Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnsnbt Structured version   Visualization version   GIF version

Theorem fnsnbt 39195
Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.)
Assertion
Ref Expression
fnsnbt (𝐴 ∈ V → (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))

Proof of Theorem fnsnbt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnsnr 6924 . . . . . . 7 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
21adantl 484 . . . . . 6 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
3 fnfun 6450 . . . . . . . 8 (𝐹 Fn {𝐴} → Fun 𝐹)
4 snidg 4596 . . . . . . . . . 10 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
54adantr 483 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ {𝐴})
6 fndm 6452 . . . . . . . . . 10 (𝐹 Fn {𝐴} → dom 𝐹 = {𝐴})
76adantl 484 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → dom 𝐹 = {𝐴})
85, 7eleqtrrd 2915 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → 𝐴 ∈ dom 𝐹)
9 funfvop 6817 . . . . . . . 8 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
103, 8, 9syl2an2 684 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
11 eleq1 2899 . . . . . . 7 (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → (𝑥𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
1210, 11syl5ibrcom 249 . . . . . 6 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → 𝑥𝐹))
132, 12impbid 214 . . . . 5 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
14 velsn 4580 . . . . 5 (𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩} ↔ 𝑥 = ⟨𝐴, (𝐹𝐴)⟩)
1513, 14syl6bbr 291 . . . 4 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → (𝑥𝐹𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
1615eqrdv 2818 . . 3 ((𝐴 ∈ V ∧ 𝐹 Fn {𝐴}) → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
1716ex 415 . 2 (𝐴 ∈ V → (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
18 fvex 6680 . . . 4 (𝐹𝐴) ∈ V
19 fnsng 6403 . . . 4 ((𝐴 ∈ V ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴})
2018, 19mpan2 689 . . 3 (𝐴 ∈ V → {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴})
21 fneq1 6441 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹 Fn {𝐴} ↔ {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}))
2220, 21syl5ibrcom 249 . 2 (𝐴 ∈ V → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → 𝐹 Fn {𝐴}))
2317, 22impbid 214 1 (𝐴 ∈ V → (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  Vcvv 3493  {csn 4564  cop 4570  dom cdm 5552  Fun wfun 6346   Fn wfn 6347  cfv 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pr 5327
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3495  df-sbc 3771  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4465  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4836  df-br 5064  df-opab 5126  df-id 5457  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360
This theorem is referenced by:  frlmsnic  39224
  Copyright terms: Public domain W3C validator