Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblmulc2nc Structured version   Visualization version   GIF version

Theorem iblmulc2nc 33830
Description: Choice-free analogue of iblmulc2 23887. (Contributed by Brendan Leahy, 17-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Assertion
Ref Expression
iblmulc2nc (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblmulc2nc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itgmulc2nc.m . 2 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
2 ifan 4293 . . . . . 6 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0)
3 itgmulc2nc.1 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℂ)
43adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
5 itgmulc2nc.3 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 iblmbf 23824 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
75, 6syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
8 itgmulc2nc.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐵𝑉)
97, 8mbfmptcl 23693 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
104, 9mulcld 10313 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
1110adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
12 elfzelz 12548 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
1312ad2antlr 718 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
14 ax-icn 10247 . . . . . . . . . . . . . . 15 i ∈ ℂ
15 ine0 10718 . . . . . . . . . . . . . . 15 i ≠ 0
16 expclz 13091 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
1714, 15, 16mp3an12 1575 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
1813, 17syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ∈ ℂ)
19 expne0i 13098 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
2014, 15, 19mp3an12 1575 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
2113, 20syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ≠ 0)
2211, 18, 21divcld 11054 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((𝐶 · 𝐵) / (i↑𝑘)) ∈ ℂ)
2322recld 14220 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ)
24 0re 10294 . . . . . . . . . . 11 0 ∈ ℝ
25 ifcl 4286 . . . . . . . . . . 11 (((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ)
2623, 24, 25sylancl 580 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ)
2726rexrd 10342 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ*)
28 max1 12217 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
2924, 23, 28sylancr 581 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
30 elxrge0 12484 . . . . . . . . 9 (if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
3127, 29, 30sylanbrc 578 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞))
32 0e0iccpnf 12486 . . . . . . . . 9 0 ∈ (0[,]+∞)
3332a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
3431, 33ifclda 4276 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
3534adantr 472 . . . . . 6 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
362, 35syl5eqel 2847 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞))
3736fmpttd 6574 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
389recld 14220 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
3938recnd 10321 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
4039abscld 14461 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ ℝ)
419imcld 14221 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
4241recnd 10321 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
4342abscld 14461 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
4440, 43readdcld 10322 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ)
4539absge0d 14469 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℜ‘𝐵)))
4642absge0d 14469 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℑ‘𝐵)))
4740, 43, 45, 46addge0d 10856 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
48 elrege0 12481 . . . . . . . . . . . 12 (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,)+∞) ↔ (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ ∧ 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
4944, 47, 48sylanbrc 578 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,)+∞))
50 0e0icopnf 12485 . . . . . . . . . . . 12 0 ∈ (0[,)+∞)
5150a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
5249, 51ifclda 4276 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,)+∞))
5352adantr 472 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,)+∞))
5453fmpttd 6574 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)):ℝ⟶(0[,)+∞))
55 reex 10279 . . . . . . . . . . . . . 14 ℝ ∈ V
5655a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
57 elrege0 12481 . . . . . . . . . . . . . . . 16 ((abs‘(ℜ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℜ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘𝐵))))
5840, 45, 57sylanbrc 578 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ (0[,)+∞))
5958, 51ifclda 4276 . . . . . . . . . . . . . 14 (𝜑 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
6059adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
61 elrege0 12481 . . . . . . . . . . . . . . . 16 ((abs‘(ℑ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℑ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘𝐵))))
6243, 46, 61sylanbrc 578 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ (0[,)+∞))
6362, 51ifclda 4276 . . . . . . . . . . . . . 14 (𝜑 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
6463adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
65 eqidd 2765 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)))
66 eqidd 2765 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))
6756, 60, 64, 65, 66offval2 7111 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
68 iftrue 4248 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = (abs‘(ℜ‘𝐵)))
69 iftrue 4248 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = (abs‘(ℑ‘𝐵)))
7068, 69oveq12d 6859 . . . . . . . . . . . . . . 15 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
71 iftrue 4248 . . . . . . . . . . . . . . 15 (𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
7270, 71eqtr4d 2801 . . . . . . . . . . . . . 14 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
73 00id 10464 . . . . . . . . . . . . . . 15 (0 + 0) = 0
74 iffalse 4251 . . . . . . . . . . . . . . . 16 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = 0)
75 iffalse 4251 . . . . . . . . . . . . . . . 16 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = 0)
7674, 75oveq12d 6859 . . . . . . . . . . . . . . 15 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (0 + 0))
77 iffalse 4251 . . . . . . . . . . . . . . 15 𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = 0)
7873, 76, 773eqtr4a 2824 . . . . . . . . . . . . . 14 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
7972, 78pm2.61i 176 . . . . . . . . . . . . 13 (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)
8079mpteq2i 4899 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
8167, 80syl6req 2815 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
8281fveq2d 6378 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
83 eqid 2764 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))
849iblcn 23855 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
855, 84mpbid 223 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
8685simpld 488 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
878, 5, 83, 86, 38iblabsnclem 33828 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ))
8887simpld 488 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn)
8960fmpttd 6574 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
9087simprd 489 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ)
9164fmpttd 6574 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
92 eqid 2764 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))
9385simprd 489 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
948, 5, 92, 93, 41iblabsnclem 33828 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ))
9594simprd 489 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ)
9688, 89, 90, 91, 95itg2addnc 33819 . . . . . . . . . 10 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
9782, 96eqtrd 2798 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
9890, 95readdcld 10322 . . . . . . . . 9 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) ∈ ℝ)
9997, 98eqeltrd 2843 . . . . . . . 8 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ)
1003abscld 14461 . . . . . . . . 9 (𝜑 → (abs‘𝐶) ∈ ℝ)
1013absge0d 14469 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘𝐶))
102 elrege0 12481 . . . . . . . . 9 ((abs‘𝐶) ∈ (0[,)+∞) ↔ ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)))
103100, 101, 102sylanbrc 578 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ (0[,)+∞))
10454, 99, 103itg2mulc 23804 . . . . . . 7 (𝜑 → (∫2‘((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))))
105100adantr 472 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (abs‘𝐶) ∈ ℝ)
106 fconstmpt 5332 . . . . . . . . . . 11 (ℝ × {(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦ (abs‘𝐶))
107106a1i 11 . . . . . . . . . 10 (𝜑 → (ℝ × {(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦ (abs‘𝐶)))
108 eqidd 2765 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
10956, 105, 53, 107, 108offval2 7111 . . . . . . . . 9 (𝜑 → ((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))))
11071oveq2d 6857 . . . . . . . . . . . . 13 (𝑥𝐴 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
111 iftrue 4248 . . . . . . . . . . . . 13 (𝑥𝐴 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
112110, 111eqtr4d 2801 . . . . . . . . . . . 12 (𝑥𝐴 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
113112adantl 473 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
114100recnd 10321 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ∈ ℂ)
115114mul01d 10488 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐶) · 0) = 0)
116115adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · 0) = 0)
11777adantl 473 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = 0)
118117oveq2d 6857 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · 0))
119 iffalse 4251 . . . . . . . . . . . . 13 𝑥𝐴 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = 0)
120119adantl 473 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = 0)
121116, 118, 1203eqtr4d 2808 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
122113, 121pm2.61dan 847 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
123122mpteq2dv 4903 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
124109, 123eqtrd 2798 . . . . . . . 8 (𝜑 → ((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
125124fveq2d 6378 . . . . . . 7 (𝜑 → (∫2‘((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
12697oveq2d 6857 . . . . . . 7 (𝜑 → ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))))
127104, 125, 1263eqtr3d 2806 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) = ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))))
128100, 98remulcld 10323 . . . . . 6 (𝜑 → ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))) ∈ ℝ)
129127, 128eqeltrd 2843 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ)
130129adantr 472 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ)
131100adantr 472 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝐶) ∈ ℝ)
132131, 44remulcld 10323 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ)
133132rexrd 10342 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ*)
134101adantr 472 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐶))
135131, 44, 134, 47mulge0d 10857 . . . . . . . . 9 ((𝜑𝑥𝐴) → 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
136 elxrge0 12484 . . . . . . . . 9 (((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞) ↔ (((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ* ∧ 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
137133, 135, 136sylanbrc 578 . . . . . . . 8 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞))
13832a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
139137, 138ifclda 4276 . . . . . . 7 (𝜑 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) ∈ (0[,]+∞))
140139ad2antrr 717 . . . . . 6 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) ∈ (0[,]+∞))
141140fmpttd 6574 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)):ℝ⟶(0[,]+∞))
1429abscld 14461 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
143131, 142remulcld 10323 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ)
144143adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ)
145132adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ)
14622releabsd 14476 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘((𝐶 · 𝐵) / (i↑𝑘))))
14711, 18, 21absdivd 14480 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))))
148 elfznn0 12639 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
149 absexp 14330 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
15014, 148, 149sylancr 581 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...3) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
151 absi 14312 . . . . . . . . . . . . . . . . . . . . 21 (abs‘i) = 1
152151oveq1i 6851 . . . . . . . . . . . . . . . . . . . 20 ((abs‘i)↑𝑘) = (1↑𝑘)
153 1exp 13095 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
15412, 153syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...3) → (1↑𝑘) = 1)
155152, 154syl5eq 2810 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...3) → ((abs‘i)↑𝑘) = 1)
156150, 155eqtrd 2798 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...3) → (abs‘(i↑𝑘)) = 1)
157156oveq2d 6857 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...3) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1))
158157ad2antlr 718 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1))
15910abscld 14461 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℝ)
160159recnd 10321 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ)
161160adantlr 706 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ)
162161div1d 11046 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘(𝐶 · 𝐵)) / 1) = (abs‘(𝐶 · 𝐵)))
163147, 158, 1623eqtrd 2802 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = (abs‘(𝐶 · 𝐵)))
1644, 9absmuld 14479 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
165164adantlr 706 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
166163, 165eqtrd 2798 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘𝐶) · (abs‘𝐵)))
167146, 166breqtrd 4834 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · (abs‘𝐵)))
168 mulcl 10272 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
16914, 42, 168sylancr 581 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (i · (ℑ‘𝐵)) ∈ ℂ)
17039, 169abstrid 14481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
1719replimd 14223 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
172171fveq2d 6378 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘𝐵) = (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
173 absmul 14320 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
17414, 42, 173sylancr 581 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
175151oveq1i 6851 . . . . . . . . . . . . . . . . . . 19 ((abs‘i) · (abs‘(ℑ‘𝐵))) = (1 · (abs‘(ℑ‘𝐵)))
176174, 175syl6eq 2814 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (abs‘(i · (ℑ‘𝐵))) = (1 · (abs‘(ℑ‘𝐵))))
17743recnd 10321 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℂ)
178177mulid2d 10311 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (1 · (abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵)))
179176, 178eqtr2d 2799 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) = (abs‘(i · (ℑ‘𝐵))))
180179oveq2d 6857 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) = ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
181170, 172, 1803brtr4d 4840 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘𝐵) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
182142, 44, 131, 134, 181lemul2ad 11217 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
183182adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
18423, 144, 145, 167, 183letrd 10447 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
185135adantlr 706 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
186 breq1 4811 . . . . . . . . . . . . 13 ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
187 breq1 4811 . . . . . . . . . . . . 13 (0 = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → (0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
188186, 187ifboth 4280 . . . . . . . . . . . 12 (((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∧ 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
189184, 185, 188syl2anc 579 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
190 iftrue 4248 . . . . . . . . . . . 12 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
191190adantl 473 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
192111adantl 473 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
193189, 191, 1923brtr4d 4840 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
194193ex 401 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
195 0le0 11379 . . . . . . . . . . 11 0 ≤ 0
196195a1i 11 . . . . . . . . . 10 𝑥𝐴 → 0 ≤ 0)
197 iffalse 4251 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = 0)
198196, 197, 1193brtr4d 4840 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
199194, 198pm2.61d1 172 . . . . . . . 8 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
2002, 199syl5eqbr 4843 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
201200ralrimivw 3113 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
20255a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → ℝ ∈ V)
203 eqidd 2765 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
204 eqidd 2765 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
205202, 36, 140, 203, 204ofrfval2 7112 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
206201, 205mpbird 248 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
207 itg2le 23796 . . . . 5 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
20837, 141, 206, 207syl3anc 1490 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
209 itg2lecl 23795 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
21037, 130, 208, 209syl3anc 1490 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
211210ralrimiva 3112 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
212 eqidd 2765 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
213 eqidd 2765 . . 3 ((𝜑𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))))
214212, 213, 10isibl2 23823 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)))
2151, 211, 214mpbir2and 704 1 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wne 2936  wral 3054  Vcvv 3349  ifcif 4242  {csn 4333   class class class wbr 4808  cmpt 4887   × cxp 5274  wf 6063  cfv 6067  (class class class)co 6841  𝑓 cof 7092  𝑟 cofr 7093  cc 10186  cr 10187  0cc0 10188  1c1 10189  ici 10190   + caddc 10191   · cmul 10193  +∞cpnf 10324  *cxr 10326  cle 10328   / cdiv 10937  3c3 11327  0cn0 11537  cz 11623  [,)cico 12378  [,]cicc 12379  ...cfz 12532  cexp 13066  cre 14123  cim 14124  abscabs 14260  MblFncmbf 23671  2citg2 23673  𝐿1cibl 23674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-inf2 8752  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266  ax-addf 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-disj 4777  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-se 5236  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-isom 6076  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-of 7094  df-ofr 7095  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-2o 7764  df-oadd 7767  df-er 7946  df-map 8061  df-pm 8062  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-fi 8523  df-sup 8554  df-inf 8555  df-oi 8621  df-card 9015  df-cda 9242  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-n0 11538  df-z 11624  df-uz 11886  df-q 11989  df-rp 12028  df-xneg 12145  df-xadd 12146  df-xmul 12147  df-ioo 12380  df-ico 12382  df-icc 12383  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14125  df-re 14126  df-im 14127  df-sqrt 14261  df-abs 14262  df-clim 14505  df-sum 14703  df-rest 16350  df-topgen 16371  df-psmet 20010  df-xmet 20011  df-met 20012  df-bl 20013  df-mopn 20014  df-top 20977  df-topon 20994  df-bases 21029  df-cmp 21469  df-ovol 23521  df-vol 23522  df-mbf 23676  df-itg1 23677  df-itg2 23678  df-ibl 23679  df-0p 23727
This theorem is referenced by:  itgmulc2nclem1  33831  itgmulc2nclem2  33832  itgmulc2nc  33833  itgabsnc  33834  ftc1anclem6  33845
  Copyright terms: Public domain W3C validator