MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblss2 Structured version   Visualization version   GIF version

Theorem iblss2 25323
Description: Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblss2.1 (šœ‘ ā†’ š“ āŠ† šµ)
iblss2.2 (šœ‘ ā†’ šµ āˆˆ dom vol)
iblss2.3 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ š¶ āˆˆ š‘‰)
iblss2.4 ((šœ‘ āˆ§ š‘„ āˆˆ (šµ āˆ– š“)) ā†’ š¶ = 0)
iblss2.5 (šœ‘ ā†’ (š‘„ āˆˆ š“ ā†¦ š¶) āˆˆ šæ1)
Assertion
Ref Expression
iblss2 (šœ‘ ā†’ (š‘„ āˆˆ šµ ā†¦ š¶) āˆˆ šæ1)
Distinct variable groups:   š‘„,š“   š‘„,šµ   šœ‘,š‘„   š‘„,š‘‰
Allowed substitution hint:   š¶(š‘„)

Proof of Theorem iblss2
Dummy variable š‘˜ is distinct from all other variables.
StepHypRef Expression
1 iblss2.1 . . 3 (šœ‘ ā†’ š“ āŠ† šµ)
2 iblss2.2 . . 3 (šœ‘ ā†’ šµ āˆˆ dom vol)
3 iblss2.3 . . 3 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ š¶ āˆˆ š‘‰)
4 iblss2.4 . . 3 ((šœ‘ āˆ§ š‘„ āˆˆ (šµ āˆ– š“)) ā†’ š¶ = 0)
5 iblss2.5 . . . 4 (šœ‘ ā†’ (š‘„ āˆˆ š“ ā†¦ š¶) āˆˆ šæ1)
6 iblmbf 25285 . . . 4 ((š‘„ āˆˆ š“ ā†¦ š¶) āˆˆ šæ1 ā†’ (š‘„ āˆˆ š“ ā†¦ š¶) āˆˆ MblFn)
75, 6syl 17 . . 3 (šœ‘ ā†’ (š‘„ āˆˆ š“ ā†¦ š¶) āˆˆ MblFn)
81, 2, 3, 4, 7mbfss 25163 . 2 (šœ‘ ā†’ (š‘„ āˆˆ šµ ā†¦ š¶) āˆˆ MblFn)
91adantr 482 . . . . . . . . . . 11 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ š“ āŠ† šµ)
109sselda 3983 . . . . . . . . . 10 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ š‘„ āˆˆ š“) ā†’ š‘„ āˆˆ šµ)
1110iftrued 4537 . . . . . . . . 9 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))
12 iftrue 4535 . . . . . . . . . 10 (š‘„ āˆˆ š“ ā†’ if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))
1312adantl 483 . . . . . . . . 9 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))
1411, 13eqtr4d 2776 . . . . . . . 8 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0))
15 ifid 4569 . . . . . . . . 9 if(š‘„ āˆˆ šµ, 0, 0) = 0
16 simplll 774 . . . . . . . . . . . . . . . . 17 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ šœ‘)
17 simpr 486 . . . . . . . . . . . . . . . . . 18 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ š‘„ āˆˆ šµ)
18 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ Ā¬ š‘„ āˆˆ š“)
1917, 18eldifd 3960 . . . . . . . . . . . . . . . . 17 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ š‘„ āˆˆ (šµ āˆ– š“))
2016, 19, 4syl2anc 585 . . . . . . . . . . . . . . . 16 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ š¶ = 0)
2120oveq1d 7424 . . . . . . . . . . . . . . 15 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ (š¶ / (iā†‘š‘˜)) = (0 / (iā†‘š‘˜)))
22 simpllr 775 . . . . . . . . . . . . . . . 16 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ š‘˜ āˆˆ (0...3))
23 elfzelz 13501 . . . . . . . . . . . . . . . 16 (š‘˜ āˆˆ (0...3) ā†’ š‘˜ āˆˆ ā„¤)
24 ax-icn 11169 . . . . . . . . . . . . . . . . 17 i āˆˆ ā„‚
25 ine0 11649 . . . . . . . . . . . . . . . . 17 i ā‰  0
26 expclz 14050 . . . . . . . . . . . . . . . . . 18 ((i āˆˆ ā„‚ āˆ§ i ā‰  0 āˆ§ š‘˜ āˆˆ ā„¤) ā†’ (iā†‘š‘˜) āˆˆ ā„‚)
