| Step | Hyp | Ref
| Expression |
| 1 | | itgmulc2nc.m |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) |
| 2 | | ifan 4559 |
. . . . . 6
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) |
| 3 | | itgmulc2nc.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 4 | 3 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 5 | | itgmulc2nc.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
| 6 | | iblmbf 25725 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 8 | | itgmulc2nc.2 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 9 | 7, 8 | mbfmptcl 25594 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 10 | 4, 9 | mulcld 11260 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
| 11 | 10 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
| 12 | | elfzelz 13546 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
| 13 | 12 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑘 ∈ ℤ) |
| 14 | | ax-icn 11193 |
. . . . . . . . . . . . . . 15
⊢ i ∈
ℂ |
| 15 | | ine0 11677 |
. . . . . . . . . . . . . . 15
⊢ i ≠
0 |
| 16 | | expclz 14107 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈
ℂ) |
| 17 | 14, 15, 16 | mp3an12 1453 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℤ →
(i↑𝑘) ∈
ℂ) |
| 18 | 13, 17 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (i↑𝑘) ∈ ℂ) |
| 19 | | expne0i 14117 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) |
| 20 | 14, 15, 19 | mp3an12 1453 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℤ →
(i↑𝑘) ≠
0) |
| 21 | 13, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (i↑𝑘) ≠ 0) |
| 22 | 11, 18, 21 | divcld 12022 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((𝐶 · 𝐵) / (i↑𝑘)) ∈ ℂ) |
| 23 | 22 | recld 15218 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ) |
| 24 | | 0re 11242 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 25 | | ifcl 4551 |
. . . . . . . . . . 11
⊢
(((ℜ‘((𝐶
· 𝐵) / (i↑𝑘))) ∈ ℝ ∧ 0
∈ ℝ) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ) |
| 26 | 23, 24, 25 | sylancl 586 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ) |
| 27 | 26 | rexrd 11290 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈
ℝ*) |
| 28 | | max1 13206 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
| 29 | 24, 23, 28 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
| 30 | | elxrge0 13479 |
. . . . . . . . 9
⊢ (if(0
≤ (ℜ‘((𝐶
· 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0
≤ (ℜ‘((𝐶
· 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ* ∧ 0
≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) |
| 31 | 27, 29, 30 | sylanbrc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
| 32 | | 0e0iccpnf 13481 |
. . . . . . . . 9
⊢ 0 ∈
(0[,]+∞) |
| 33 | 32 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) |
| 34 | 31, 33 | ifclda 4541 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈
(0[,]+∞)) |
| 35 | 34 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈
(0[,]+∞)) |
| 36 | 2, 35 | eqeltrid 2839 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
| 37 | 36 | fmpttd 7110 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))),
0)):ℝ⟶(0[,]+∞)) |
| 38 | 9 | recld 15218 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
| 39 | 38 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
| 40 | 39 | abscld 15460 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℜ‘𝐵)) ∈
ℝ) |
| 41 | 9 | imcld 15219 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
| 42 | 41 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
| 43 | 42 | abscld 15460 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
ℝ) |
| 44 | 40, 43 | readdcld 11269 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) ∈ ℝ) |
| 45 | 39 | absge0d 15468 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
(abs‘(ℜ‘𝐵))) |
| 46 | 42 | absge0d 15468 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
(abs‘(ℑ‘𝐵))) |
| 47 | 40, 43, 45, 46 | addge0d 11818 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) |
| 48 | | elrege0 13476 |
. . . . . . . . . . . 12
⊢
(((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,)+∞) ↔
(((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ ∧ 0 ≤
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) |
| 49 | 44, 47, 48 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) ∈ (0[,)+∞)) |
| 50 | | 0e0icopnf 13480 |
. . . . . . . . . . . 12
⊢ 0 ∈
(0[,)+∞) |
| 51 | 50 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,)+∞)) |
| 52 | 49, 51 | ifclda 4541 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) ∈
(0[,)+∞)) |
| 53 | 52 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) ∈
(0[,)+∞)) |
| 54 | 53 | fmpttd 7110 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))),
0)):ℝ⟶(0[,)+∞)) |
| 55 | | reex 11225 |
. . . . . . . . . . . . . 14
⊢ ℝ
∈ V |
| 56 | 55 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℝ ∈
V) |
| 57 | | elrege0 13476 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘(ℜ‘𝐵)) ∈ (0[,)+∞) ↔
((abs‘(ℜ‘𝐵)) ∈ ℝ ∧ 0 ≤
(abs‘(ℜ‘𝐵)))) |
| 58 | 40, 45, 57 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℜ‘𝐵)) ∈
(0[,)+∞)) |
| 59 | 58, 51 | ifclda 4541 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) ∈
(0[,)+∞)) |
| 60 | 59 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) ∈
(0[,)+∞)) |
| 61 | | elrege0 13476 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘(ℑ‘𝐵)) ∈ (0[,)+∞) ↔
