Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblmulc2nc Structured version   Visualization version   GIF version

Theorem iblmulc2nc 35769
Description: Choice-free analogue of iblmulc2 24900. (Contributed by Brendan Leahy, 17-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Assertion
Ref Expression
iblmulc2nc (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblmulc2nc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itgmulc2nc.m . 2 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
2 ifan 4509 . . . . . 6 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0)
3 itgmulc2nc.1 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℂ)
43adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
5 itgmulc2nc.3 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 iblmbf 24837 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
75, 6syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
8 itgmulc2nc.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐵𝑉)
97, 8mbfmptcl 24705 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
104, 9mulcld 10926 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
1110adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
12 elfzelz 13185 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
1312ad2antlr 723 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
14 ax-icn 10861 . . . . . . . . . . . . . . 15 i ∈ ℂ
15 ine0 11340 . . . . . . . . . . . . . . 15 i ≠ 0
16 expclz 13735 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
1714, 15, 16mp3an12 1449 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
1813, 17syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ∈ ℂ)
19 expne0i 13743 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
2014, 15, 19mp3an12 1449 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
2113, 20syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ≠ 0)
2211, 18, 21divcld 11681 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((𝐶 · 𝐵) / (i↑𝑘)) ∈ ℂ)
2322recld 14833 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ)
24 0re 10908 . . . . . . . . . . 11 0 ∈ ℝ
25 ifcl 4501 . . . . . . . . . . 11 (((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ)
2623, 24, 25sylancl 585 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ)
2726rexrd 10956 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ*)
28 max1 12848 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
2924, 23, 28sylancr 586 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
30 elxrge0 13118 . . . . . . . . 9 (if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
3127, 29, 30sylanbrc 582 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞))
32 0e0iccpnf 13120 . . . . . . . . 9 0 ∈ (0[,]+∞)
3332a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
3431, 33ifclda 4491 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
3534adantr 480 . . . . . 6 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
362, 35eqeltrid 2843 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞))
3736fmpttd 6971 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
389recld 14833 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
3938recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
4039abscld 15076 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ ℝ)
419imcld 14834 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
4241recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
4342abscld 15076 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
4440, 43readdcld 10935 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ)
4539absge0d 15084 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℜ‘𝐵)))
4642absge0d 15084 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℑ‘𝐵)))
4740, 43, 45, 46addge0d 11481 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
48 elrege0 13115 . . . . . . . . . . . 12 (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,)+∞) ↔ (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ ∧ 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
4944, 47, 48sylanbrc 582 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,)+∞))
50 0e0icopnf 13119 . . . . . . . . . . . 12 0 ∈ (0[,)+∞)
5150a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
5249, 51ifclda 4491 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,)+∞))
5352adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,)+∞))
5453fmpttd 6971 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)):ℝ⟶(0[,)+∞))
55 reex 10893 . . . . . . . . . . . . . 14 ℝ ∈ V
5655a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
57 elrege0 13115 . . . . . . . . . . . . . . . 16 ((abs‘(ℜ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℜ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘𝐵))))
5840, 45, 57sylanbrc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ (0[,)+∞))
5958, 51ifclda 4491 . . . . . . . . . . . . . 14 (𝜑 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
6059adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
61 elrege0 13115 . . . . . . . . . . . . . . . 16 ((abs‘(ℑ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℑ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘𝐵))))
6243, 46, 61sylanbrc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ (0[,)+∞))
6362, 51ifclda 4491 . . . . . . . . . . . . . 14 (𝜑 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
6463adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
65 eqidd 2739 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)))
66 eqidd 2739 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))
6756, 60, 64, 65, 66offval2 7531 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
68 iftrue 4462 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = (abs‘(ℜ‘𝐵)))
69 iftrue 4462 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = (abs‘(ℑ‘𝐵)))
7068, 69oveq12d 7273 . . . . . . . . . . . . . . 15 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
71 iftrue 4462 . . . . . . . . . . . . . . 15 (𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
7270, 71eqtr4d 2781 . . . . . . . . . . . . . 14 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
73 00id 11080 . . . . . . . . . . . . . . 15 (0 + 0) = 0
74 iffalse 4465 . . . . . . . . . . . . . . . 16 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = 0)
75 iffalse 4465 . . . . . . . . . . . . . . . 16 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = 0)
