Proof of Theorem itgle
Step | Hyp | Ref
| Expression |
1 | | itgle.1 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
2 | | itgle.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
3 | 2 | iblrelem 24860 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))) |
4 | 1, 3 | mpbid 231 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)) |
5 | 4 | simp2d 1141 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ) |
6 | | itgle.2 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
7 | | itgle.4 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
8 | 7 | iblrelem 24860 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ))) |
9 | 6, 8 | mpbid 231 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)) |
10 | 9 | simp3d 1142 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ) |
11 | 9 | simp2d 1141 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ) |
12 | 4 | simp3d 1142 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ) |
13 | 2 | ad2ant2r 743 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ) |
14 | 13 | rexrd 10956 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈
ℝ*) |
15 | | simprr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵) |
16 | | elxrge0 13118 |
. . . . . . 7
⊢ (𝐵 ∈ (0[,]+∞) ↔
(𝐵 ∈
ℝ* ∧ 0 ≤ 𝐵)) |
17 | 14, 15, 16 | sylanbrc 582 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ (0[,]+∞)) |
18 | | 0e0iccpnf 13120 |
. . . . . . 7
⊢ 0 ∈
(0[,]+∞) |
19 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ∈
(0[,]+∞)) |
20 | 17, 19 | ifclda 4491 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,]+∞)) |
21 | 20 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵,
0)):ℝ⟶(0[,]+∞)) |
22 | 7 | ad2ant2r 743 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ) |
23 | 22 | rexrd 10956 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈
ℝ*) |
24 | | simprr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶) |
25 | | elxrge0 13118 |
. . . . . . 7
⊢ (𝐶 ∈ (0[,]+∞) ↔
(𝐶 ∈
ℝ* ∧ 0 ≤ 𝐶)) |
26 | 23, 24, 25 | sylanbrc 582 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ (0[,]+∞)) |
27 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 0 ∈
(0[,]+∞)) |
28 | 26, 27 | ifclda 4491 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,]+∞)) |
29 | 28 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶,
0)):ℝ⟶(0[,]+∞)) |
30 | | 0re 10908 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
31 | | max1 12848 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝐶
∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
32 | 30, 7, 31 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
33 | | ifcl 4501 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
34 | 7, 30, 33 | sylancl 585 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
35 | | itgle.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
36 | | max2 12850 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 𝐶
∈ ℝ) → 𝐶
≤ if(0 ≤ 𝐶, 𝐶, 0)) |
37 | 30, 7, 36 | sylancr 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
38 | 2, 7, 34, 35, 37 | letrd 11062 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
39 | | maxle 12854 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝐵
∈ ℝ ∧ if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0)))) |
40 | 30, 2, 34, 39 | mp3an2i 1464 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0)))) |
41 | 32, 38, 40 | mpbir2and 709 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
42 | | iftrue 4462 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0)) |
43 | 42 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0)) |
44 | | iftrue 4462 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0)) |
45 | 44 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0)) |
46 | 41, 43, 45 | 3brtr4d 5102 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)) |
47 | 46 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))) |
48 | | 0le0 12004 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
49 | 48 | a1i 11 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → 0 ≤ 0) |
50 | | iffalse 4465 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = 0) |
51 | | iffalse 4465 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = 0) |
52 | 49, 50, 51 | 3brtr4d 5102 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)) |
53 | 47, 52 | pm2.61d1 180 |
. . . . . . 7
⊢ (𝜑 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)) |
54 | | ifan 4509 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) |
55 | | ifan 4509 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) |
56 | 53, 54, 55 | 3brtr4g 5104 |
. . . . . 6
⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
57 | 56 | ralrimivw 3108 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
58 | | reex 10893 |
. . . . . . 7
⊢ ℝ
∈ V |
59 | 58 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ∈
V) |
60 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) |
61 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) |
62 | 59, 20, 28, 60, 61 | ofrfval2 7532 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) |
63 | 57, 62 | mpbird 256 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) |
64 | | itg2le 24809 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) |
65 | 21, 29, 63, 64 | syl3anc 1369 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) |
66 | 7 | renegcld 11332 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ∈ ℝ) |
67 | 66 | ad2ant2r 743 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ) |
68 | 67 | rexrd 10956 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈
ℝ*) |
69 | | simprr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → 0 ≤ -𝐶) |
70 | | elxrge0 13118 |
. . . . . . 7
⊢ (-𝐶 ∈ (0[,]+∞) ↔
(-𝐶 ∈
ℝ* ∧ 0 ≤ -𝐶)) |
71 | 68, 69, 70 | sylanbrc 582 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ (0[,]+∞)) |
72 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → 0 ∈
(0[,]+∞)) |
73 | 71, 72 | ifclda 4491 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ∈ (0[,]+∞)) |
74 | 73 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶,
0)):ℝ⟶(0[,]+∞)) |
75 | 2 | renegcld 11332 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
76 | 75 | ad2ant2r 743 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ) |
77 | 76 | rexrd 10956 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈
ℝ*) |
78 | | simprr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ -𝐵) |
79 | | elxrge0 13118 |
. . . . . . 7
⊢ (-𝐵 ∈ (0[,]+∞) ↔
(-𝐵 ∈
ℝ* ∧ 0 ≤ -𝐵)) |
80 | 77, 78, 79 | sylanbrc 582 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ (0[,]+∞)) |
81 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → 0 ∈
(0[,]+∞)) |
82 | 80, 81 | ifclda 4491 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) ∈ (0[,]+∞)) |
83 | 82 | fmpttd 6971 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵,
0)):ℝ⟶(0[,]+∞)) |
84 | | max1 12848 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ -𝐵
∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
85 | 30, 75, 84 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
86 | | ifcl 4501 |
. . . . . . . . . . . . 13
⊢ ((-𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
87 | 75, 30, 86 | sylancl 585 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
88 | 2, 7 | lenegd 11484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝐶 ↔ -𝐶 ≤ -𝐵)) |
89 | 35, 88 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ≤ -𝐵) |
90 | | max2 12850 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ -𝐵
∈ ℝ) → -𝐵
≤ if(0 ≤ -𝐵, -𝐵, 0)) |
91 | 30, 75, 90 | sylancr 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
92 | 66, 75, 87, 89, 91 | letrd 11062 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
93 | | maxle 12854 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ -𝐶
∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → (if(0 ≤
-𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0)))) |
94 | 30, 66, 87, 93 | mp3an2i 1464 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0)))) |
95 | 85, 92, 94 | mpbir2and 709 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
96 | | iftrue 4462 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0)) |
97 | 96 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0)) |
98 | | iftrue 4462 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0)) |
99 | 98 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0)) |
100 | 95, 97, 99 | 3brtr4d 5102 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)) |
101 | 100 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) |
102 | | iffalse 4465 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = 0) |
103 | | iffalse 4465 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = 0) |
104 | 49, 102, 103 | 3brtr4d 5102 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)) |
105 | 101, 104 | pm2.61d1 180 |
. . . . . . 7
⊢ (𝜑 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)) |
106 | | ifan 4509 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) |
107 | | ifan 4509 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) |
108 | 105, 106,
107 | 3brtr4g 5104 |
. . . . . 6
⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) |
109 | 108 | ralrimivw 3108 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) |
110 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) |
111 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) |
112 | 59, 73, 82, 110, 111 | ofrfval2 7532 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) |
113 | 109, 112 | mpbird 256 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) |
114 | | itg2le 24809 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) |
115 | 74, 83, 113, 114 | syl3anc 1369 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) |
116 | 5, 10, 11, 12, 65, 115 | le2subd 11525 |
. 2
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) ≤
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))))) |
117 | 2, 1 | itgrevallem1 24864 |
. 2
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))) |
118 | 7, 6 | itgrevallem1 24864 |
. 2
⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))))) |
119 | 116, 117,
118 | 3brtr4d 5102 |
1
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥) |