Step | Hyp | Ref
| Expression |
1 | | itgmulc2nc.m |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) |
2 | | ifan 4492 |
. . . . . 6
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) |
3 | | itgmulc2nc.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 ∈ ℂ) |
4 | 3 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
5 | | itgmulc2nc.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
6 | | iblmbf 24665 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
7 | 5, 6 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
8 | | itgmulc2nc.2 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
9 | 7, 8 | mbfmptcl 24533 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
10 | 4, 9 | mulcld 10853 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
11 | 10 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
12 | | elfzelz 13112 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
13 | 12 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑘 ∈ ℤ) |
14 | | ax-icn 10788 |
. . . . . . . . . . . . . . 15
⊢ i ∈
ℂ |
15 | | ine0 11267 |
. . . . . . . . . . . . . . 15
⊢ i ≠
0 |
16 | | expclz 13660 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈
ℂ) |
17 | 14, 15, 16 | mp3an12 1453 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℤ →
(i↑𝑘) ∈
ℂ) |
18 | 13, 17 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (i↑𝑘) ∈ ℂ) |
19 | | expne0i 13667 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) |
20 | 14, 15, 19 | mp3an12 1453 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℤ →
(i↑𝑘) ≠
0) |
21 | 13, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (i↑𝑘) ≠ 0) |
22 | 11, 18, 21 | divcld 11608 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((𝐶 · 𝐵) / (i↑𝑘)) ∈ ℂ) |
23 | 22 | recld 14757 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ) |
24 | | 0re 10835 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
25 | | ifcl 4484 |
. . . . . . . . . . 11
⊢
(((ℜ‘((𝐶
· 𝐵) / (i↑𝑘))) ∈ ℝ ∧ 0
∈ ℝ) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ) |
26 | 23, 24, 25 | sylancl 589 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ) |
27 | 26 | rexrd 10883 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈
ℝ*) |
28 | | max1 12775 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
29 | 24, 23, 28 | sylancr 590 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
30 | | elxrge0 13045 |
. . . . . . . . 9
⊢ (if(0
≤ (ℜ‘((𝐶
· 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0
≤ (ℜ‘((𝐶
· 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ* ∧ 0
≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) |
31 | 27, 29, 30 | sylanbrc 586 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
32 | | 0e0iccpnf 13047 |
. . . . . . . . 9
⊢ 0 ∈
(0[,]+∞) |
33 | 32 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) |
34 | 31, 33 | ifclda 4474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈
(0[,]+∞)) |
35 | 34 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈
(0[,]+∞)) |
36 | 2, 35 | eqeltrid 2842 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
37 | 36 | fmpttd 6932 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))),
0)):ℝ⟶(0[,]+∞)) |
38 | 9 | recld 14757 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
39 | 38 | recnd 10861 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
40 | 39 | abscld 15000 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℜ‘𝐵)) ∈
ℝ) |
41 | 9 | imcld 14758 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
42 | 41 | recnd 10861 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
43 | 42 | abscld 15000 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
ℝ) |
44 | 40, 43 | readdcld 10862 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) ∈ ℝ) |
45 | 39 | absge0d 15008 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
(abs‘(ℜ‘𝐵))) |
46 | 42 | absge0d 15008 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
(abs‘(ℑ‘𝐵))) |
47 | 40, 43, 45, 46 | addge0d 11408 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) |
48 | | elrege0 13042 |
. . . . . . . . . . . 12
⊢
(((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,)+∞) ↔
(((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ ∧ 0 ≤
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) |
49 | 44, 47, 48 | sylanbrc 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) ∈ (0[,)+∞)) |
50 | | 0e0icopnf 13046 |
. . . . . . . . . . . 12
⊢ 0 ∈
(0[,)+∞) |
51 | 50 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,)+∞)) |
52 | 49, 51 | ifclda 4474 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) ∈
(0[,)+∞)) |
53 | 52 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) ∈
(0[,)+∞)) |
54 | 53 | fmpttd 6932 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))),
0)):ℝ⟶(0[,)+∞)) |
55 | | reex 10820 |
. . . . . . . . . . . . . 14
⊢ ℝ
∈ V |
56 | 55 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℝ ∈
V) |
57 | | elrege0 13042 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘(ℜ‘𝐵)) ∈ (0[,)+∞) ↔
((abs‘(ℜ‘𝐵)) ∈ ℝ ∧ 0 ≤
(abs‘(ℜ‘𝐵)))) |
58 | 40, 45, 57 | sylanbrc 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℜ‘𝐵)) ∈
(0[,)+∞)) |
59 | 58, 51 | ifclda 4474 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) ∈
