MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgle Structured version   Visualization version   GIF version

Theorem itgle 25860
Description: Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itgle.1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgle.2 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
itgle.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgle.4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
itgle.5 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
itgle (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgle
StepHypRef Expression
1 itgle.1 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 itgle.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32iblrelem 25841 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)))
41, 3mpbid 232 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))
54simp2d 1142 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
6 itgle.2 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 itgle.4 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
87iblrelem 25841 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)))
96, 8mpbid 232 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ))
109simp3d 1143 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)
119simp2d 1142 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)
124simp3d 1143 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)
132ad2ant2r 747 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
1413rexrd 11309 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ*)
15 simprr 773 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵)
16 elxrge0 13494 . . . . . . 7 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
1714, 15, 16sylanbrc 583 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ (0[,]+∞))
18 0e0iccpnf 13496 . . . . . . 7 0 ∈ (0[,]+∞)
1918a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 0 ∈ (0[,]+∞))
2017, 19ifclda 4566 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,]+∞))
2120fmpttd 7135 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞))
227ad2ant2r 747 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ)
2322rexrd 11309 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
24 simprr 773 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶)
25 elxrge0 13494 . . . . . . 7 (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶))
2623, 24, 25sylanbrc 583 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ (0[,]+∞))
2718a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 0 ∈ (0[,]+∞))
2826, 27ifclda 4566 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,]+∞))
2928fmpttd 7135 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞))
30 0re 11261 . . . . . . . . . . . 12 0 ∈ ℝ
31 max1 13224 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
3230, 7, 31sylancr 587 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
33 ifcl 4576 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
347, 30, 33sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
35 itgle.5 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝐶)
36 max2 13226 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
3730, 7, 36sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
382, 7, 34, 35, 37letrd 11416 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))
39 maxle 13230 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))))
4030, 2, 34, 39mp3an2i 1465 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))))
4132, 38, 40mpbir2and 713 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0))
42 iftrue 4537 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0))
4342adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0))
44 iftrue 4537 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0))
4544adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0))
4641, 43, 453brtr4d 5180 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
4746ex 412 . . . . . . . 8 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)))
48 0le0 12365 . . . . . . . . . 10 0 ≤ 0
4948a1i 11 . . . . . . . . 9 𝑥𝐴 → 0 ≤ 0)
50 iffalse 4540 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = 0)
51 iffalse 4540 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = 0)
5249, 50, 513brtr4d 5180 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
5347, 52pm2.61d1 180 . . . . . . 7 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
54 ifan 4584 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)
55 ifan 4584 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)
5653, 54, 553brtr4g 5182 . . . . . 6 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
5756ralrimivw 3148 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
58 reex 11244 . . . . . . 7 ℝ ∈ V
5958a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
60 eqidd 2736 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)))
61 eqidd 2736 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
6259, 20, 28, 60, 61ofrfval2 7718 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
6357, 62mpbird 257 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
64 itg2le 25789 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
6521, 29, 63, 64syl3anc 1370 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
667renegcld 11688 . . . . . . . . 9 ((𝜑𝑥𝐴) → -𝐶 ∈ ℝ)
6766ad2ant2r 747 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ)
6867rexrd 11309 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ*)
69 simprr 773 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → 0 ≤ -𝐶)
70 elxrge0 13494 . . . . . . 7 (-𝐶 ∈ (0[,]+∞) ↔ (-𝐶 ∈ ℝ* ∧ 0 ≤ -𝐶))
7168, 69, 70sylanbrc 583 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ (0[,]+∞))
7218a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → 0 ∈ (0[,]+∞))
7371, 72ifclda 4566 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ∈ (0[,]+∞))
7473fmpttd 7135 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞))
752renegcld 11688 . . . . . . . . 9 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
7675ad2ant2r 747 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ)
7776rexrd 11309 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ*)
78 simprr 773 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ -𝐵)
79 elxrge0 13494 . . . . . . 7 (-𝐵 ∈ (0[,]+∞) ↔ (-𝐵 ∈ ℝ* ∧ 0 ≤ -𝐵))
8077, 78, 79sylanbrc 583 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ (0[,]+∞))
8118a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → 0 ∈ (0[,]+∞))
8280, 81ifclda 4566 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) ∈ (0[,]+∞))
8382fmpttd 7135 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞))
84 max1 13224 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
8530, 75, 84sylancr 587 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
86 ifcl 4576 . . . . . . . . . . . . 13 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
8775, 30, 86sylancl 586 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
882, 7lenegd 11840 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐶 ↔ -𝐶 ≤ -𝐵))
8935, 88mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -𝐶 ≤ -𝐵)
90 max2 13226 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9130, 75, 90sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9266, 75, 87, 89, 91letrd 11416 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))
93 maxle 13230 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝐶 ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))))
9430, 66, 87, 93mp3an2i 1465 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))))
9585, 92, 94mpbir2and 713 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0))
96 iftrue 4537 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0))
9796adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0))
98 iftrue 4537 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0))
9998adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0))
10095, 97, 993brtr4d 5180 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
101100ex 412 . . . . . . . 8 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)))
102 iffalse 4540 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = 0)
103 iffalse 4540 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = 0)
10449, 102, 1033brtr4d 5180 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
105101, 104pm2.61d1 180 . . . . . . 7 (𝜑 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
106 ifan 4584 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) = if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0)
107 ifan 4584 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)
108105, 106, 1073brtr4g 5182 . . . . . 6 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
109108ralrimivw 3148 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
110 eqidd 2736 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))
111 eqidd 2736 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
11259, 73, 82, 110, 111ofrfval2 7718 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
113109, 112mpbird 257 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
114 itg2le 25789 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))
11574, 83, 113, 114syl3anc 1370 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))
1165, 10, 11, 12, 65, 115le2subd 11881 . 2 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) ≤ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))))
1172, 1itgrevallem1 25845 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))))
1187, 6itgrevallem1 25845 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))))
119116, 117, 1183brtr4d 5180 1 (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  ifcif 4531   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  r cofr 7696  cr 11152  0cc0 11153  +∞cpnf 11290  *cxr 11292  cle 11294  cmin 11490  -cneg 11491  [,]cicc 13387  MblFncmbf 25663  2citg2 25665  𝐿1cibl 25666  citg 25667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xadd 13153  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-xmet 21375  df-met 21376  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-ibl 25671  df-itg 25672  df-0p 25719
This theorem is referenced by:  itgge0  25861  itgless  25867  itgabs  25885  itgulm  26466  itgabsnc  37676  intlewftc  42043  wallispilem1  46021  fourierdlem47  46109  fourierdlem87  46149  etransclem23  46213
  Copyright terms: Public domain W3C validator