Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblmulc2nc Structured version   Visualization version   GIF version

Theorem iblmulc2nc 36074
Description: Choice-free analogue of iblmulc2 25123. (Contributed by Brendan Leahy, 17-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Assertion
Ref Expression
iblmulc2nc (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblmulc2nc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itgmulc2nc.m . 2 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
2 ifan 4538 . . . . . 6 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0)
3 itgmulc2nc.1 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℂ)
43adantr 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
5 itgmulc2nc.3 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 iblmbf 25060 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
75, 6syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
8 itgmulc2nc.2 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐵𝑉)
97, 8mbfmptcl 24928 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
104, 9mulcld 11109 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
1110adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
12 elfzelz 13371 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
1312ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
14 ax-icn 11044 . . . . . . . . . . . . . . 15 i ∈ ℂ
15 ine0 11524 . . . . . . . . . . . . . . 15 i ≠ 0
16 expclz 13922 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
1714, 15, 16mp3an12 1452 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
1813, 17syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ∈ ℂ)
19 expne0i 13930 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
2014, 15, 19mp3an12 1452 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
2113, 20syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ≠ 0)
2211, 18, 21divcld 11865 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((𝐶 · 𝐵) / (i↑𝑘)) ∈ ℂ)
2322recld 15014 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ)
24 0re 11091 . . . . . . . . . . 11 0 ∈ ℝ
25 ifcl 4530 . . . . . . . . . . 11 (((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ)
2623, 24, 25sylancl 587 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ)
2726rexrd 11139 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ*)
28 max1 13034 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
2924, 23, 28sylancr 588 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
30 elxrge0 13304 . . . . . . . . 9 (if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
3127, 29, 30sylanbrc 584 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞))
32 0e0iccpnf 13306 . . . . . . . . 9 0 ∈ (0[,]+∞)
3332a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
3431, 33ifclda 4520 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
3534adantr 482 . . . . . 6 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
362, 35eqeltrid 2843 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞))
3736fmpttd 7058 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
389recld 15014 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
3938recnd 11117 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
4039abscld 15257 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ ℝ)
419imcld 15015 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
4241recnd 11117 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
4342abscld 15257 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
4440, 43readdcld 11118 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ)
4539absge0d 15265 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℜ‘𝐵)))
4642absge0d 15265 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(ℑ‘𝐵)))
4740, 43, 45, 46addge0d 11665 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
48 elrege0 13301 . . . . . . . . . . . 12 (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,)+∞) ↔ (((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ ℝ ∧ 0 ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
4944, 47, 48sylanbrc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) ∈ (0[,)+∞))
50 0e0icopnf 13305 . . . . . . . . . . . 12 0 ∈ (0[,)+∞)
5150a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
5249, 51ifclda 4520 . . . . . . . . . 10 (𝜑 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,)+∞))
5352adantr 482 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) ∈ (0[,)+∞))
5453fmpttd 7058 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)):ℝ⟶(0[,)+∞))
55 reex 11076 . . . . . . . . . . . . . 14 ℝ ∈ V
5655a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
57 elrege0 13301 . . . . . . . . . . . . . . . 16 ((abs‘(ℜ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℜ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℜ‘𝐵))))
5840, 45, 57sylanbrc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘(ℜ‘𝐵)) ∈ (0[,)+∞))
5958, 51ifclda 4520 . . . . . . . . . . . . . 14 (𝜑 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
6059adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) ∈ (0[,)+∞))
61 elrege0 13301 . . . . . . . . . . . . . . . 16 ((abs‘(ℑ‘𝐵)) ∈ (0[,)+∞) ↔ ((abs‘(ℑ‘𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘𝐵))))
6243, 46, 61sylanbrc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ (0[,)+∞))
6362, 51ifclda 4520 . . . . . . . . . . . . . 14 (𝜑 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
