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 15 | | ifid 4541 |
. . . . . . . . 9
⊢ if(𝑥 ∈ 𝐵, 0, 0) = 0 |
| 16 | | simplll 774 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝜑) |
| 17 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 18 | | simplr 768 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ 𝐴) |
| 19 | 17, 18 | eldifd 3937 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐵 ∖ 𝐴)) |
| 20 | 16, 19, 4 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝐶 = 0) |
| 21 | 20 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐶 / (i↑𝑘)) = (0 / (i↑𝑘))) |
| 22 | | simpllr 775 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝑘 ∈ (0...3)) |
| 23 | | elfzelz 13541 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
| 24 | | ax-icn 11188 |
. . . . . . . . . . . . . . . . 17
⊢ i ∈
ℂ |
| 25 | | ine0 11672 |
. . . . . . . . . . . . . . . . 17
⊢ i ≠
0 |
| 26 | | expclz 14102 |
. . . . . . . . . . . . . . . . . 18
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈
ℂ) |
| 27 | | expne0i 14112 |
. . . . . . . . . . . . . . . . . 18
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) |
| 28 | 26, 27 | div0d 12016 |
. . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0) |
| 29 | 24, 25, 28 | mp3an12 1453 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℤ → (0 /
(i↑𝑘)) =
0) |
| 30 | 22, 23, 29 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (0 / (i↑𝑘)) = 0) |
| 31 | 21, 30 | eqtrd 2770 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝐶 / (i↑𝑘)) = 0) |
| 32 | 31 | fveq2d 6880 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘0)) |
| 33 | | re0 15171 |
. . . . . . . . . . . . 13
⊢
(ℜ‘0) = 0 |
| 34 | 32, 33 | eqtrdi 2786 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = 0) |
| 35 | 34 | ifeq1d 4520 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0)) |
| 36 | | ifid 4541 |
. . . . . . . . . . 11
⊢ if(0 ≤
(ℜ‘(𝐶 /
(i↑𝑘))), 0, 0) =
0 |
| 37 | 35, 36 | eqtrdi 2786 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0) |
| 38 | 37 | ifeq1da 4532 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥 ∈ 𝐵, 0, 0)) |
| 39 | | iffalse 4509 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
| 40 | 39 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0) |
| 41 | 15, 38, 40 | 3eqtr4a 2796 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 42 | 14, 41 | pm2.61dan 812 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)) |
| 43 | | ifan 4554 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 44 | | ifan 4554 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) |
| 45 | 42, 43, 44 | 3eqtr4g 2795 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) |
| 46 | 45 | mpteq2dv 5215 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 47 | 46 | fveq2d 6880 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐶 /
(i↑𝑘)))),
(ℜ‘(𝐶 /
(i↑𝑘))),
0)))) |
| 48 | | eqidd 2736 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 49 | | eqidd 2736 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 50 | 48, 49, 5, 3 | iblitg 25721 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 51 | 23, 50 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 52 | 47, 51 | eqeltrd 2834 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 53 | 52 | ralrimiva 3132 |
. 2
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ) |
| 54 | | eqidd 2736 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) |
| 55 | | eqidd 2736 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘)))) |
| 56 | | elun 4128 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
| 57 | | undif2 4452 |
. . . . . . . 8
⊢ (𝐴 ∪ (𝐵 ∖ 𝐴)) = (𝐴 ∪ 𝐵) |
| 58 | | ssequn1 4161 |
. . . . . . . . 9
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| 59 | 1, 58 | sylib 218 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∪ 𝐵) = 𝐵) |
| 60 | 57, 59 | eqtrid 2782 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
| 61 | 60 | eleq2d 2820 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ 𝐵)) |
| 62 | 56, 61 | bitr3id 285 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ 𝑥 ∈ 𝐵)) |
| 63 | 62 | biimpar 477 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) |
| 64 | 7, 3 | mbfmptcl 25589 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 65 | | 0cn 11227 |
. . . . . 6
⊢ 0 ∈
ℂ |
| 66 | 4, 65 | eqeltrdi 2842 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ ℂ) |
| 67 | 64, 66 | jaodan 959 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) → 𝐶 ∈ ℂ) |
| 68 | 63, 67 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 69 | 54, 55, 68 | isibl2 25719 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ))) |
| 70 | 8, 53, 69 | mpbir2and 713 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈
𝐿1) |