MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgle Structured version   Visualization version   GIF version

Theorem itgle 25190
Description: Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itgle.1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgle.2 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
itgle.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgle.4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
itgle.5 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
itgle (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgle
StepHypRef Expression
1 itgle.1 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 itgle.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32iblrelem 25171 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)))
41, 3mpbid 231 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))
54simp2d 1144 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
6 itgle.2 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 itgle.4 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
87iblrelem 25171 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)))
96, 8mpbid 231 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ))
109simp3d 1145 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)
119simp2d 1144 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)
124simp3d 1145 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)
132ad2ant2r 746 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
1413rexrd 11212 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ*)
15 simprr 772 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵)
16 elxrge0 13381 . . . . . . 7 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
1714, 15, 16sylanbrc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ (0[,]+∞))
18 0e0iccpnf 13383 . . . . . . 7 0 ∈ (0[,]+∞)
1918a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 0 ∈ (0[,]+∞))
2017, 19ifclda 4526 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,]+∞))
2120fmpttd 7068 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞))
227ad2ant2r 746 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ)
2322rexrd 11212 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
24 simprr 772 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶)
25 elxrge0 13381 . . . . . . 7 (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶))
2623, 24, 25sylanbrc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ (0[,]+∞))
2718a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 0 ∈ (0[,]+∞))
2826, 27ifclda 4526 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,]+∞))
2928fmpttd 7068 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞))
30 0re 11164 . . . . . . . . . . . 12 0 ∈ ℝ
31 max1 13111 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
3230, 7, 31sylancr 588 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
33 ifcl 4536 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
347, 30, 33sylancl 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
35 itgle.5 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝐶)
36 max2 13113 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
3730, 7, 36sylancr 588 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
382, 7, 34, 35, 37letrd 11319 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))
39 maxle 13117 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))))
4030, 2, 34, 39mp3an2i 1467 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))))
4132, 38, 40mpbir2and 712 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0))
42 iftrue 4497 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0))
4342adantl 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0))
44 iftrue 4497 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0))
4544adantl 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0))
4641, 43, 453brtr4d 5142 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
4746ex 414 . . . . . . . 8 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)))
48 0le0 12261 . . . . . . . . . 10 0 ≤ 0
4948a1i 11 . . . . . . . . 9 𝑥𝐴 → 0 ≤ 0)
50 iffalse 4500 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = 0)
51 iffalse 4500 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = 0)
5249, 50, 513brtr4d 5142 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
5347, 52pm2.61d1 180 . . . . . . 7 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
54 ifan 4544 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)
55 ifan 4544 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)
5653, 54, 553brtr4g 5144 . . . . . 6 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
5756ralrimivw 3148 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
58 reex 11149 . . . . . . 7 ℝ ∈ V
5958a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
60 eqidd 2738 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)))
61 eqidd 2738 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
6259, 20, 28, 60, 61ofrfval2 7643 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
6357, 62mpbird 257 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
64 itg2le 25120 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
6521, 29, 63, 64syl3anc 1372 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
667renegcld 11589 . . . . . . . . 9 ((𝜑𝑥𝐴) → -𝐶 ∈ ℝ)
6766ad2ant2r 746 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ)
6867rexrd 11212 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ*)
69 simprr 772 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → 0 ≤ -𝐶)
70 elxrge0 13381 . . . . . . 7 (-𝐶 ∈ (0[,]+∞) ↔ (-𝐶 ∈ ℝ* ∧ 0 ≤ -𝐶))
7168, 69, 70sylanbrc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ (0[,]+∞))
7218a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → 0 ∈ (0[,]+∞))
7371, 72ifclda 4526 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ∈ (0[,]+∞))
7473fmpttd 7068 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞))
752renegcld 11589 . . . . . . . . 9 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
7675ad2ant2r 746 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ)
7776rexrd 11212 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ*)
78 simprr 772 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ -𝐵)
79 elxrge0 13381 . . . . . . 7 (-𝐵 ∈ (0[,]+∞) ↔ (-𝐵 ∈ ℝ* ∧ 0 ≤ -𝐵))
8077, 78, 79sylanbrc 584 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ (0[,]+∞))
8118a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → 0 ∈ (0[,]+∞))
8280, 81ifclda 4526 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) ∈ (0[,]+∞))
8382fmpttd 7068 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞))
84 max1 13111 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
8530, 75, 84sylancr 588 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
86 ifcl 4536 . . . . . . . . . . . . 13 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
8775, 30, 86sylancl 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
882, 7lenegd 11741 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐶 ↔ -𝐶 ≤ -𝐵))
8935, 88mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -𝐶 ≤ -𝐵)
90 max2 13113 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9130, 75, 90sylancr 588 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9266, 75, 87, 89, 91letrd 11319 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))
93 maxle 13117 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝐶 ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))))
9430, 66, 87, 93mp3an2i 1467 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))))
9585, 92, 94mpbir2and 712 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0))
96 iftrue 4497 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0))
9796adantl 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0))
98 iftrue 4497 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0))
9998adantl 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0))
10095, 97, 993brtr4d 5142 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
101100ex 414 . . . . . . . 8 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)))
102 iffalse 4500 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = 0)
103 iffalse 4500 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = 0)
10449, 102, 1033brtr4d 5142 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
105101, 104pm2.61d1 180 . . . . . . 7 (𝜑 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
106 ifan 4544 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) = if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0)
107 ifan 4544 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)
108105, 106, 1073brtr4g 5144 . . . . . 6 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
109108ralrimivw 3148 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
110 eqidd 2738 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))
111 eqidd 2738 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
11259, 73, 82, 110, 111ofrfval2 7643 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
113109, 112mpbird 257 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
114 itg2le 25120 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))
11574, 83, 113, 114syl3anc 1372 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))
1165, 10, 11, 12, 65, 115le2subd 11782 . 2 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) ≤ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))))
1172, 1itgrevallem1 25175 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))))
1187, 6itgrevallem1 25175 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))))
119116, 117, 1183brtr4d 5142 1 (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3065  Vcvv 3448  ifcif 4491   class class class wbr 5110  cmpt 5193  wf 6497  cfv 6501  (class class class)co 7362  r cofr 7621  cr 11057  0cc0 11058  +∞cpnf 11193  *cxr 11195  cle 11197  cmin 11392  -cneg 11393  [,]cicc 13274  MblFncmbf 24994  2citg2 24996  𝐿1cibl 24997  citg 24998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-ofr 7623  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-oi 9453  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-n0 12421  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-xadd 13041  df-ioo 13275  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-sum 15578  df-xmet 20805  df-met 20806  df-ovol 24844  df-vol 24845  df-mbf 24999  df-itg1 25000  df-itg2 25001  df-ibl 25002  df-itg 25003  df-0p 25050
This theorem is referenced by:  itgge0  25191  itgless  25197  itgabs  25215  itgulm  25783  itgabsnc  36176  intlewftc  40547  wallispilem1  44380  fourierdlem47  44468  fourierdlem87  44508  etransclem23  44572
  Copyright terms: Public domain W3C validator