6463adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) ∈ (0[,)+∞))
65 eqidd 2739 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)))
66 eqidd 2739 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))
6756, 60, 64, 65, 66offval2 7628 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
68 iftrue 4491 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = (abs‘(ℜ‘𝐵)))
69 iftrue 4491 . . . . . . . . . . . . . . . 16 (𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = (abs‘(ℑ‘𝐵)))
7068, 69oveq12d 7368 . . . . . . . . . . . . . . 15 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
71 iftrue 4491 . . . . . . . . . . . . . . 15 (𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
7270, 71eqtr4d 2781 . . . . . . . . . . . . . 14 (𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
73 00id 11264 . . . . . . . . . . . . . . 15 (0 + 0) = 0
74 iffalse 4494 . . . . . . . . . . . . . . . 16 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) = 0)
75 iffalse 4494 . . . . . . . . . . . . . . . 16 𝑥𝐴 → if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0) = 0)
7674, 75oveq12d 7368 . . . . . . . . . . . . . . 15 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (0 + 0))
77 iffalse 4494 . . . . . . . . . . . . . . 15 𝑥𝐴 → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = 0)
7873, 76, 773eqtr4a 2804 . . . . . . . . . . . . . 14 𝑥𝐴 → (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
7972, 78pm2.61i 182 . . . . . . . . . . . . 13 (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)
8079mpteq2i 5209 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ (if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0) + if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))
8167, 80eqtr2di 2795 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))
8281fveq2d 6842 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
83 eqid 2738 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))
849iblcn 25091 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
855, 84mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
8685simpld 496 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
878, 5, 83, 86, 38iblabsnclem 36072 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ))
8887simpld 496 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∈ MblFn)
8960fmpttd 7058 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
9087simprd 497 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) ∈ ℝ)
9164fmpttd 7058 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)):ℝ⟶(0[,)+∞))
92 eqid 2738 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))
9385simprd 497 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
948, 5, 92, 93, 41iblabsnclem 36072 . . . . . . . . . . . 12 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ))
9594simprd 497 . . . . . . . . . . 11 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))) ∈ ℝ)
9688, 89, 90, 91, 95itg2addnc 36063 . . . . . . . . . 10 (𝜑 → (∫2‘((𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
9782, 96eqtrd 2778 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))))
9890, 95readdcld 11118 . . . . . . . . 9 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0)))) ∈ ℝ)
9997, 98eqeltrd 2839 . . . . . . . 8 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) ∈ ℝ)
1003abscld 15257 . . . . . . . . 9 (𝜑 → (abs‘𝐶) ∈ ℝ)
1013absge0d 15265 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘𝐶))
102 elrege0 13301 . . . . . . . . 9 ((abs‘𝐶) ∈ (0[,)+∞) ↔ ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)))
103100, 101, 102sylanbrc 584 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ (0[,)+∞))
10454, 99, 103itg2mulc 25040 . . . . . . 7 (𝜑 → (∫2‘((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))))
105100adantr 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (abs‘𝐶) ∈ ℝ)
106 fconstmpt 5691 . . . . . . . . . . 11 (ℝ × {(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦ (abs‘𝐶))
107106a1i 11 . . . . . . . . . 10 (𝜑 → (ℝ × {(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦ (abs‘𝐶)))
108 eqidd 2739 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))
10956, 105, 53, 107, 108offval2 7628 . . . . . . . . 9 (𝜑 → ((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))))
11071oveq2d 7366 . . . . . . . . . . . . 13 (𝑥𝐴 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
111 iftrue 4491 . . . . . . . . . . . . 13 (𝑥𝐴 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
112110, 111eqtr4d 2781 . . . . . . . . . . . 12 (𝑥𝐴 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
113112adantl 483 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
114100recnd 11117 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ∈ ℂ)
115114mul01d 11288 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐶) · 0) = 0)
116115adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · 0) = 0)
11777adantl 483 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0) = 0)
118117oveq2d 7366 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = ((abs‘𝐶) · 0))
119 iffalse 4494 . . . . . . . . . . . . 13 𝑥𝐴 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = 0)
120119adantl 483 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = 0)
121116, 118, 1203eqtr4d 2788 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑥𝐴) → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
