Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblmulc2nc Structured version   Visualization version   GIF version

Theorem iblmulc2nc 34434
Description: Choice-free analogue of iblmulc2 24102. (Contributed by Brendan Leahy, 17-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Assertion
Ref Expression
iblmulc2nc (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblmulc2nc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itgmulc2nc.m . 2 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
2 ifan 4426 . . . . . 6 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0)
3 itgmulc2nc.1 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℂ)
43adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
5 itgmulc2nc.3 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 iblmbf 24039 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
75, 6syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
8 itgmulc2nc.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐵𝑉)
97, 8mbfmptcl 23908 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
104, 9mulcld 10496 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
1110adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
12 elfzelz 12747 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
1312ad2antlr 723 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
14 ax-icn 10431 . . . . . . . . . . . . . . 15 i ∈ ℂ
15 ine0 10912 . . . . . . . . . . . . . . 15 i ≠ 0
16 expclz 13292 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
1714, 15, 16mp3an12 1441 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
1813, 17syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ∈ ℂ)
19 expne0i 13299 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
2014, 15, 19mp3an12 1441 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
2113, 20syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ≠ 0)
2211, 18, 21divcld 11253 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((𝐶 · 𝐵) / (i↑𝑘)) ∈ ℂ)
2322recld 14375 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ)
24 0re 10478 . . . . . . . . . . 11 0 ∈ ℝ
25 ifcl 4419 . . . . . . . . . . 11 (((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ)
2623, 24, 25sylancl 586 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ)
2726rexrd 10526 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ*)
28 max1 12417 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
2924, 23, 28sylancr 587 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
30 elxrge0 12684 . . . . . . . . 9 (if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
3127, 29, 30sylanbrc 583 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞))
32 0e0iccpnf 12686 . . . . . . . . 9 0 ∈ (0[,]+∞)
3332a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
3431, 33ifclda 4409 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
3534adantr 481 . . . . . 6 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
362, 35syl5eqel 2885 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞))
3736fmpttd 6733 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
389recld 14375 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
3938recnd 10504 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
4039abscld 14618 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ ℝ)
419imcld 14376 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
4241recnd 10504 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
4342abscld 14618 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
4440, 43readdcld 10505 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ)
4539absge0d 14626 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℜ‘𝐵)))
4642absge0d 14626 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℑ‘𝐵)))
4740, 43, 45, 46addge0d 11053 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
48 elrege0 12681 . . . . . . . . . . . 12 (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,)+∞) ↔ (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ ∧ 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
4944, 47, 48sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,)+∞))
50 0e0icopnf 12685 . . . . . . . . . . . 12 0 ∈ (0[,)+∞)
5150a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
5249, 51ifclda 4409 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,)+∞))
5352adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,)+∞))
5453fmpttd 6733 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)):ℝ⟶(0[,)+∞))
55 reex 10463 . . . . . . . . . . . . . 14 ℝ ∈ V
5655a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
57 elrege0 12681 . . . . . . . . . . . . . . . 16 ((abs‘(ℜ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℜ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘𝐵))))
5840, 45, 57sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ (0[,)+∞))
5958, 51ifclda 4409 . . . . . . . . . . . . . 14 (𝜑 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
6059adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
61 elrege0 12681 . . . . . . . . . . . . . . . 16 ((abs‘(ℑ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℑ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘𝐵))))
6243, 46, 61sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ (0[,)+∞))
6362, 51ifclda 4409 . . . . . . . . . . . . . 14 (𝜑 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
6463adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
65 eqidd 2794 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)))
66 eqidd 2794 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))
6756, 60, 64, 65, 66offval2 7275 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
68 iftrue 4381 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = (abs‘(ℜ‘𝐵)))
69 iftrue 4381 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = (abs‘(ℑ‘𝐵)))
7068, 69oveq12d 7025 . . . . . . . . . . . . . . 15 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
71 iftrue 4381 . . . . . . . . . . . . . . 15 (𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
7270, 71eqtr4d 2832 . . . . . . . . . . . . . 14 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
73 00id 10651 . . . . . . . . . . . . . . 15 (0 + 0) = 0
74 iffalse 4384 . . . . . . . . . . . . . . . 16 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = 0)
75 iffalse 4384 . . . . . . . . . . . . . . . 16 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = 0)
7674, 75oveq12d 7025 . . . . . . . . . . . . . . 15 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (0 + 0))
77 iffalse 4384 . . . . . . . . . . . . . . 15 𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = 0)
7873, 76, 773eqtr4a 2855 . . . . . . . . . . . . . 14 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