7674, 75oveq12d 7273 . . . . . . . . . . . . . . 15 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (0 + 0))
77 iffalse 4465 . . . . . . . . . . . . . . 15 𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = 0)
7873, 76, 773eqtr4a 2805 . . . . . . . . . . . . . 14 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
7972, 78pm2.61i 182 . . . . . . . . . . . . 13 (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)
8079mpteq2i 5175 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
8167, 80eqtr2di 2796 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
8281fveq2d 6760 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
83 eqid 2738 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))
849iblcn 24868 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
855, 84mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
8685simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
878, 5, 83, 86, 38iblabsnclem 35767 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ))
8887simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn)
8960fmpttd 6971 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
9087simprd 495 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ)
9164fmpttd 6971 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
92 eqid 2738 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))
9385simprd 495 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
948, 5, 92, 93, 41iblabsnclem 35767 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ))
9594simprd 495 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ)
9688, 89, 90, 91, 95itg2addnc 35758 . . . . . . . . . 10 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
9782, 96eqtrd 2778 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
9890, 95readdcld 10935 . . . . . . . . 9 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) ∈ ℝ)
9997, 98eqeltrd 2839 . . . . . . . 8 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ)
1003abscld 15076 . . . . . . . . 9 (𝜑 → (abs‘𝐶) ∈ ℝ)
1013absge0d 15084 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘𝐶))
102 elrege0 13115 . . . . . . . . 9 ((abs‘𝐶) ∈ (0[,)+∞) ↔ ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)))
103100, 101, 102sylanbrc 582 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ (0[,)+∞))
10454, 99, 103itg2mulc 24817 . . . . . . 7 (𝜑 → (∫2‘((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))))
105100adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (abs‘𝐶) ∈ ℝ)
106 fconstmpt 5640 . . . . . . . . . . 11 (ℝ × {(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦ (abs‘𝐶))
107106a1i 11 . . . . . . . . . 10 (𝜑 → (ℝ × {(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦ (abs‘𝐶)))
108 eqidd 2739 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
10956, 105, 53, 107, 108offval2 7531 . . . . . . . . 9 (𝜑 → ((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))))
11071oveq2d 7271 . . . . . . . . . . . . 13 (𝑥𝐴 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
111 iftrue 4462 . . . . . . . . . . . . 13 (𝑥𝐴 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
112110, 111eqtr4d 2781 . . . . . . . . . . . 12 (𝑥𝐴 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
113112adantl 481 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
114100recnd 10934 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ∈ ℂ)
115114mul01d 11104 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐶) · 0) = 0)
116115adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · 0) = 0)
11777adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = 0)
118117oveq2d 7271 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · 0))
119 iffalse 4465 . . . . . . . . . . . . 13 𝑥𝐴 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = 0)
120119adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = 0)
121116, 118, 1203eqtr4d 2788 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
122113, 121pm2.61dan 809 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
123122mpteq2dv 5172 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
124109, 123eqtrd 2778 . . . . . . . 8 (𝜑 → ((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
125124fveq2d 6760 . . . . . . 7 (𝜑 → (∫2‘((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
12697oveq2d 7271 . . . . . . 7 (𝜑 → ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))))
127104, 125, 1263eqtr3d 2786 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) = ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))))
128100, 98remulcld 10936 . . . . . 6 (𝜑 → ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))) ∈ ℝ)
129127, 128eqeltrd 2839 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ)
130129adantr 480 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ)
131100adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝐶) ∈ ℝ)
132131, 44remulcld 10936 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ)
133132rexrd 10956 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ*)
134101adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐶))
135131, 44, 134, 47mulge0d 11482 . . . . . . . . 9 ((𝜑𝑥𝐴) → 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
136 elxrge0 13118 . . . . . . . . 9 (((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞) ↔ (((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ* ∧ 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
137133, 135, 136sylanbrc 582 . . . . . . . 8 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞))
13832a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
139137, 138ifclda 4491 . . . . . . 7 (𝜑 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) ∈ (0[,]+∞))
140139ad2antrr 722 . . . . . 6 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) ∈ (0[,]+∞))
141140fmpttd 6971 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)):ℝ⟶(0[,]+∞))
1429abscld 15076 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
143131, 142remulcld 10936 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ)
144143adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ)
145132adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ)
14622releabsd 15091 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘((𝐶 · 𝐵) / (i↑𝑘))))
14711, 18, 21absdivd 15095 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))))
148 elfznn0 13278 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
