Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnsnbt Structured version   Visualization version   GIF version

Theorem fnsnbt 40208
Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.)
Assertion
Ref Expression
fnsnbt (𝐴 ∈ V → (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fnsnbt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnsnr 7037 . . . . . . 7 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
21adantl 482 . . . . . 6 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
3 fnfun 6533 . . . . . . . 8 (𝐹 Fn {𝐴} → Fun 𝐹)
4 snidg 4595 . . . . . . . . . 10 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
54adantr 481 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ {𝐴})
6 fndm 6536 . . . . . . . . . 10 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
76adantl 482 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → dom 𝐹 = {𝐴})
85, 7eleqtrrd 2842 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ dom 𝐹)
9 funfvop 6927 . . . . . . . 8 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
103, 8, 9syl2an2 683 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
11 eleq1 2826 . . . . . . 7 (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → (𝑥𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
1210, 11syl5ibrcom 246 . . . . . 6 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → 𝑥𝐹))
132, 12impbid 211 . . . . 5 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
14 velsn 4577 . . . . 5 (𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩} ↔ 𝑥 = ⟨𝐴, (𝐹𝐴)⟩)
1513, 14bitr4di 289 . . . 4 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
1615eqrdv 2736 . . 3 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
1716ex 413 . 2 (𝐴 ∈ V → (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
18 fvex 6787 . . . 4 (𝐹𝐴) ∈ V
19 fnsng 6486 . . . 4 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴})
2018, 19mpan2 688 . . 3 (𝐴 ∈ V → {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴})
21 fneq1 6524 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹 Fn {𝐴} ↔ {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}))
2220, 21syl5ibrcom 246 . 2 (𝐴 ∈ V → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → 𝐹 Fn {𝐴}))
2317, 22impbid 211 1 (𝐴 ∈ V → (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  cop 4567  dom cdm 5589  Fun wfun 6427   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  frlmsnic  40263
  Copyright terms: Public domain W3C validator