((abs‘(ℑ‘𝐵)) ∈ ℝ ∧ 0 ≤
(abs‘(ℑ‘𝐵)))) |
| 62 | 43, 46, 61 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
(0[,)+∞)) |
| 63 | 62, 51 | ifclda 4541 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) ∈
(0[,)+∞)) |
| 64 | 63 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) ∈
(0[,)+∞)) |
| 65 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) |
| 66 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) |
| 67 | 56, 60, 64, 65, 66 | offval2 7696 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) |
| 68 | | iftrue 4511 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) = (abs‘(ℜ‘𝐵))) |
| 69 | | iftrue 4511 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) =
(abs‘(ℑ‘𝐵))) |
| 70 | 68, 69 | oveq12d 7428 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) =
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) |
| 71 | | iftrue 4511 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) |
| 72 | 70, 71 | eqtr4d 2774 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
| 73 | | 00id 11415 |
. . . . . . . . . . . . . . 15
⊢ (0 + 0) =
0 |
| 74 | | iffalse 4514 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) = 0) |
| 75 | | iffalse 4514 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0) = 0) |
| 76 | 74, 75 | oveq12d 7428 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (0 +
0)) |
| 77 | | iffalse 4514 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = 0) |
| 78 | 73, 76, 77 | 3eqtr4a 2797 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑥 ∈ 𝐴 → (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
| 79 | 72, 78 | pm2.61i 182 |
. . . . . . . . . . . . 13
⊢ (if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) |
| 80 | 79 | mpteq2i 5222 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ ↦
(if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) |
| 81 | 67, 80 | eqtr2di 2788 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) |
| 82 | 81 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) =
(∫2‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
| 83 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) |
| 84 | 9 | iblcn 25757 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1
∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1))) |
| 85 | 5, 84 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1)) |
| 86 | 85 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈
𝐿1) |
| 87 | 8, 5, 83, 86, 38 | iblabsnclem 37712 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℜ‘𝐵)), 0))) ∈ ℝ)) |
| 88 | 87 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn) |
| 89 | 60 | fmpttd 7110 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)),
0)):ℝ⟶(0[,)+∞)) |
| 90 | 87 | simprd 495 |
. . . . . . . . . . 11
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℜ‘𝐵)), 0))) ∈ ℝ) |
| 91 | 64 | fmpttd 7110 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)),
0)):ℝ⟶(0[,)+∞)) |
| 92 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) |
| 93 | 85 | simprd 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1) |
| 94 | 8, 5, 92, 93, 41 | iblabsnclem 37712 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℑ‘𝐵)), 0))) ∈ ℝ)) |
| 95 | 94 | simprd 495 |
. . . . . . . . . . 11
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
(abs‘(ℑ‘𝐵)), 0))) ∈ ℝ) |
| 96 | 88, 89, 90, 91, 95 | itg2addnc 37703 |
. . . . . . . . . 10
⊢ (𝜑 →
(∫2‘((𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) =
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
| 97 | 82, 96 | eqtrd 2771 |
. . . . . . . . 9
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) =
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) |
| 98 | 90, 95 | readdcld 11269 |
. . . . . . . . 9
⊢ (𝜑 →
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))) ∈
ℝ) |
| 99 | 97, 98 | eqeltrd 2835 |
. . . . . . . 8
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈
ℝ) |
| 100 | 3 | abscld 15460 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘𝐶) ∈
ℝ) |
| 101 | 3 | absge0d 15468 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (abs‘𝐶)) |
| 102 | | elrege0 13476 |
. . . . . . . . 9
⊢
((abs‘𝐶)
∈ (0[,)+∞) ↔ ((abs‘𝐶) ∈ ℝ ∧ 0 ≤
(abs‘𝐶))) |
| 103 | 100, 101,
102 | sylanbrc 583 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐶) ∈
(0[,)+∞)) |
| 104 | 54, 99, 103 | itg2mulc 25705 |
. . . . . . 7
⊢ (𝜑 →
(∫2‘((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))))) |
| 105 | 100 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (abs‘𝐶) ∈
ℝ) |
| 106 | | fconstmpt 5721 |
. . . . . . . . . . 11
⊢ (ℝ
× {(abs‘𝐶)}) =
(𝑥 ∈ ℝ ↦
(abs‘𝐶)) |
| 107 | 106 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ ×
{(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦
(abs‘𝐶))) |
| 108 | | eqidd 2737 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) |
| 109 | 56, 105, 53, 107, 108 | offval2 7696 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ ×
{(abs‘𝐶)})
∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)))) |
| 110 | 71 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
| 111 | | iftrue 4511 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
| 112 | 110, 111 | eqtr4d 2774 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
| 113 | 112 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
| 114 | 100 | recnd 11268 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (abs‘𝐶) ∈
ℂ) |
| 115 | 114 | mul01d 11439 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((abs‘𝐶) · 0) =
0) |
| 116 | 115 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · 0) = 0) |
| 117 | 77 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0) = 0) |
| 118 | 117 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · 0)) |
| 119 | | iffalse 4514 |
. . . . . . . . . . . . 13
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) = 0) |
| 120 | 119 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) = 0) |
| 121 | 116, 118,
120 | 3eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
| 122 | 113, 121 | pm2.61dan 812 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)) = if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
| 123 | 122 | mpteq2dv 5220 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
| 124 | 109, 123 | eqtrd 2771 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ ×
{(abs‘𝐶)})
∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
| 125 | 124 | fveq2d 6885 |
. . . . . . 7
⊢ (𝜑 →
(∫2‘((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))), 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)))) |
| 126 | 97 | oveq2d 7426 |
. . . . . . 7
⊢ (𝜑 → ((abs‘𝐶) ·
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴,
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) ·
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))))) |
| 127 | 104, 125,
126 | 3eqtr3d 2779 |
. . . . . 6
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) = ((abs‘𝐶) ·
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0)))))) |
| 128 | 100, 98 | remulcld 11270 |
. . . . . 6
⊢ (𝜑 → ((abs‘𝐶) ·
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(ℑ‘𝐵)), 0))))) ∈
ℝ) |
| 129 | 127, 128 | eqeltrd 2835 |
. . . . 5
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈
ℝ) |
| 130 | 129 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈
ℝ) |
| 131 | 100 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐶) ∈ ℝ) |
| 132 | 131, 44 | remulcld 11270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) ∈ ℝ) |
| 133 | 132 | rexrd 11290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) ∈
ℝ*) |
| 134 | 101 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘𝐶)) |
| 135 | 131, 44, 134, 47 | mulge0d 11819 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) |
| 136 | | elxrge0 13479 |
. . . . . . . . 9
⊢
(((abs‘𝐶)
· ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞)
↔ (((abs‘𝐶)
· ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ*
∧ 0 ≤ ((abs‘𝐶)
· ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))) |
| 137 | 133, 135,
136 | sylanbrc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞)) |
| 138 | 32 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) |
| 139 | 137, 138 | ifclda 4541 |
. . . . . . 7
⊢ (𝜑 → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) ∈
(0[,]+∞)) |
| 140 | 139 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) ∈
(0[,]+∞)) |
| 141 | 140 | fmpttd 7110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))),
0)):ℝ⟶(0[,]+∞)) |
| 142 | 9 | abscld 15460 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) |
| 143 | 131, 142 | remulcld 11270 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ) |
| 144 | 143 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ) |
| 145 | 132 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) ∈ ℝ) |
| 146 | 22 | releabsd 15475 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘((𝐶 · 𝐵) / (i↑𝑘)))) |
| 147 | 11, 18, 21 | absdivd 15479 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘)))) |
| 148 | | elfznn0 13642 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℕ0) |
| 149 | | absexp 15328 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((i
∈ ℂ ∧ 𝑘
∈ ℕ0) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘)) |
| 150 | 14, 148, 149 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (0...3) →
(abs‘(i↑𝑘)) =
((abs‘i)↑𝑘)) |
| 151 | | absi 15310 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(abs‘i) = 1 |
| 152 | 151 | oveq1i 7420 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((abs‘i)↑𝑘) = (1↑𝑘) |
| 153 | | 1exp 14114 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℤ →
(1↑𝑘) =
1) |
| 154 | 12, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (0...3) →
(1↑𝑘) =
1) |
| 155 | 152, 154 | eqtrid 2783 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (0...3) →
((abs‘i)↑𝑘) =
1) |
| 156 | 150, 155 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...3) →
(abs‘(i↑𝑘)) =
1) |
| 157 | 156 | oveq2d 7426 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...3) →
((abs‘(𝐶 ·
𝐵)) /
(abs‘(i↑𝑘))) =
((abs‘(𝐶 ·
𝐵)) / 1)) |
| 158 | 157 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1)) |
| 159 | 10 | abscld 15460 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℝ) |
| 160 | 159 | recnd 11268 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ) |
| 161 | 160 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ) |
| 162 | 161 | div1d 12014 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐶 · 𝐵)) / 1) = (abs‘(𝐶 · 𝐵))) |
| 163 | 147, 158,
162 | 3eqtrd 2775 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = (abs‘(𝐶 · 𝐵))) |
| 164 | 4, 9 | absmuld 15478 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵))) |