122113, 121pm2.61dan 812 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)) = if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
123122mpteq2dv 5206 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
124109, 123eqtrd 2778 . . . . . . . 8 (𝜑 → ((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
125124fveq2d 6842 . . . . . . 7 (𝜑 → (∫2‘((ℝ × {(abs‘𝐶)}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
12697oveq2d 7366 . . . . . . 7 (𝜑 → ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))), 0)))) = ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))))
127104, 125, 1263eqtr3d 2786 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) = ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))))
128100, 98remulcld 11119 . . . . . 6 (𝜑 → ((abs‘𝐶) · ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℜ‘𝐵)), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(ℑ‘𝐵)), 0))))) ∈ ℝ)
129127, 128eqeltrd 2839 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ)
130129adantr 482 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ)
131100adantr 482 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝐶) ∈ ℝ)
132131, 44remulcld 11119 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ)
133132rexrd 11139 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ*)
134101adantr 482 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐶))
135131, 44, 134, 47mulge0d 11666 . . . . . . . . 9 ((𝜑𝑥𝐴) → 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
136 elxrge0 13304 . . . . . . . . 9 (((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞) ↔ (((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ* ∧ 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
137133, 135, 136sylanbrc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ (0[,]+∞))
13832a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
139137, 138ifclda 4520 . . . . . . 7 (𝜑 → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) ∈ (0[,]+∞))
140139ad2antrr 725 . . . . . 6 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) ∈ (0[,]+∞))
141140fmpttd 7058 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)):ℝ⟶(0[,]+∞))
1429abscld 15257 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
143131, 142remulcld 11119 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ)
144143adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ∈ ℝ)
145132adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∈ ℝ)
14622releabsd 15272 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘((𝐶 · 𝐵) / (i↑𝑘))))
14711, 18, 21absdivd 15276 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))))
148 elfznn0 13464 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
149 absexp 15125 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
15014, 148, 149sylancr 588 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...3) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
151 absi 15107 . . . . . . . . . . . . . . . . . . . . 21 (abs‘i) = 1
152151oveq1i 7360 . . . . . . . . . . . . . . . . . . . 20 ((abs‘i)↑𝑘) = (1↑𝑘)
153 1exp 13927 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
15412, 153syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0...3) → (1↑𝑘) = 1)
155152, 154eqtrid 2790 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0...3) → ((abs‘i)↑𝑘) = 1)
156150, 155eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...3) → (abs‘(i↑𝑘)) = 1)
157156oveq2d 7366 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...3) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1))
158157ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1))
15910abscld 15257 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℝ)
160159recnd 11117 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ)
161160adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ)
162161div1d 11857 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘(𝐶 · 𝐵)) / 1) = (abs‘(𝐶 · 𝐵)))
163147, 158, 1623eqtrd 2782 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = (abs‘(𝐶 · 𝐵)))
1644, 9absmuld 15275 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
165164adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
166163, 165eqtrd 2778 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘𝐶) · (abs‘𝐵)))
167146, 166breqtrd 5130 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · (abs‘𝐵)))
168 mulcl 11069 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
16914, 42, 168sylancr 588 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (i · (ℑ‘𝐵)) ∈ ℂ)
17039, 169abstrid 15277 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
1719replimd 15017 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
172171fveq2d 6842 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘𝐵) = (abs‘((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
173 absmul 15115 . . . . . . . . . . . . . . . . . . . 20 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
17414, 42, 173sylancr 588 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(i · (ℑ‘𝐵))) = ((abs‘i) · (abs‘(ℑ‘𝐵))))
175151oveq1i 7360 . . . . . . . . . . . . . . . . . . 19 ((abs‘i) · (abs‘(ℑ‘𝐵))) = (1 · (abs‘(ℑ‘𝐵)))
176174, 175eqtrdi 2794 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (abs‘(i · (ℑ‘𝐵))) = (1 · (abs‘(ℑ‘𝐵))))
17743recnd 11117 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) ∈ ℂ)
178177mulid2d 11107 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (1 · (abs‘(ℑ‘𝐵))) = (abs‘(ℑ‘𝐵)))
