MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbrov2fvoveq Structured version   Visualization version   GIF version

Theorem imbrov2fvoveq 7473
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1 (𝑋 = 𝑌 → (𝜑𝜓))
Assertion
Ref Expression
imbrov2fvoveq (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2 (𝑋 = 𝑌 → (𝜑𝜓))
2 fveq2 6920 . . . 4 (𝑋 = 𝑌 → (𝐺𝑋) = (𝐺𝑌))
32fvoveq1d 7470 . . 3 (𝑋 = 𝑌 → (𝐹‘((𝐺𝑋) · 𝑂)) = (𝐹‘((𝐺𝑌) · 𝑂)))
43breq1d 5176 . 2 (𝑋 = 𝑌 → ((𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴 ↔ (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴))
51, 4imbi12d 344 1 (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537   class class class wbr 5166  cfv 6573  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  rlim2  15542  rlimclim1  15591  rlimcn1  15634  climcn1  15638  caucvgrlem  15721  cncfco  24952  ftc1lem4  26100  ftc1lem6  26102  itg2gt0cn  37635  ftc1cnnclem  37651  ftc1cnnc  37652  idlimc  45547  limcperiod  45549  limclner  45572  cncfshift  45795  cncfperiod  45800  fperdvper  45840
  Copyright terms: Public domain W3C validator