(0[,)+∞)) |
60 | 59 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) ∈
(0[,)+∞)) |
61 | | elrege0 13042 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘(ℑ‘𝐵)) ∈ (0[,)+∞) ↔
((abs‘(ℑ‘𝐵)) ∈ ℝ ∧ 0 ≤
(abs‘(ℑ‘𝐵)))) |
62 | 43, 46, 61 | sylanbrc 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
(0[,)+∞)) |
63 | 62, 51 | ifclda 4474 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) ∈
(0[,)+∞)) |
64 | 63 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) ∈
(0[,)+∞)) |
65 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) |
66 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) |
67 | 56, 60, 64, 65, 66 | offval2 7488 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) |
68 | | iftrue 4445 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) = (abs‘(ℜ‘𝐵))) |
69 | | iftrue 4445 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) =
(abs‘(ℑ‘𝐵))) |
70 | 68, 69 | oveq12d 7231 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) =
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) |
71 | | iftrue 4445 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) |
72 | 70, 71 | eqtr4d 2780 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
73 | | 00id 11007 |
. . . . . . . . . . . . . . 15
⊢ (0 + 0) =
0 |
74 | | iffalse 4448 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) = 0) |
75 | | iffalse 4448 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) = 0) |
76 | 74, 75 | oveq12d 7231 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (0 +
0)) |
77 | | iffalse 4448 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = 0) |
78 | 73, 76, 77 | 3eqtr4a 2804 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
79 | 72, 78 | pm2.61i 185 |
. . . . . . . . . . . . 13
⊢ (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) |
80 | 79 | mpteq2i 5147 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ ↦
(if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
81 | 67, 80 | eqtr2di 2795 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) |
82 | 81 | fveq2d 6721 |
. . . . . . . . . 10
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) =
(∫2‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
83 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) |
84 | 9 | iblcn 24696 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1
∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1))) |
85 | 5, 84 | mpbid 235 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1)) |
86 | 85 | simpld 498 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈
𝐿1) |
87 | 8, 5, 83, 86, 38 | iblabsnclem 35577 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℜ‘𝐵)), 0))) ∈ ℝ)) |
88 | 87 | simpld 498 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn) |
89 | 60 | fmpttd 6932 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)),
0)):ℝ⟶(0[,)+∞)) |
90 | 87 | simprd 499 |
. . . . . . . . . . 11
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℜ‘𝐵)), 0))) ∈ ℝ) |
91 | 64 | fmpttd 6932 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)),
0)):ℝ⟶(0[,)+∞)) |
92 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) |
93 | 85 | simprd 499 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1) |
94 | 8, 5, 92, 93, 41 | iblabsnclem 35577 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℑ‘𝐵)), 0))) ∈ ℝ)) |
95 | 94 | simprd 499 |
. . . . . . . . . . 11
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℑ‘𝐵)), 0))) ∈ ℝ) |
96 | 88, 89, 90, 91, 95 | itg2addnc 35568 |
. . . . . . . . . 10
⊢ (𝜑 →
(∫2‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) =
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
97 | 82, 96 | eqtrd 2777 |
. . . . . . . . 9
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) =
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
98 | 90, 95 | readdcld 10862 |
. . . . . . . . 9
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) ∈
ℝ) |
99 | 97, 98 | eqeltrd 2838 |
. . . . . . . 8
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈
ℝ) |
100 | 3 | abscld 15000 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘𝐶) ∈
ℝ) |
101 | 3 | absge0d 15008 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (abs‘𝐶)) |
102 | | elrege0 13042 |
. . . . . . . . 9
⊢
((abs‘𝐶)
∈ (0[,)+∞) ↔ ((abs‘𝐶) ∈ ℝ ∧ 0 ≤
(abs‘𝐶))) |
103 | 100, 101,
102 | sylanbrc 586 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐶) ∈
(0[,)+∞)) |
104 | 54, 99, 103 | itg2mulc 24645 |
. . . . . . 7
⊢ (𝜑 →
(∫2‘((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))))) |
105 | 100 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (abs‘𝐶) ∈
ℝ) |
106 | | fconstmpt 5611 |
. . . . . . . . . . 11
⊢ (ℝ
× {(abs‘𝐶)}) =
(𝑥 ∈ ℝ ↦
(abs‘𝐶)) |
107 | 106 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ ×
{(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦
(abs‘𝐶))) |
108 | | eqidd 2738 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) |
109 | 56, 105, 53, 107, 108 | offval2 7488 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ ×
{(abs‘𝐶)})
∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)))) |
110 | 71 | oveq2d 7229 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
111 | | iftrue 4445 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