7972, 78pm2.61i 183 . . . . . . . . . . . . 13 (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)
8079mpteq2i 5046 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
8167, 80syl6req 2846 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
8281fveq2d 6534 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
83 eqid 2793 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))
849iblcn 24070 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
855, 84mpbid 233 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
8685simpld 495 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
878, 5, 83, 86, 38iblabsnclem 34432 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ))
8887simpld 495 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn)
8960fmpttd 6733 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
9087simprd 496 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ)
9164fmpttd 6733 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
92 eqid 2793 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))
9385simprd 496 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
948, 5, 92, 93, 41iblabsnclem 34432 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ))
9594simprd 496 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ)
9688, 89, 90, 91, 95itg2addnc 34423 . . . . . . . . . 10 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘𝑓 + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
9782, 96eqtrd 2829 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
9890, 95readdcld 10505 . . . . . . . . 9 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) ∈ ℝ)
9997, 98eqeltrd 2881 . . . . . . . 8 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ)
1003abscld 14618 . . . . . . . . 9 (𝜑 → (abs‘𝐶) ∈ ℝ)
1013absge0d 14626 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘𝐶))
102 elrege0 12681 . . . . . . . . 9 ((abs‘𝐶) ∈ (0[,)+∞) ↔ ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)))
103100, 101, 102sylanbrc 583 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ (0[,)+∞))
10454, 99, 103itg2mulc 24019 . . . . . . 7 (𝜑 → (∫2‘((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))))
105100adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (abs‘𝐶) ∈ ℝ)
106 fconstmpt 5492 . . . . . . . . . . 11 (ℝ × {(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦ (abs‘𝐶))
107106a1i 11 . . . . . . . . . 10 (𝜑 → (ℝ × {(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦ (abs‘𝐶)))
108 eqidd 2794 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
10956, 105, 53, 107, 108offval2 7275 . . . . . . . . 9 (𝜑 → ((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))))
11071oveq2d 7023 . . . . . . . . . . . . 13 (𝑥𝐴 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
111 iftrue 4381 . . . . . . . . . . . . 13 (𝑥𝐴 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
112110, 111eqtr4d 2832 . . . . . . . . . . . 12 (𝑥𝐴 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
113112adantl 482 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
114100recnd 10504 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ∈ ℂ)
115114mul01d 10675 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐶) · 0) = 0)
116115adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · 0) = 0)
11777adantl 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = 0)
118117oveq2d 7023 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · 0))
119 iffalse 4384 . . . . . . . . . . . . 13 𝑥𝐴 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = 0)
120119adantl 482 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = 0)
121116, 118, 1203eqtr4d 2839 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
122113, 121pm2.61dan 809 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
123122mpteq2dv 5050 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
124109, 123eqtrd 2829 . . . . . . . 8 (𝜑 → ((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
125124fveq2d 6534 . . . . . . 7 (𝜑 → (∫2‘((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
12697oveq2d 7023 . . . . . . 7 (𝜑 → ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))))
127104, 125, 1263eqtr3d 2837 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) = ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))))
128100, 98remulcld 10506 . . . . . 6 (𝜑 → ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))) ∈ ℝ)
129127, 128eqeltrd 2881 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ)
130129adantr 481 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ)
131100adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝐶) ∈ ℝ)
132131, 44remulcld 10506 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ)
133132rexrd 10526 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ*)
134101adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐶))
135131, 44, 134, 47mulge0d 11054 . . . . . . . . 9 ((𝜑𝑥𝐴) → 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
136 elxrge0 12684 . . . . . . . . 9 (((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞) ↔ (((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ* ∧ 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
137133, 135, 136sylanbrc 583 . . . . . . . 8 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞))
13832a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
139137, 138ifclda 4409 . . . . . . 7 (𝜑 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) ∈ (0[,]+∞))
140139ad2antrr 722 . . . . . 6 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) ∈ (0[,]+∞))
141140fmpttd 6733 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)):ℝ⟶(0[,]+∞))
1429abscld 14618 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
143131, 142remulcld 10506 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ)
144143adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ)
145132adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ)
14622releabsd 14633 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘((𝐶 · 𝐵) / (i↑𝑘))))
14711, 18, 21absdivd 14637 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))))
148 elfznn0 12839 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
149 absexp 14486 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
15014, 148, 149sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...3) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
151 absi 14468 . . . . . . . . . . . . . . . . . . . . 21 (abs‘i) = 1
152151oveq1i 7017 . . . . . . . . . . . . . . . . . . . 20 ((abs‘i)↑𝑘) = (1↑𝑘)
153 1exp 13296 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
15412, 153syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...3) → (1↑𝑘) = 1)
155152, 154syl5eq 2841 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...3) → ((abs‘i)↑𝑘) = 1)
