| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbrov2fvoveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.) |
| Ref | Expression |
|---|---|
| imbrov2fvoveq.1 | ⊢ (𝑋 = 𝑌 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| imbrov2fvoveq | ⊢ (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbrov2fvoveq.1 | . 2 ⊢ (𝑋 = 𝑌 → (𝜑 ↔ 𝜓)) | |
| 2 | fveq2 6822 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝐺‘𝑋) = (𝐺‘𝑌)) | |
| 3 | 2 | fvoveq1d 7368 | . . 3 ⊢ (𝑋 = 𝑌 → (𝐹‘((𝐺‘𝑋) · 𝑂)) = (𝐹‘((𝐺‘𝑌) · 𝑂))) |
| 4 | 3 | breq1d 5099 | . 2 ⊢ (𝑋 = 𝑌 → ((𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴 ↔ (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴)) |
| 5 | 1, 4 | imbi12d 344 | 1 ⊢ (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: rlim2 15403 rlimclim1 15452 rlimcn1 15495 climcn1 15499 caucvgrlem 15580 cncfco 24827 ftc1lem4 25973 ftc1lem6 25975 itg2gt0cn 37725 ftc1cnnclem 37741 ftc1cnnc 37742 idlimc 45736 limcperiod 45738 limclner 45759 cncfshift 45982 cncfperiod 45987 fperdvper 46027 |
| Copyright terms: Public domain | W3C validator |