27 expne0i 14060 . . . . . . . . . . . . . . . . . 18 ((i āˆˆ ā„‚ āˆ§ i ā‰  0 āˆ§ š‘˜ āˆˆ ā„¤) ā†’ (iā†‘š‘˜) ā‰  0)
2826, 27div0d 11989 . . . . . . . . . . . . . . . . 17 ((i āˆˆ ā„‚ āˆ§ i ā‰  0 āˆ§ š‘˜ āˆˆ ā„¤) ā†’ (0 / (iā†‘š‘˜)) = 0)
2924, 25, 28mp3an12 1452 . . . . . . . . . . . . . . . 16 (š‘˜ āˆˆ ā„¤ ā†’ (0 / (iā†‘š‘˜)) = 0)
3022, 23, 293syl 18 . . . . . . . . . . . . . . 15 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ (0 / (iā†‘š‘˜)) = 0)
3121, 30eqtrd 2773 . . . . . . . . . . . . . 14 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ (š¶ / (iā†‘š‘˜)) = 0)
3231fveq2d 6896 . . . . . . . . . . . . 13 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ (ā„œā€˜(š¶ / (iā†‘š‘˜))) = (ā„œā€˜0))
33 re0 15099 . . . . . . . . . . . . 13 (ā„œā€˜0) = 0
3432, 33eqtrdi 2789 . . . . . . . . . . . 12 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ (ā„œā€˜(š¶ / (iā†‘š‘˜))) = 0)
3534ifeq1d 4548 . . . . . . . . . . 11 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0) = if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0, 0))
36 ifid 4569 . . . . . . . . . . 11 if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0, 0) = 0
3735, 36eqtrdi 2789 . . . . . . . . . 10 ((((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) āˆ§ š‘„ āˆˆ šµ) ā†’ if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0) = 0)
3837ifeq1da 4560 . . . . . . . . 9 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(š‘„ āˆˆ šµ, 0, 0))
39 iffalse 4538 . . . . . . . . . 10 (Ā¬ š‘„ āˆˆ š“ ā†’ if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = 0)
4039adantl 483 . . . . . . . . 9 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = 0)
4115, 38, 403eqtr4a 2799 . . . . . . . 8 (((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) āˆ§ Ā¬ š‘„ āˆˆ š“) ā†’ if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0))
4214, 41pm2.61dan 812 . . . . . . 7 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0) = if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0))
43 ifan 4582 . . . . . . 7 if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0) = if(š‘„ āˆˆ šµ, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0)
44 ifan 4582 . . . . . . 7 if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0) = if(š‘„ āˆˆ š“, if(0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0), 0)
4542, 43, 443eqtr4g 2798 . . . . . 6 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0) = if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))
4645mpteq2dv 5251 . . . . 5 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)) = (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)))
4746fveq2d 6896 . . . 4 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) = (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))))
48 eqidd 2734 . . . . . 6 (šœ‘ ā†’ (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)) = (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)))
49 eqidd 2734 . . . . . 6 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ (ā„œā€˜(š¶ / (iā†‘š‘˜))) = (ā„œā€˜(š¶ / (iā†‘š‘˜))))
5048, 49, 5, 3iblitg 25286 . . . . 5 ((šœ‘ āˆ§ š‘˜ āˆˆ ā„¤) ā†’ (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) āˆˆ ā„)
5123, 50sylan2 594 . . . 4 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ š“ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) āˆˆ ā„)
5247, 51eqeltrd 2834 . . 3 ((šœ‘ āˆ§ š‘˜ āˆˆ (0...3)) ā†’ (āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) āˆˆ ā„)
5352ralrimiva 3147 . 2 (šœ‘ ā†’ āˆ€š‘˜ āˆˆ (0...3)(āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) āˆˆ ā„)
54 eqidd 2734 . . 3 (šœ‘ ā†’ (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)) = (š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0)))
55 eqidd 2734 . . 3 ((šœ‘ āˆ§ š‘„ āˆˆ šµ) ā†’ (ā„œā€˜(š¶ / (iā†‘š‘˜))) = (ā„œā€˜(š¶ / (iā†‘š‘˜))))
56 elun 4149 . . . . . 6 (š‘„ āˆˆ (š“ āˆŖ (šµ āˆ– š“)) ā†” (š‘„ āˆˆ š“ āˆØ š‘„ āˆˆ (šµ āˆ– š“)))
57 undif2 4477 . . . . . . . 8 (š“ āˆŖ (šµ āˆ– š“)) = (š“ āˆŖ šµ)
58 ssequn1 4181 . . . . . . . . 9 (š“ āŠ† šµ ā†” (š“ āˆŖ šµ) = šµ)
591, 58sylib 217 . . . . . . . 8 (šœ‘ ā†’ (š“ āˆŖ šµ) = šµ)
6057, 59eqtrid 2785 . . . . . . 7 (šœ‘ ā†’ (š“ āˆŖ (šµ āˆ– š“)) = šµ)
6160eleq2d 2820 . . . . . 6 (šœ‘ ā†’ (š‘„ āˆˆ (š“ āˆŖ (šµ āˆ– š“)) ā†” š‘„ āˆˆ šµ))
6256, 61bitr3id 285 . . . . 5 (šœ‘ ā†’ ((š‘„ āˆˆ š“ āˆØ š‘„ āˆˆ (šµ āˆ– š“)) ā†” š‘„ āˆˆ šµ))
6362biimpar 479 . . . 4 ((šœ‘ āˆ§ š‘„ āˆˆ šµ) ā†’ (š‘„ āˆˆ š“ āˆØ š‘„ āˆˆ (šµ āˆ– š“)))
647, 3mbfmptcl 25153 . . . . 5 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ š¶ āˆˆ ā„‚)
65 0cn 11206 . . . . . 6 0 āˆˆ ā„‚
664, 65eqeltrdi 2842 . . . . 5 ((šœ‘ āˆ§ š‘„ āˆˆ (šµ āˆ– š“)) ā†’ š¶ āˆˆ ā„‚)
6764, 66jaodan 957 . . . 4 ((šœ‘ āˆ§ (š‘„ āˆˆ š“ āˆØ š‘„ āˆˆ (šµ āˆ– š“))) ā†’ š¶ āˆˆ ā„‚)
6863, 67syldan 592 . . 3 ((šœ‘ āˆ§ š‘„ āˆˆ šµ) ā†’ š¶ āˆˆ ā„‚)
6954, 55, 68isibl2 25284 . 2 (šœ‘ ā†’ ((š‘„ āˆˆ šµ ā†¦ š¶) āˆˆ šæ1 ā†” ((š‘„ āˆˆ šµ ā†¦ š¶) āˆˆ MblFn āˆ§ āˆ€š‘˜ āˆˆ (0...3)(āˆ«2ā€˜(š‘„ āˆˆ ā„ ā†¦ if((š‘„ āˆˆ šµ āˆ§ 0 ā‰¤ (ā„œā€˜(š¶ / (iā†‘š‘˜)))), (ā„œā€˜(š¶ / (iā†‘š‘˜))), 0))) āˆˆ ā„)))
708, 53, 69mpbir2and 712 1 (šœ‘ ā†’ (š‘„ āˆˆ šµ ā†¦ š¶) āˆˆ šæ1)
Colors of variables: wff setvar class
Syntax hints:  Ā¬ wn 3   ā†’ wi 4   āˆ§ wa 397   āˆØ wo 846   āˆ§ w3a 1088   = wceq 1542   āˆˆ wcel 2107   ā‰  wne 2941  āˆ€wral 3062   āˆ– cdif 3946   āˆŖ cun 3947   āŠ† wss 3949  ifcif 4529   class class class wbr 5149   ā†¦ cmpt 5232  dom cdm 5677  ā€˜cfv 6544  (class class class)co 7409  ā„‚cc 11108  ā„cr 11109  0cc0 11110  ici 11112   ā‰¤ cle 11249   / cdiv 11871  3c3 12268  ā„¤cz 12558  ...cfz 13484  ā†‘cexp 14027  ā„œcre 15044  volcvol 24980  MblFncmbf 25131  āˆ«2citg2 25133  šæ1cibl 25134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-xadd 13093  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-xmet 20937  df-met 20938  df-ovol 24981  df-vol 24982  df-mbf 25136  df-ibl 25139
This theorem is referenced by:  itgss3  25332  itgless  25334  ftc1anclem5  36613  ftc1anclem6  36614  areacirc  36629  arearect  42012  areaquad  42013
  Copyright terms: Public domain W3C validator