149 absexp 14944 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
15014, 148, 149sylancr 586 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...3) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
151 absi 14926 . . . . . . . . . . . . . . . . . . . . 21 (abs‘i) = 1
152151oveq1i 7265 . . . . . . . . . . . . . . . . . . . 20 ((abs‘i)↑𝑘) = (1↑𝑘)
153 1exp 13740 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
15412, 153syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...3) → (1↑𝑘) = 1)
155152, 154syl5eq 2791 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...3) → ((abs‘i)↑𝑘) = 1)
156150, 155eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...3) → (abs‘(i↑𝑘)) = 1)
157156oveq2d 7271 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...3) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1))
158157ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1))
15910abscld 15076 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℝ)
160159recnd 10934 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ)
161160adantlr 711 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ)
162161div1d 11673 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘(𝐶 · 𝐵)) / 1) = (abs‘(𝐶 · 𝐵)))
163147, 158, 1623eqtrd 2782 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = (abs‘(𝐶 · 𝐵)))
1644, 9absmuld 15094 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
165164adantlr 711 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
166163, 165eqtrd 2778 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘𝐶) · (abs‘𝐵)))
167146, 166breqtrd 5096 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · (abs‘𝐵)))
168 mulcl 10886 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
16914, 42, 168sylancr 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (i · (ℑ‘𝐵)) ∈ ℂ)
17039, 169abstrid 15096 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
1719replimd 14836 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
172171fveq2d 6760 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘𝐵) = (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
173 absmul 14934 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
17414, 42, 173sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
175151oveq1i 7265 . . . . . . . . . . . . . . . . . . 19 ((abs‘i) · (abs‘(ℑ‘𝐵))) = (1 · (abs‘(ℑ‘𝐵)))
176174, 175eqtrdi 2795 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (abs‘(i · (ℑ‘𝐵))) = (1 · (abs‘(ℑ‘𝐵))))
17743recnd 10934 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℂ)
178177mulid2d 10924 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (1 · (abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵)))
179176, 178eqtr2d 2779 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) = (abs‘(i · (ℑ‘𝐵))))
180179oveq2d 7271 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) = ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
181170, 172, 1803brtr4d 5102 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘𝐵) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
182142, 44, 131, 134, 181lemul2ad 11845 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
183182adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
18423, 144, 145, 167, 183letrd 11062 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
185135adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
186 breq1 5073 . . . . . . . . . . . . 13 ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
187 breq1 5073 . . . . . . . . . . . . 13 (0 = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → (0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
188186, 187ifboth 4495 . . . . . . . . . . . 12 (((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∧ 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
189184, 185, 188syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
190 iftrue 4462 . . . . . . . . . . . 12 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
191190adantl 481 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
192111adantl 481 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
193189, 191, 1923brtr4d 5102 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
194193ex 412 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
195 0le0 12004 . . . . . . . . . . 11 0 ≤ 0
196195a1i 11 . . . . . . . . . 10 𝑥𝐴 → 0 ≤ 0)
197 iffalse 4465 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = 0)
198196, 197, 1193brtr4d 5102 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
199194, 198pm2.61d1 180 . . . . . . . 8 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
2002, 199eqbrtrid 5105 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
201200ralrimivw 3108 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
20255a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → ℝ ∈ V)
203 eqidd 2739 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
204 eqidd 2739 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
205202, 36, 140, 203, 204ofrfval2 7532 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
206201, 205mpbird 256 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
207 itg2le 24809 . . . . 5 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
20837, 141, 206, 207syl3anc 1369 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
209 itg2lecl 24808 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
21037, 130, 208, 209syl3anc 1369 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
211210ralrimiva 3107 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
212 eqidd 2739 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
213 eqidd 2739 . . 3 ((𝜑𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))))
214212, 213, 10isibl2 24836 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)))
2151, 211, 214mpbir2and 709 1 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  r cofr 7510  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939  cle 10941   / cdiv 11562  3c3 11959  0cn0 12163  cz 12249  [,)cico 13010  [,]cicc 13011  ...cfz 13168  cexp 13710  cre 14736  cim 14737  abscabs 14873  MblFncmbf 24683  2citg2 24685  𝐿1cibl 24686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-0p 24739
This theorem is referenced by:  itgmulc2nclem1  35770  itgmulc2nclem2  35771  itgmulc2nc  35772  itgabsnc  35773  ftc1anclem6  35782
  Copyright terms: Public domain W3C validator