Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblss2 Structured version   Visualization version   GIF version

Theorem iblss2 24416
 Description: Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblss2.1 (𝜑𝐴𝐵)
iblss2.2 (𝜑𝐵 ∈ dom vol)
iblss2.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
iblss2.4 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
iblss2.5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblss2 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iblss2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblss2.1 . . 3 (𝜑𝐴𝐵)
2 iblss2.2 . . 3 (𝜑𝐵 ∈ dom vol)
3 iblss2.3 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
4 iblss2.4 . . 3 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
5 iblss2.5 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
6 iblmbf 24378 . . . 4 ((𝑥𝐴𝐶) ∈ 𝐿1 → (𝑥𝐴𝐶) ∈ MblFn)
75, 6syl 17 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
81, 2, 3, 4, 7mbfss 24257 . 2 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
91adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...3)) → 𝐴𝐵)
109sselda 3915 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑥𝐵)
1110iftrued 4433 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
12 iftrue 4431 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
1312adantl 485 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
1411, 13eqtr4d 2836 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
15 ifid 4464 . . . . . . . . 9 if(𝑥𝐵, 0, 0) = 0
16 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝜑)
17 simpr 488 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑥𝐵)
18 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
1917, 18eldifd 3892 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐵𝐴))
2016, 19, 4syl2anc 587 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝐶 = 0)
2120oveq1d 7150 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) = (0 / (i↑𝑘)))
22 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑘 ∈ (0...3))
23 elfzelz 12904 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
24 ax-icn 10587 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
25 ine0 11066 . . . . . . . . . . . . . . . . 17 i ≠ 0
26 expclz 13452 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
27 expne0i 13459 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
2826, 27div0d 11406 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0)
2924, 25, 28mp3an12 1448 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (0 / (i↑𝑘)) = 0)
3022, 23, 293syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (0 / (i↑𝑘)) = 0)
3121, 30eqtrd 2833 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) = 0)
3231fveq2d 6649 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘0))
33 re0 14505 . . . . . . . . . . . . 13 (ℜ‘0) = 0
3432, 33eqtrdi 2849 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = 0)
3534ifeq1d 4443 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0))
36 ifid 4464 . . . . . . . . . . 11 if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0) = 0
3735, 36eqtrdi 2849 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
3837ifeq1da 4455 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, 0, 0))
39 iffalse 4434 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4039adantl 485 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4115, 38, 403eqtr4a 2859 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
4214, 41pm2.61dan 812 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
43 ifan 4476 . . . . . . 7 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
44 ifan 4476 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
4542, 43, 443eqtr4g 2858 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
4645mpteq2dv 5126 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
4746fveq2d 6649 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
48 eqidd 2799 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
49 eqidd 2799 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
5048, 49, 5, 3iblitg 24379 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5123, 50sylan2 595 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5247, 51eqeltrd 2890 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5352ralrimiva 3149 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
54 eqidd 2799 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
55 eqidd 2799 . . 3 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
56 elun 4076 . . . . . 6 (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
57 undif2 4383 . . . . . . . 8 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
58 ssequn1 4107 . . . . . . . . 9 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
591, 58sylib 221 . . . . . . . 8 (𝜑 → (𝐴𝐵) = 𝐵)
6057, 59syl5eq 2845 . . . . . . 7 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6160eleq2d 2875 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ 𝑥𝐵))
6256, 61bitr3id 288 . . . . 5 (𝜑 → ((𝑥𝐴𝑥 ∈ (𝐵𝐴)) ↔ 𝑥𝐵))
6362biimpar 481 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
647, 3mbfmptcl 24247 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
65 0cn 10624 . . . . . 6 0 ∈ ℂ
664, 65eqeltrdi 2898 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
6764, 66jaodan 955 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑥 ∈ (𝐵𝐴))) → 𝐶 ∈ ℂ)
6863, 67syldan 594 . . 3 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
6954, 55, 68isibl2 24377 . 2 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
708, 53, 69mpbir2and 712 1 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106   ∖ cdif 3878   ∪ cun 3879   ⊆ wss 3881  ifcif 4425   class class class wbr 5030   ↦ cmpt 5110  dom cdm 5519  ‘cfv 6324  (class class class)co 7135  ℂcc 10526  ℝcr 10527  0cc0 10528  ici 10530   ≤ cle 10667   / cdiv 11288  3c3 11683  ℤcz 11971  ...cfz 12887  ↑cexp 13427  ℜcre 14450  volcvol 24074  MblFncmbf 24225  ∫2citg2 24227  𝐿1cibl 24228 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-inf2 9090  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-oi 8960  df-dju 9316  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-n0 11888  df-z 11972  df-uz 12234  df-q 12339  df-rp 12380  df-xadd 12498  df-ioo 12732  df-ico 12734  df-icc 12735  df-fz 12888  df-fzo 13031  df-fl 13159  df-mod 13235  df-seq 13367  df-exp 13428  df-hash 13689  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-xmet 20087  df-met 20088  df-ovol 24075  df-vol 24076  df-mbf 24230  df-ibl 24233 This theorem is referenced by:  itgss3  24425  itgless  24427  ftc1anclem5  35150  ftc1anclem6  35151  areacirc  35166  arearect  40180  areaquad  40181
 Copyright terms: Public domain W3C validator