| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbrov2fvoveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.) |
| Ref | Expression |
|---|---|
| imbrov2fvoveq.1 | ⊢ (𝑋 = 𝑌 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| imbrov2fvoveq | ⊢ (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbrov2fvoveq.1 | . 2 ⊢ (𝑋 = 𝑌 → (𝜑 ↔ 𝜓)) | |
| 2 | fveq2 6822 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝐺‘𝑋) = (𝐺‘𝑌)) | |
| 3 | 2 | fvoveq1d 7371 | . . 3 ⊢ (𝑋 = 𝑌 → (𝐹‘((𝐺‘𝑋) · 𝑂)) = (𝐹‘((𝐺‘𝑌) · 𝑂))) |
| 4 | 3 | breq1d 5102 | . 2 ⊢ (𝑋 = 𝑌 → ((𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴 ↔ (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴)) |
| 5 | 1, 4 | imbi12d 344 | 1 ⊢ (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: rlim2 15403 rlimclim1 15452 rlimcn1 15495 climcn1 15499 caucvgrlem 15580 cncfco 24798 ftc1lem4 25944 ftc1lem6 25946 itg2gt0cn 37659 ftc1cnnclem 37675 ftc1cnnc 37676 idlimc 45611 limcperiod 45613 limclner 45636 cncfshift 45859 cncfperiod 45864 fperdvper 45904 |
| Copyright terms: Public domain | W3C validator |