156150, 155eqtrd 2829 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...3) → (abs‘(i↑𝑘)) = 1)
157156oveq2d 7023 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...3) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1))
158157ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1))
15910abscld 14618 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℝ)
160159recnd 10504 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ)
161160adantlr 711 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ)
162161div1d 11245 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘(𝐶 · 𝐵)) / 1) = (abs‘(𝐶 · 𝐵)))
163147, 158, 1623eqtrd 2833 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = (abs‘(𝐶 · 𝐵)))
1644, 9absmuld 14636 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
165164adantlr 711 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
166163, 165eqtrd 2829 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘𝐶) · (abs‘𝐵)))
167146, 166breqtrd 4982 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · (abs‘𝐵)))
168 mulcl 10456 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
16914, 42, 168sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (i · (ℑ‘𝐵)) ∈ ℂ)
17039, 169abstrid 14638 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
1719replimd 14378 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
172171fveq2d 6534 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘𝐵) = (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
173 absmul 14476 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
17414, 42, 173sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
175151oveq1i 7017 . . . . . . . . . . . . . . . . . . 19 ((abs‘i) · (abs‘(ℑ‘𝐵))) = (1 · (abs‘(ℑ‘𝐵)))
176174, 175syl6eq 2845 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (abs‘(i · (ℑ‘𝐵))) = (1 · (abs‘(ℑ‘𝐵))))
17743recnd 10504 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℂ)
178177mulid2d 10494 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (1 · (abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵)))
179176, 178eqtr2d 2830 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) = (abs‘(i · (ℑ‘𝐵))))
180179oveq2d 7023 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) = ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
181170, 172, 1803brtr4d 4988 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘𝐵) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
182142, 44, 131, 134, 181lemul2ad 11417 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
183182adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
18423, 144, 145, 167, 183letrd 10633 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
185135adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
186 breq1 4959 . . . . . . . . . . . . 13 ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
187 breq1 4959 . . . . . . . . . . . . 13 (0 = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → (0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
188186, 187ifboth 4413 . . . . . . . . . . . 12 (((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∧ 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
189184, 185, 188syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
190 iftrue 4381 . . . . . . . . . . . 12 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
191190adantl 482 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
192111adantl 482 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
193189, 191, 1923brtr4d 4988 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
194193ex 413 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
195 0le0 11575 . . . . . . . . . . 11 0 ≤ 0
196195a1i 11 . . . . . . . . . 10 𝑥𝐴 → 0 ≤ 0)
197 iffalse 4384 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = 0)
198196, 197, 1193brtr4d 4988 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
199194, 198pm2.61d1 181 . . . . . . . 8 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
2002, 199eqbrtrid 4991 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
201200ralrimivw 3148 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
20255a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → ℝ ∈ V)
203 eqidd 2794 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
204 eqidd 2794 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
205202, 36, 140, 203, 204ofrfval2 7276 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
206201, 205mpbird 258 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
207 itg2le 24011 . . . . 5 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
20837, 141, 206, 207syl3anc 1362 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
209 itg2lecl 24010 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
21037, 130, 208, 209syl3anc 1362 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
211210ralrimiva 3147 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
212 eqidd 2794 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
213 eqidd 2794 . . 3 ((𝜑𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))))
214212, 213, 10isibl2 24038 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)))
2151, 211, 214mpbir2and 709 1 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1520  wcel 2079  wne 2982  wral 3103  Vcvv 3432  ifcif 4375  {csn 4466   class class class wbr 4956  cmpt 5035   × cxp 5433  wf 6213  cfv 6217  (class class class)co 7007  𝑓 cof 7256  𝑟 cofr 7257  cc 10370  cr 10371  0cc0 10372  1c1 10373  ici 10374   + caddc 10375   · cmul 10377  +∞cpnf 10507  *cxr 10509  cle 10511   / cdiv 11134  3c3 11530  0cn0 11734  cz 11818  [,)cico 12579  [,]cicc 12580  ...cfz 12731  cexp 13267  cre 14278  cim 14279  abscabs 14415  MblFncmbf 23886  2citg2 23888  𝐿1cibl 23889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-disj 4925  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-ofr 7259  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-map 8249  df-pm 8250  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-dju 9165  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-n0 11735  df-z 11819  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-ico 12583  df-icc 12584  df-fz 12732  df-fzo 12873  df-fl 13000  df-seq 13208  df-exp 13268  df-hash 13529  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-clim 14667  df-sum 14865  df-rest 16513  df-topgen 16534  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-top 21174  df-topon 21191  df-bases 21226  df-cmp 21667  df-ovol 23736  df-vol 23737  df-mbf 23891  df-itg1 23892  df-itg2 23893  df-ibl 23894  df-0p 23942
This theorem is referenced by:  itgmulc2nclem1  34435  itgmulc2nclem2  34436  itgmulc2nc  34437  itgabsnc  34438  ftc1anclem6  34449
  Copyright terms: Public domain W3C validator