Proof of Theorem itgle
Step | Hyp | Ref
| Expression |
1 | | itgle.1 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
2 | | itgle.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
3 | 2 | iblrelem 23994 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))) |
4 | 1, 3 | mpbid 224 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)) |
5 | 4 | simp2d 1134 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ) |
6 | | itgle.2 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
7 | | itgle.4 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
8 | 7 | iblrelem 23994 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ))) |
9 | 6, 8 | mpbid 224 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)) |
10 | 9 | simp3d 1135 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ) |
11 | 9 | simp2d 1134 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ) |
12 | 4 | simp3d 1135 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ) |
13 | 2 | ad2ant2r 737 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ) |
14 | 13 | rexrd 10426 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈
ℝ*) |
15 | | simprr 763 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵) |
16 | | elxrge0 12595 |
. . . . . . 7
⊢ (𝐵 ∈ (0[,]+∞) ↔
(𝐵 ∈
ℝ* ∧ 0 ≤ 𝐵)) |
17 | 14, 15, 16 | sylanbrc 578 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ (0[,]+∞)) |
18 | | 0e0iccpnf 12597 |
. . . . . . 7
⊢ 0 ∈
(0[,]+∞) |
19 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ∈
(0[,]+∞)) |
20 | 17, 19 | ifclda 4341 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,]+∞)) |
21 | 20 | fmpttd 6649 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵,
0)):ℝ⟶(0[,]+∞)) |
22 | 7 | ad2ant2r 737 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ) |
23 | 22 | rexrd 10426 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈
ℝ*) |
24 | | simprr 763 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶) |
25 | | elxrge0 12595 |
. . . . . . 7
⊢ (𝐶 ∈ (0[,]+∞) ↔
(𝐶 ∈
ℝ* ∧ 0 ≤ 𝐶)) |
26 | 23, 24, 25 | sylanbrc 578 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ (0[,]+∞)) |
27 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 0 ∈
(0[,]+∞)) |
28 | 26, 27 | ifclda 4341 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,]+∞)) |
29 | 28 | fmpttd 6649 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶,
0)):ℝ⟶(0[,]+∞)) |
30 | | 0re 10378 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
31 | | max1 12328 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝐶
∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
32 | 30, 7, 31 | sylancr 581 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
33 | | ifcl 4351 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
34 | 7, 30, 33 | sylancl 580 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
35 | | itgle.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
36 | | max2 12330 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 𝐶
∈ ℝ) → 𝐶
≤ if(0 ≤ 𝐶, 𝐶, 0)) |
37 | 30, 7, 36 | sylancr 581 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
38 | 2, 7, 34, 35, 37 | letrd 10533 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
39 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ ℝ) |
40 | | maxle 12334 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝐵
∈ ℝ ∧ if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0)))) |
41 | 39, 2, 34, 40 | syl3anc 1439 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0)))) |
42 | 32, 38, 41 | mpbir2and 703 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
43 | | iftrue 4313 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0)) |
44 | 43 | adantl 475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0)) |
45 | | iftrue 4313 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0)) |
46 | 45 | adantl 475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0)) |
47 | 42, 44, 46 | 3brtr4d 4918 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)) |
48 | 47 | ex 403 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))) |
49 | | 0le0 11483 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
50 | 49 | a1i 11 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → 0 ≤ 0) |
51 | | iffalse 4316 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = 0) |
52 | | iffalse 4316 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = 0) |
53 | 50, 51, 52 | 3brtr4d 4918 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)) |
54 | 48, 53 | pm2.61d1 173 |
. . . . . . 7
⊢ (𝜑 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)) |
55 | | ifan 4358 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) |
56 | | ifan 4358 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) |
57 | 54, 55, 56 | 3brtr4g 4920 |
. . . . . 6
⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
58 | 57 | ralrimivw 3149 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
59 | | reex 10363 |
. . . . . . 7
⊢ ℝ
∈ V |
60 | 59 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ∈
V) |
61 | | eqidd 2779 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) |
62 | | eqidd 2779 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) |
63 | 60, 20, 28, 61, 62 | ofrfval2 7192 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑟 ≤
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) |
64 | 58, 63 | mpbird 249 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑟 ≤
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) |
65 | | itg2le 23943 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑟 ≤
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) |
66 | 21, 29, 64, 65 | syl3anc 1439 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) |
67 | 7 | renegcld 10802 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ∈ ℝ) |
68 | 67 | ad2ant2r 737 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ) |
69 | 68 | rexrd 10426 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈
ℝ*) |
70 | | simprr 763 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → 0 ≤ -𝐶) |
71 | | elxrge0 12595 |
. . . . . . 7
⊢ (-𝐶 ∈ (0[,]+∞) ↔
(-𝐶 ∈
ℝ* ∧ 0 ≤ -𝐶)) |
72 | 69, 70, 71 | sylanbrc 578 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ (0[,]+∞)) |
73 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → 0 ∈
(0[,]+∞)) |
74 | 72, 73 | ifclda 4341 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ∈ (0[,]+∞)) |
75 | 74 | fmpttd 6649 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶,
0)):ℝ⟶(0[,]+∞)) |
76 | 2 | renegcld 10802 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
77 | 76 | ad2ant2r 737 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ) |
78 | 77 | rexrd 10426 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈
ℝ*) |
79 | | simprr 763 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ -𝐵) |
80 | | elxrge0 12595 |
. . . . . . 7
⊢ (-𝐵 ∈ (0[,]+∞) ↔
(-𝐵 ∈
ℝ* ∧ 0 ≤ -𝐵)) |
81 | 78, 79, 80 | sylanbrc 578 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ (0[,]+∞)) |
82 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → 0 ∈
(0[,]+∞)) |
83 | 81, 82 | ifclda 4341 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) ∈ (0[,]+∞)) |
84 | 83 | fmpttd 6649 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵,
0)):ℝ⟶(0[,]+∞)) |
85 | | max1 12328 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ -𝐵
∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
86 | 30, 76, 85 | sylancr 581 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
87 | | ifcl 4351 |
. . . . . . . . . . . . 13
⊢ ((-𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
88 | 76, 30, 87 | sylancl 580 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
89 | 2, 7 | lenegd 10954 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝐶 ↔ -𝐶 ≤ -𝐵)) |
90 | 35, 89 | mpbid 224 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ≤ -𝐵) |
91 | | max2 12330 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ -𝐵
∈ ℝ) → -𝐵
≤ if(0 ≤ -𝐵, -𝐵, 0)) |
92 | 30, 76, 91 | sylancr 581 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
93 | 67, 76, 88, 90, 92 | letrd 10533 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
94 | | maxle 12334 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ -𝐶
∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → (if(0 ≤
-𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0)))) |
95 | 39, 67, 88, 94 | syl3anc 1439 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0)))) |
96 | 86, 93, 95 | mpbir2and 703 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
97 | | iftrue 4313 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0)) |
98 | 97 | adantl 475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0)) |
99 | | iftrue 4313 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0)) |
100 | 99 | adantl 475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0)) |
101 | 96, 98, 100 | 3brtr4d 4918 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)) |
102 | 101 | ex 403 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) |
103 | | iffalse 4316 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = 0) |
104 | | iffalse 4316 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = 0) |
105 | 50, 103, 104 | 3brtr4d 4918 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)) |
106 | 102, 105 | pm2.61d1 173 |
. . . . . . 7
⊢ (𝜑 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)) |
107 | | ifan 4358 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) |
108 | | ifan 4358 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) |
109 | 106, 107,
108 | 3brtr4g 4920 |
. . . . . 6
⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) |
110 | 109 | ralrimivw 3149 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) |
111 | | eqidd 2779 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) |
112 | | eqidd 2779 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) |
113 | 60, 74, 83, 111, 112 | ofrfval2 7192 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘𝑟 ≤
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) |
114 | 110, 113 | mpbird 249 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘𝑟 ≤
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) |
115 | | itg2le 23943 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘𝑟 ≤
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) |
116 | 75, 84, 114, 115 | syl3anc 1439 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) |
117 | 5, 10, 11, 12, 66, 116 | le2subd 10995 |
. 2
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) ≤
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))))) |
118 | 2, 1 | itgrevallem1 23998 |
. 2
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))) |
119 | 7, 6 | itgrevallem1 23998 |
. 2
⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))))) |
120 | 117, 118,
119 | 3brtr4d 4918 |
1
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥) |