MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblss2 Structured version   Visualization version   GIF version

Theorem iblss2 25861
Description: Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblss2.1 (𝜑𝐴𝐵)
iblss2.2 (𝜑𝐵 ∈ dom vol)
iblss2.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
iblss2.4 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
iblss2.5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblss2 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iblss2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblss2.1 . . 3 (𝜑𝐴𝐵)
2 iblss2.2 . . 3 (𝜑𝐵 ∈ dom vol)
3 iblss2.3 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
4 iblss2.4 . . 3 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
5 iblss2.5 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
6 iblmbf 25822 . . . 4 ((𝑥𝐴𝐶) ∈ 𝐿1 → (𝑥𝐴𝐶) ∈ MblFn)
75, 6syl 17 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
81, 2, 3, 4, 7mbfss 25700 . 2 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
91adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...3)) → 𝐴𝐵)
109sselda 4008 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑥𝐵)
1110iftrued 4556 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
12 iftrue 4554 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
1312adantl 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
1411, 13eqtr4d 2783 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
15 ifid 4588 . . . . . . . . 9 if(𝑥𝐵, 0, 0) = 0
16 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝜑)
17 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑥𝐵)
18 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
1917, 18eldifd 3987 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐵𝐴))
2016, 19, 4syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝐶 = 0)
2120oveq1d 7463 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) = (0 / (i↑𝑘)))
22 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑘 ∈ (0...3))
23 elfzelz 13584 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
24 ax-icn 11243 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
25 ine0 11725 . . . . . . . . . . . . . . . . 17 i ≠ 0
26 expclz 14135 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
27 expne0i 14145 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
2826, 27div0d 12069 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0)
2924, 25, 28mp3an12 1451 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (0 / (i↑𝑘)) = 0)
3022, 23, 293syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (0 / (i↑𝑘)) = 0)
3121, 30eqtrd 2780 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) = 0)
3231fveq2d 6924 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘0))
33 re0 15201 . . . . . . . . . . . . 13 (ℜ‘0) = 0
3432, 33eqtrdi 2796 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = 0)
3534ifeq1d 4567 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0))
36 ifid 4588 . . . . . . . . . . 11 if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0) = 0
3735, 36eqtrdi 2796 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
3837ifeq1da 4579 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, 0, 0))
39 iffalse 4557 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4039adantl 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4115, 38, 403eqtr4a 2806 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
4214, 41pm2.61dan 812 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
43 ifan 4601 . . . . . . 7 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
44 ifan 4601 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
4542, 43, 443eqtr4g 2805 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
4645mpteq2dv 5268 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
4746fveq2d 6924 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
48 eqidd 2741 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
49 eqidd 2741 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
5048, 49, 5, 3iblitg 25823 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5123, 50sylan2 592 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5247, 51eqeltrd 2844 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5352ralrimiva 3152 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
54 eqidd 2741 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
55 eqidd 2741 . . 3 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
56 elun 4176 . . . . . 6 (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
57 undif2 4500 . . . . . . . 8 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
58 ssequn1 4209 . . . . . . . . 9 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
591, 58sylib 218 . . . . . . . 8 (𝜑 → (𝐴𝐵) = 𝐵)
6057, 59eqtrid 2792 . . . . . . 7 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6160eleq2d 2830 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ 𝑥𝐵))
6256, 61bitr3id 285 . . . . 5 (𝜑 → ((𝑥𝐴𝑥 ∈ (𝐵𝐴)) ↔ 𝑥𝐵))
6362biimpar 477 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
647, 3mbfmptcl 25690 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
65 0cn 11282 . . . . . 6 0 ∈ ℂ
664, 65eqeltrdi 2852 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
6764, 66jaodan 958 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑥 ∈ (𝐵𝐴))) → 𝐶 ∈ ℂ)
6863, 67syldan 590 . . 3 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
6954, 55, 68isibl2 25821 . 2 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
708, 53, 69mpbir2and 712 1 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  cun 3974  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  ici 11186  cle 11325   / cdiv 11947  3c3 12349  cz 12639  ...cfz 13567  cexp 14112  cre 15146  volcvol 25517  MblFncmbf 25668  2citg2 25670  𝐿1cibl 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673  df-ibl 25676
This theorem is referenced by:  itgss3  25870  itgless  25872  ftc1anclem5  37657  ftc1anclem6  37658  areacirc  37673  arearect  43176  areaquad  43177
  Copyright terms: Public domain W3C validator