179176, 178eqtr2d 2779 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (abs‘(ℑ‘𝐵)) = (abs‘(i · (ℑ‘𝐵))))
180179oveq2d 7366 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))) = ((abs‘(ℜ‘𝐵)) + (abs‘(i · (ℑ‘𝐵)))))
181170, 172, 1803brtr4d 5136 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (abs‘𝐵) ≤ ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))
182142, 44, 131, 134, 181lemul2ad 12029 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
183182adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘𝐶) · (abs‘𝐵)) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
18423, 144, 145, 167, 183letrd 11246 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
185135adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
186 breq1 5107 . . . . . . . . . . . . 13 ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
187 breq1 5107 . . . . . . . . . . . . 13 (0 = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → (0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))))
188186, 187ifboth 4524 . . . . . . . . . . . 12 (((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))) ∧ 0 ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵))))) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
189184, 185, 188syl2anc 585 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
190 iftrue 4491 . . . . . . . . . . . 12 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
191190adantl 483 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
192111adantl 483 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0) = ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))))
193189, 191, 1923brtr4d 5136 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
194193ex 414 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
195 0le0 12188 . . . . . . . . . . 11 0 ≤ 0
196195a1i 11 . . . . . . . . . 10 𝑥𝐴 → 0 ≤ 0)
197 iffalse 4494 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = 0)
198196, 197, 1193brtr4d 5136 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
199194, 198pm2.61d1 180 . . . . . . . 8 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
2002, 199eqbrtrid 5139 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
201200ralrimivw 3146 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))
20255a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → ℝ ∈ V)
203 eqidd 2739 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
204 eqidd 2739 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
205202, 36, 140, 203, 204ofrfval2 7629 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
206201, 205mpbird 257 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))
207 itg2le 25032 . . . . 5 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
20837, 141, 206, 207syl3anc 1372 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))))
209 itg2lecl 25031 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, ((abs‘𝐶) · ((abs‘(ℜ‘𝐵)) + (abs‘(ℑ‘𝐵)))), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
21037, 130, 208, 209syl3anc 1372 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
211210ralrimiva 3142 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
212 eqidd 2739 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
213 eqidd 2739 . . 3 ((𝜑𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))))
214212, 213, 10isibl2 25059 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)))
2151, 211, 214mpbir2and 712 1 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2942  wral 3063  Vcvv 3444  ifcif 4485  {csn 4585   class class class wbr 5104  cmpt 5187   × cxp 5629  wf 6488  cfv 6492  (class class class)co 7350  f cof 7606  r cofr 7607  cc 10983  cr 10984  0cc0 10985  1c1 10986  ici 10987   + caddc 10988   · cmul 10990  +∞cpnf 11120  *cxr 11122  cle 11124   / cdiv 11746  3c3 12143  0cn0 12347  cz 12433  [,)cico 13196  [,]cicc 13197  ...cfz 13354  cexp 13897  cre 14917  cim 14918  abscabs 15054  MblFncmbf 24906  2citg2 24908  𝐿1cibl 24909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-inf2 9511  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063  ax-addf 11064
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-disj 5070  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-isom 6501  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-of 7608  df-ofr 7609  df-om 7794  df-1st 7912  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8582  df-map 8701  df-pm 8702  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-fi 9281  df-sup 9312  df-inf 9313  df-oi 9380  df-dju 9771  df-card 9809  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-3 12151  df-n0 12348  df-z 12434  df-uz 12698  df-q 12804  df-rp 12846  df-xneg 12963  df-xadd 12964  df-xmul 12965  df-ioo 13198  df-ico 13200  df-icc 13201  df-fz 13355  df-fzo 13498  df-fl 13627  df-seq 13837  df-exp 13898  df-hash 14160  df-cj 14919  df-re 14920  df-im 14921  df-sqrt 15055  df-abs 15056  df-clim 15306  df-sum 15507  df-rest 17240  df-topgen 17261  df-psmet 20717  df-xmet 20718  df-met 20719  df-bl 20720  df-mopn 20721  df-top 22171  df-topon 22188  df-bases 22224  df-cmp 22666  df-ovol 24756  df-vol 24757  df-mbf 24911  df-itg1 24912  df-itg2 24913  df-ibl 24914  df-0p 24962
This theorem is referenced by:  itgmulc2nclem1  36075  itgmulc2nclem2  36076  itgmulc2nc  36077  itgabsnc  36078  ftc1anclem6  36087
  Copyright terms: Public domain W3C validator