MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblss2 Structured version   Visualization version   GIF version

Theorem iblss2 25314
Description: Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblss2.1 (šœ‘ ā†’ š“ āŠ† šµ)
iblss2.2 (šœ‘ ā†’ šµ āˆˆ dom vol)
iblss2.3 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ š¶ āˆˆ š‘‰)
iblss2.4 ((šœ‘ āˆ§ š‘„ āˆˆ (šµ āˆ– š“)) ā†’ š¶ = 0)
iblss2.5 (šœ‘ ā†’ (š‘„ āˆˆ š“ ā†¦ š¶) āˆˆ šæ1)
Assertion
Ref Expression
iblss2 (šœ‘ ā†’ (š‘„ āˆˆ šµ ā†¦ š¶) āˆˆ šæ1)
Distinct variable groups:   š‘„,š“   š‘„,šµ   šœ‘,š‘„   š‘„,š‘‰
Allowed substitution hint:   š¶(š‘„)

Proof of Theorem iblss2
Dummy variable š‘˜ is distinct from all other variables.
StepHypRef Expression
1 iblss2.1 . . 3 (šœ‘ ā†’ š“ āŠ† šµ)
2 iblss2.2 . . 3 (šœ‘ ā†’ šµ āˆˆ dom vol)
3 iblss2.3 . . 3 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ š¶ āˆˆ š‘‰)
4 iblss2.4 . . 3 ((šœ‘ āˆ§ š‘„ āˆˆ (šµ āˆ– š“)) ā†’ š¶ = 0)
5 iblss2.5 . . . 4 (šœ‘ ā†’ (š‘„ āˆˆ š“ ā†¦ š¶) āˆˆ šæ1)
6 iblmbf 25276 . . . 4 ((š‘„ āˆˆ š“ ā†¦ š¶) āˆˆ šæ1 ā†’ (š‘„ āˆˆ š“ ā†¦ š¶) āˆˆ MblFn)
75, 6syl 17 . . 3 (šœ‘ ā†’ (š‘„ āˆˆ š“ ā†¦ š¶) āˆˆ MblFn)
81, 2, 3, 4, 7mbfss 25154 . 2 (šœ‘ ā†’ (š‘„ āˆˆ šµ ā†¦ š¶) āˆˆ MblFn)
91adantr 481 . . . . . . . . . . 11 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ š“ āŠ† šµ)
109sselda 3981 . . . . . . . . . 10 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ š‘„ āˆˆ š“) ā†’ š‘„ āˆˆ šµ)
1110iftrued 4535 . . . . . . . . 9 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))
12 iftrue 4533 . . . . . . . . . 10 (š‘„ āˆˆ š“ ā†’ if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))
1312adantl 482 . . . . . . . . 9 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))
1411, 13eqtr4d 2775 . . . . . . . 8 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0))
15 ifid 4567 . . . . . . . . 9 if(š‘„ āˆˆ šµ, 0, 0) = 0
16 simplll 773 . . . . . . . . . . . . . . . . 17 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ šœ‘)
17 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ š‘„ āˆˆ šµ)
18 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ Ā¬ š‘„ āˆˆ š“)
1917, 18eldifd 3958 . . . . . . . . . . . . . . . . 17 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ š‘„ āˆˆ (šµ āˆ– š“))
2016, 19, 4syl2anc 584 . . . . . . . . . . . . . . . 16 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ š¶ = 0)
2120oveq1d 7420 . . . . . . . . . . . . . . 15 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ (š¶ / (iā†‘š‘˜)) = (0 / (iā†‘š‘˜)))
22 simpllr 774 . . . . . . . . . . . . . . . 16 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ š‘˜ āˆˆ (0...3))
23 elfzelz 13497 . . . . . . . . . . . . . . . 16 (š‘˜ āˆˆ (0...3) ā†’ š‘˜ āˆˆ ā„¤)
24 ax-icn 11165 . . . . . . . . . . . . . . . . 17 i āˆˆ ā„‚
25 ine0 11645 . . . . . . . . . . . . . . . . 17 i ā‰  0
26 expclz 14046 . . . . . . . . . . . . . . . . . 18 ((i āˆˆ ā„‚ āˆ§ i ā‰  0 āˆ§ š‘˜ āˆˆ ā„¤) ā†’ (iā†‘š‘˜) āˆˆ ā„‚)
27 expne0i 14056 . . . . . . . . . . . . . . . . . 18 ((i āˆˆ ā„‚ āˆ§ i ā‰  0 āˆ§ š‘˜ āˆˆ ā„¤) ā†’ (iā†‘š‘˜) ā‰  0)
2826, 27div0d 11985 . . . . . . . . . . . . . . . . 17 ((i āˆˆ ā„‚ āˆ§ i ā‰  0 āˆ§ š‘˜ āˆˆ ā„¤) ā†’ (0 / (iā†‘š‘˜)) = 0)
2924, 25, 28mp3an12 1451 . . . . . . . . . . . . . . . 16 (š‘˜ āˆˆ ā„¤ ā†’ (0 / (iā†‘š‘˜)) = 0)
3022, 23, 293syl 18 . . . . . . . . . . . . . . 15 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ (0 / (iā†‘š‘˜)) = 0)
3121, 30eqtrd 2772 . . . . . . . . . . . . . 14 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ (š¶ / (iā†‘š‘˜)) = 0)
3231fveq2d 6892 . . . . . . . . . . . . 13 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ (ā„œā€˜(š¶ / (iā†‘š‘˜))) = (ā„œā€˜0))
33 re0 15095 . . . . . . . . . . . . 13 (ā„œā€˜0) = 0
3432, 33eqtrdi 2788 . . . . . . . . . . . 12 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ (ā„œā€˜(š¶ / (iā†‘š‘˜))) = 0)
3534ifeq1d 4546 . . . . . . . . . . 11 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0) = if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0, 0))
36 ifid 4567 . . . . . . . . . . 11 if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0, 0) = 0
3735, 36eqtrdi 2788 . . . . . . . . . 10 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0) = 0)
3837ifeq1da 4558 . . . . . . . . 9 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(š‘„ āˆˆ šµ, 0, 0))
39 iffalse 4536 . . . . . . . . . 10 (Ā¬ š‘„ āˆˆ š“ ā†’ if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = 0)
4039adantl 482 . . . . . . . . 9 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = 0)
4115, 38, 403eqtr4a 2798 . . . . . . . 8 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0))
4214, 41pm2.61dan 811 . . . . . . 7 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0))
43 ifan 4580 . . . . . . 7 if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0) = if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0)
44 ifan 4580 . . . . . . 7 if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0) = if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0)
4542, 43, 443eqtr4g 2797 . . . . . 6 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0) = if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))
4645mpteq2dv 5249 . . . . 5 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)) = (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)))
4746fveq2d 6892 . . . 4 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) = (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))))
48 eqidd 2733 . . . . . 6 (šœ‘ ā†’ (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)) = (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)))
49 eqidd 2733 . . . . . 6 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ (ā„œā€˜(š¶ / (iā†‘š‘˜))) = (ā„œā€˜(š¶ / (iā†‘š‘˜))))
5048, 49, 5, 3iblitg 25277 . . . . 5 ((šœ‘ āˆ§ š‘˜ āˆˆ ā„¤) ā†’ (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) āˆˆ ā„)
5123, 50sylan2 593 . . . 4 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) āˆˆ ā„)
5247, 51eqeltrd 2833 . . 3 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) āˆˆ ā„)
5352ralrimiva 3146 . 2 (šœ‘ ā†’ āˆ€š‘˜ āˆˆ (0...3)(āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) āˆˆ ā„)
54 eqidd 2733 . . 3 (šœ‘ ā†’ (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)) = (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)))
55 eqidd 2733 . . 3 ((šœ‘ āˆ§ š‘„ āˆˆ šµ) ā†’ (ā„œā€˜(š¶ / (iā†‘š‘˜))) = (ā„œā€˜(š¶ / (iā†‘š‘˜))))
56 elun 4147 . . . . . 6 (š‘„ āˆˆ (š“ āˆŖ (šµ āˆ– š“)) ā†” (š‘„ āˆˆ š“ āˆØ š‘„ āˆˆ (šµ āˆ– š“)))
57 undif2 4475 . . . . . . . 8 (š“ āˆŖ (šµ āˆ– š“)) = (š“ āˆŖ šµ)
58 ssequn1 4179 . . . . . . . . 9 (š“ āŠ† šµ ā†” (š“ āˆŖ šµ) = šµ)
591, 58sylib 217 . . . . . . . 8 (šœ‘ ā†’ (š“ āˆŖ šµ) = šµ)
6057, 59eqtrid 2784 . . . . . . 7 (šœ‘ ā†’ (š“ āˆŖ (šµ āˆ– š“)) = šµ)
6160eleq2d 2819 . . . . . 6 (šœ‘ ā†’ (š‘„ āˆˆ (š“ āˆŖ (šµ āˆ– š“)) ā†” š‘„ āˆˆ šµ))
6256, 61bitr3id 284 . . . . 5 (šœ‘ ā†’ ((š‘„ āˆˆ š“ āˆØ š‘„ āˆˆ (šµ āˆ– š“)) ā†” š‘„ āˆˆ šµ))
6362biimpar 478 . . . 4 ((šœ‘ āˆ§ š‘„ āˆˆ šµ) ā†’ (š‘„ āˆˆ š“ āˆØ š‘„ āˆˆ (šµ āˆ– š“)))
647, 3mbfmptcl 25144 . . . . 5 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ š¶ āˆˆ ā„‚)
65 0cn 11202 . . . . . 6 0 āˆˆ ā„‚
664, 65eqeltrdi 2841 . . . . 5 ((šœ‘ āˆ§ š‘„ āˆˆ (šµ āˆ– š“)) ā†’ š¶ āˆˆ ā„‚)
6764, 66jaodan 956 . . . 4 ((šœ‘ āˆ§ (š‘„ āˆˆ š“ āˆØ š‘„ āˆˆ (šµ āˆ– š“))) ā†’ š¶ āˆˆ ā„‚)
6863, 67syldan 591 . . 3 ((šœ‘ āˆ§ š‘„ āˆˆ šµ) ā†’ š¶ āˆˆ ā„‚)
6954, 55, 68isibl2 25275 . 2 (šœ‘ ā†’ ((š‘„ āˆˆ šµ ā†¦ š¶) āˆˆ šæ1 ā†” ((š‘„ āˆˆ šµ ā†¦ š¶) āˆˆ MblFn āˆ§ āˆ€š‘˜ āˆˆ (0...3)(āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) āˆˆ ā„)))
708, 53, 69mpbir2and 711 1 (šœ‘ ā†’ (š‘„ āˆˆ šµ ā†¦ š¶) āˆˆ šæ1)
Colors of variables: wff setvar class
Syntax hints:  Ā¬ wn 3   ā†’ wi 4   āˆ§ wa 396   āˆØ wo 845   āˆ§ w3a 1087   = wceq 1541   āˆˆ wcel 2106   ā‰  wne 2940  āˆ€wral 3061   āˆ– cdif 3944   āˆŖ cun 3945   āŠ† wss 3947  ifcif 4527   class class class wbr 5147   ā†¦ cmpt 5230  dom cdm 5675  ā€˜cfv 6540  (class class class)co 7405  ā„‚cc 11104  ā„cr 11105  0cc0 11106  ici 11108   ā‰¤ cle 11245   / cdiv 11867  3c3 12264  ā„¤cz 12554  ...cfz 13480  ā†‘cexp 14023  ā„œcre 15040  volcvol 24971  MblFncmbf 25122  āˆ«2citg2 25124  šæ1cibl 25125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xadd 13089  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-xmet 20929  df-met 20930  df-ovol 24972  df-vol 24973  df-mbf 25127  df-ibl 25130
This theorem is referenced by:  itgss3  25323  itgless  25325  ftc1anclem5  36553  ftc1anclem6  36554  areacirc  36569  arearect  41949  areaquad  41950
  Copyright terms: Public domain W3C validator