| 165 | 164 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵))) |
| 166 | 163, 165 | eqtrd 2771 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘𝐶) · (abs‘𝐵))) |
| 167 | 146, 166 | breqtrd 5150 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · (abs‘𝐵))) |
| 168 | | mulcl 11218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i ·
(ℑ‘𝐵)) ∈
ℂ) |
| 169 | 14, 42, 168 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (i · (ℑ‘𝐵)) ∈
ℂ) |
| 170 | 39, 169 | abstrid 15480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘((ℜ‘𝐵) + (i ·
(ℑ‘𝐵)))) ≤
((abs‘(ℜ‘𝐵)) + (abs‘(i ·
(ℑ‘𝐵))))) |
| 171 | 9 | replimd 15221 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) |
| 172 | 171 | fveq2d 6885 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) = (abs‘((ℜ‘𝐵) + (i ·
(ℑ‘𝐵))))) |
| 173 | | absmul 15318 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (abs‘(i
· (ℑ‘𝐵))) = ((abs‘i) ·
(abs‘(ℑ‘𝐵)))) |
| 174 | 14, 42, 173 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(i ·
(ℑ‘𝐵))) =
((abs‘i) · (abs‘(ℑ‘𝐵)))) |
| 175 | 151 | oveq1i 7420 |
. . . . . . . . . . . . . . . . . . 19
⊢
((abs‘i) · (abs‘(ℑ‘𝐵))) = (1 ·
(abs‘(ℑ‘𝐵))) |
| 176 | 174, 175 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(i ·
(ℑ‘𝐵))) = (1
· (abs‘(ℑ‘𝐵)))) |
| 177 | 43 | recnd 11268 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) ∈
ℂ) |
| 178 | 177 | mullidd 11258 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 ·
(abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵))) |
| 179 | 176, 178 | eqtr2d 2772 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(ℑ‘𝐵)) = (abs‘(i ·
(ℑ‘𝐵)))) |
| 180 | 179 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))) = ((abs‘(ℜ‘𝐵)) + (abs‘(i ·
(ℑ‘𝐵))))) |
| 181 | 170, 172,
180 | 3brtr4d 5156 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ≤ ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) |
| 182 | 142, 44, 131, 134, 181 | lemul2ad 12187 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
| 183 | 182 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
| 184 | 23, 144, 145, 167, 183 | letrd 11397 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
| 185 | 135 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 0 ≤ ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) |
| 186 | | breq1 5127 |
. . . . . . . . . . . . 13
⊢
((ℜ‘((𝐶
· 𝐵) / (i↑𝑘))) = if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))))) |
| 187 | | breq1 5127 |
. . . . . . . . . . . . 13
⊢ (0 = if(0
≤ (ℜ‘((𝐶
· 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → (0 ≤ ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ↔ if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))))) |
| 188 | 186, 187 | ifboth 4545 |
. . . . . . . . . . . 12
⊢
(((ℜ‘((𝐶
· 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∧ 0 ≤
((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) → if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
| 189 | 184, 185,
188 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
| 190 | | iftrue 4511 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
| 191 | 190 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
| 192 | 111 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵))))) |
| 193 | 189, 191,
192 | 3brtr4d 5156 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
| 194 | 193 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
| 195 | | 0le0 12346 |
. . . . . . . . . . 11
⊢ 0 ≤
0 |
| 196 | 195 | a1i 11 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → 0 ≤ 0) |
| 197 | | iffalse 4514 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = 0) |
| 198 | 196, 197,
119 | 3brtr4d 5156 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
| 199 | 194, 198 | pm2.61d1 180 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
| 200 | 2, 199 | eqbrtrid 5159 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
| 201 | 200 | ralrimivw 3137 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) |
| 202 | 55 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ℝ ∈
V) |
| 203 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) |
| 204 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
| 205 | 202, 36, 140, 203, 204 | ofrfval2 7697 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
| 206 | 201, 205 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) |
| 207 | | itg2le 25697 |
. . . . 5
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0)):ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) +
(abs‘(ℑ‘𝐵)))), 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))) |
| 208 | 37, 141, 206, 207 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))) |
| 209 | | itg2lecl 25696 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, ((abs‘𝐶) ·
((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ) |
| 210 | 37, 130, 208, 209 | syl3anc 1373 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ) |
| 211 | 210 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ) |
| 212 | | eqidd 2737 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) |
| 213 | | eqidd 2737 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))) |
| 214 | 212, 213,
10 | isibl2 25724 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ))) |
| 215 | 1, 211, 214 | mpbir2and 713 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈
𝐿1) |