112 | 110, 111 | eqtr4d 2780 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
113 | 112 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
114 | 100 | recnd 10861 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (abs‘𝐶) ∈
ℂ) |
115 | 114 | mul01d 11031 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((abs‘𝐶) · 0) =
0) |
116 | 115 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · 0) = 0) |
117 | 77 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = 0) |
118 | 117 | oveq2d 7229 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · 0)) |
119 | | iffalse 4448 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) = 0) |
120 | 119 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) = 0) |
121 | 116, 118,
120 | 3eqtr4d 2787 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
122 | 113, 121 | pm2.61dan 813 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
123 | 122 | mpteq2dv 5151 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
124 | 109, 123 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ ×
{(abs‘𝐶)})
∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
125 | 124 | fveq2d 6721 |
. . . . . . 7
⊢ (𝜑 →
(∫2‘((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)))) |
126 | 97 | oveq2d 7229 |
. . . . . . 7
⊢ (𝜑 → ((abs‘𝐶) ·
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) ·
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))))) |
127 | 104, 125,
126 | 3eqtr3d 2785 |
. . . . . 6
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) = ((abs‘𝐶) ·
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))))) |
128 | 100, 98 | remulcld 10863 |
. . . . . 6
⊢ (𝜑 → ((abs‘𝐶) ·
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) ∈
ℝ) |
129 | 127, 128 | eqeltrd 2838 |
. . . . 5
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈
ℝ) |
130 | 129 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈
ℝ) |
131 | 100 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐶) ∈ ℝ) |
132 | 131, 44 | remulcld 10863 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) ∈ ℝ) |
133 | 132 | rexrd 10883 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) ∈
ℝ*) |
134 | 101 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘𝐶)) |
135 | 131, 44, 134, 47 | mulge0d 11409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) |
136 | | elxrge0 13045 |
. . . . . . . . 9
⊢
(((abs‘𝐶)
· ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞)
↔ (((abs‘𝐶)
· ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ*
∧ 0 ≤ ((abs‘𝐶)
· ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))) |
137 | 133, 135,
136 | sylanbrc 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞)) |
138 | 32 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) |
139 | 137, 138 | ifclda 4474 |
. . . . . . 7
⊢ (𝜑 → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) ∈
(0[,]+∞)) |
140 | 139 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) ∈
(0[,]+∞)) |
141 | 140 | fmpttd 6932 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))),
0)):ℝ⟶(0[,]+∞)) |
142 | 9 | abscld 15000 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) |
143 | 131, 142 | remulcld 10863 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ) |
144 | 143 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ) |
145 | 132 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) ∈ ℝ) |
146 | 22 | releabsd 15015 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘((𝐶 · 𝐵) / (i↑𝑘)))) |
147 | 11, 18, 21 | absdivd 15019 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘)))) |
148 | | elfznn0 13205 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℕ0) |
149 | | absexp 14868 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((i
∈ ℂ ∧ 𝑘
∈ ℕ0) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘)) |
150 | 14, 148, 149 | sylancr 590 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (0...3) →
(abs‘(i↑𝑘)) =
((abs‘i)↑𝑘)) |
151 | | absi 14850 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(abs‘i) = 1 |
152 | 151 | oveq1i 7223 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((abs‘i)↑𝑘) = (1↑𝑘) |
153 | | 1exp 13664 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℤ →
(1↑𝑘) =
1) |
154 | 12, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...3) →
(1↑𝑘) =
1) |
155 | 152, 154 | syl5eq 2790 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (0...3) →
((abs‘i)↑𝑘) =
1) |
156 | 150, 155 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...3) →
(abs‘(i↑𝑘)) =
1) |
157 | 156 | oveq2d 7229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...3) →
((abs‘(𝐶 ·
𝐵)) /
(abs‘(i↑𝑘))) =
((abs‘(𝐶 ·
𝐵)) / 1)) |
158 | 157 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1)) |
159 | 10 | abscld 15000 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℝ) |
160 | 159 | recnd 10861 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ) |
161 | 160 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ) |
162 | 161 | div1d 11600 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐶 · 𝐵)) / 1) = (abs‘(𝐶 · 𝐵))) |
163 | 147, 158,
162 | 3eqtrd 2781 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = (abs‘(𝐶 · 𝐵))) |
164 | 4, 9 | absmuld 15018 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵))) |
165 | 164 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵))) |
166 | 163, 165 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘𝐶) · (abs‘𝐵))) |
167 | 146, 166 | breqtrd 5079 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · (abs‘𝐵))) |
168 | | mulcl 10813 |
. . . . . . . . . . . . . . . . . 18
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i ·
(ℑ‘𝐵)) ∈
ℂ) |
169 | 14, 42, 168 | sylancr 590 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (i · (ℑ‘𝐵)) ∈
ℂ) |
170 | 39, 169 | abstrid 15020 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘((ℜ‘𝐵) + (i ·
(ℑ‘𝐵)))) ≤
((abs‘(ℜ‘𝐵)) + (abs‘(i ·
(ℑ‘𝐵))))) |
171 | 9 | replimd 14760 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) |
172 | 171 | fveq2d 6721 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) = (abs‘((ℜ‘𝐵) + (i ·
(ℑ‘𝐵))))) |
173 | | absmul 14858 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (abs‘(i
· (ℑ‘𝐵))) = ((abs‘i) ·
(abs‘(ℑ‘𝐵)))) |
174 | 14, 42, 173 | sylancr 590 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(i ·
(ℑ‘𝐵))) =
((abs‘i) · (abs‘(ℑ‘𝐵)))) |
175 | 151 | oveq1i 7223 |
. . . . . . . . . . . . . . . . . . 19
⊢
((abs‘i) · (abs‘(ℑ‘𝐵))) = (1 ·
(abs‘(ℑ‘𝐵))) |
176 | 174, 175 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(i ·
(ℑ‘𝐵))) = (1
· (abs‘(ℑ‘𝐵)))) |
177 | 43 | recnd 10861 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
ℂ) |
178 | 177 | mulid2d 10851 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 ·
(abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵))) |
179 | 176, 178 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) = (abs‘(i ·
(ℑ‘𝐵)))) |
180 | 179 | oveq2d 7229 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) = ((abs‘(ℜ‘𝐵)) + (abs‘(i ·
(ℑ‘𝐵))))) |
181 | 170, 172,
180 | 3brtr4d 5085 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ≤ ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) |
182 | 142, 44, 131, 134, 181 | lemul2ad 11772 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
183 | 182 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
184 | 23, 144, 145, 167, 183 | letrd 10989 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
185 | 135 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 0 ≤ ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) |
186 | | breq1 5056 |
. . . . . . . . . . . . 13
⊢
((ℜ‘((𝐶
· 𝐵) / (i↑𝑘))) = if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))))) |
187 | | breq1 5056 |
. . . . . . . . . . . . 13
⊢ (0 = if(0
≤ (ℜ‘((𝐶
· 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → (0 ≤ ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ↔ if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))))) |
188 | 186, 187 | ifboth 4478 |
. . . . . . . . . . . 12
⊢
(((ℜ‘((𝐶
· 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∧ 0 ≤
((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) → if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
189 | 184, 185,
188 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
190 | | iftrue 4445 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
191 | 190 | adantl 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
192 | 111 | adantl 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
193 | 189, 191,
192 | 3brtr4d 5085 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
194 | 193 | ex 416 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
195 | | 0le0 11931 |
. . . . . . . . . . 11
⊢ 0 ≤
0 |
196 | 195 | a1i 11 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → 0 ≤ 0) |
197 | | iffalse 4448 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = 0) |
198 | 196, 197,
119 | 3brtr4d 5085 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
199 | 194, 198 | pm2.61d1 183 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
200 | 2, 199 | eqbrtrid 5088 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
201 | 200 | ralrimivw 3106 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
202 | 55 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ℝ ∈
V) |
203 | | eqidd 2738 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) |
204 | | eqidd 2738 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
205 | 202, 36, 140, 203, 204 | ofrfval2 7489 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
206 | 201, 205 | mpbird 260 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
207 | | itg2le 24637 |
. . . . 5
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)):ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))) |
208 | 37, 141, 206, 207 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))) |
209 | | itg2lecl 24636 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ) |
210 | 37, 130, 208, 209 | syl3anc 1373 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ) |
211 | 210 | ralrimiva 3105 |
. 2
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ) |
212 | | eqidd 2738 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) |
213 | | eqidd 2738 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))) |
214 | 212, 213,
10 | isibl2 24664 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ))) |
215 | 1, 211, 214 | mpbir2and 713 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈
𝐿1) |