Proof of Theorem itgle
| Step | Hyp | Ref
| Expression |
| 1 | | itgle.1 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
| 2 | | itgle.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 3 | 2 | iblrelem 25826 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))) |
| 4 | 1, 3 | mpbid 232 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)) |
| 5 | 4 | simp2d 1144 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ) |
| 6 | | itgle.2 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
| 7 | | itgle.4 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
| 8 | 7 | iblrelem 25826 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ))) |
| 9 | 6, 8 | mpbid 232 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)) |
| 10 | 9 | simp3d 1145 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ) |
| 11 | 9 | simp2d 1144 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ) |
| 12 | 4 | simp3d 1145 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ) |
| 13 | 2 | ad2ant2r 747 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ) |
| 14 | 13 | rexrd 11311 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈
ℝ*) |
| 15 | | simprr 773 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵) |
| 16 | | elxrge0 13497 |
. . . . . . 7
⊢ (𝐵 ∈ (0[,]+∞) ↔
(𝐵 ∈
ℝ* ∧ 0 ≤ 𝐵)) |
| 17 | 14, 15, 16 | sylanbrc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ (0[,]+∞)) |
| 18 | | 0e0iccpnf 13499 |
. . . . . . 7
⊢ 0 ∈
(0[,]+∞) |
| 19 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ∈
(0[,]+∞)) |
| 20 | 17, 19 | ifclda 4561 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,]+∞)) |
| 21 | 20 | fmpttd 7135 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵,
0)):ℝ⟶(0[,]+∞)) |
| 22 | 7 | ad2ant2r 747 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ) |
| 23 | 22 | rexrd 11311 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈
ℝ*) |
| 24 | | simprr 773 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶) |
| 25 | | elxrge0 13497 |
. . . . . . 7
⊢ (𝐶 ∈ (0[,]+∞) ↔
(𝐶 ∈
ℝ* ∧ 0 ≤ 𝐶)) |
| 26 | 23, 24, 25 | sylanbrc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ (0[,]+∞)) |
| 27 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → 0 ∈
(0[,]+∞)) |
| 28 | 26, 27 | ifclda 4561 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,]+∞)) |
| 29 | 28 | fmpttd 7135 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶,
0)):ℝ⟶(0[,]+∞)) |
| 30 | | 0re 11263 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
| 31 | | max1 13227 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝐶
∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
| 32 | 30, 7, 31 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
| 33 | | ifcl 4571 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
| 34 | 7, 30, 33 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
| 35 | | itgle.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
| 36 | | max2 13229 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 𝐶
∈ ℝ) → 𝐶
≤ if(0 ≤ 𝐶, 𝐶, 0)) |
| 37 | 30, 7, 36 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
| 38 | 2, 7, 34, 35, 37 | letrd 11418 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
| 39 | | maxle 13233 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ 𝐵
∈ ℝ ∧ if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0)))) |
| 40 | 30, 2, 34, 39 | mp3an2i 1468 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0)))) |
| 41 | 32, 38, 40 | mpbir2and 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0)) |
| 42 | | iftrue 4531 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0)) |
| 43 | 42 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0)) |
| 44 | | iftrue 4531 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0)) |
| 45 | 44 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0)) |
| 46 | 41, 43, 45 | 3brtr4d 5175 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)) |
| 47 | 46 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))) |
| 48 | | 0le0 12367 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
| 49 | 48 | a1i 11 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → 0 ≤ 0) |
| 50 | | iffalse 4534 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = 0) |
| 51 | | iffalse 4534 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = 0) |
| 52 | 49, 50, 51 | 3brtr4d 5175 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)) |
| 53 | 47, 52 | pm2.61d1 180 |
. . . . . . 7
⊢ (𝜑 → if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)) |
| 54 | | ifan 4579 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) |
| 55 | | ifan 4579 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) |
| 56 | 53, 54, 55 | 3brtr4g 5177 |
. . . . . 6
⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
| 57 | 56 | ralrimivw 3150 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) |
| 58 | | reex 11246 |
. . . . . . 7
⊢ ℝ
∈ V |
| 59 | 58 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ∈
V) |
| 60 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) |
| 61 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) |
| 62 | 59, 20, 28, 60, 61 | ofrfval2 7718 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) |
| 63 | 57, 62 | mpbird 257 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) |
| 64 | | itg2le 25774 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) |
| 65 | 21, 29, 63, 64 | syl3anc 1373 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))) |
| 66 | 7 | renegcld 11690 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ∈ ℝ) |
| 67 | 66 | ad2ant2r 747 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ) |
| 68 | 67 | rexrd 11311 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈
ℝ*) |
| 69 | | simprr 773 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → 0 ≤ -𝐶) |
| 70 | | elxrge0 13497 |
. . . . . . 7
⊢ (-𝐶 ∈ (0[,]+∞) ↔
(-𝐶 ∈
ℝ* ∧ 0 ≤ -𝐶)) |
| 71 | 68, 69, 70 | sylanbrc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ (0[,]+∞)) |
| 72 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶)) → 0 ∈
(0[,]+∞)) |
| 73 | 71, 72 | ifclda 4561 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ∈ (0[,]+∞)) |
| 74 | 73 | fmpttd 7135 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶,
0)):ℝ⟶(0[,]+∞)) |
| 75 | 2 | renegcld 11690 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
| 76 | 75 | ad2ant2r 747 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ) |
| 77 | 76 | rexrd 11311 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈
ℝ*) |
| 78 | | simprr 773 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ -𝐵) |
| 79 | | elxrge0 13497 |
. . . . . . 7
⊢ (-𝐵 ∈ (0[,]+∞) ↔
(-𝐵 ∈
ℝ* ∧ 0 ≤ -𝐵)) |
| 80 | 77, 78, 79 | sylanbrc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ (0[,]+∞)) |
| 81 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵)) → 0 ∈
(0[,]+∞)) |
| 82 | 80, 81 | ifclda 4561 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) ∈ (0[,]+∞)) |
| 83 | 82 | fmpttd 7135 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵,
0)):ℝ⟶(0[,]+∞)) |
| 84 | | max1 13227 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ -𝐵
∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
| 85 | 30, 75, 84 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
| 86 | | ifcl 4571 |
. . . . . . . . . . . . 13
⊢ ((-𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
| 87 | 75, 30, 86 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) |
| 88 | 2, 7 | lenegd 11842 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝐶 ↔ -𝐶 ≤ -𝐵)) |
| 89 | 35, 88 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ≤ -𝐵) |
| 90 | | max2 13229 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ -𝐵
∈ ℝ) → -𝐵
≤ if(0 ≤ -𝐵, -𝐵, 0)) |
| 91 | 30, 75, 90 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
| 92 | 66, 75, 87, 89, 91 | letrd 11418 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
| 93 | | maxle 13233 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ -𝐶
∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → (if(0 ≤
-𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0)))) |
| 94 | 30, 66, 87, 93 | mp3an2i 1468 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0)))) |
| 95 | 85, 92, 94 | mpbir2and 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0)) |
| 96 | | iftrue 4531 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0)) |
| 97 | 96 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0)) |
| 98 | | iftrue 4531 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0)) |
| 99 | 98 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0)) |
| 100 | 95, 97, 99 | 3brtr4d 5175 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)) |
| 101 | 100 | ex 412 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))) |
| 102 | | iffalse 4534 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = 0) |
| 103 | | iffalse 4534 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = 0) |
| 104 | 49, 102, 103 | 3brtr4d 5175 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)) |
| 105 | 101, 104 | pm2.61d1 180 |
. . . . . . 7
⊢ (𝜑 → if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)) |
| 106 | | ifan 4579 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) |
| 107 | | ifan 4579 |
. . . . . . 7
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if(𝑥 ∈ 𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) |
| 108 | 105, 106,
107 | 3brtr4g 5177 |
. . . . . 6
⊢ (𝜑 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) |
| 109 | 108 | ralrimivw 3150 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) |
| 110 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) |
| 111 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) |
| 112 | 59, 73, 82, 110, 111 | ofrfval2 7718 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) |
| 113 | 109, 112 | mpbird 257 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) |
| 114 | | itg2le 25774 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) |
| 115 | 74, 83, 113, 114 | syl3anc 1373 |
. . 3
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) |
| 116 | 5, 10, 11, 12, 65, 115 | le2subd 11883 |
. 2
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) ≤
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))))) |
| 117 | 2, 1 | itgrevallem1 25830 |
. 2
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))) |
| 118 | 7, 6 | itgrevallem1 25830 |
. 2
⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) −
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))))) |
| 119 | 116, 117,
118 | 3brtr4d 5175 |
1
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥) |