| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imbrov2fvoveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.) |
| Ref | Expression |
|---|---|
| imbrov2fvoveq.1 | ⊢ (𝑋 = 𝑌 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| imbrov2fvoveq | ⊢ (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbrov2fvoveq.1 | . 2 ⊢ (𝑋 = 𝑌 → (𝜑 ↔ 𝜓)) | |
| 2 | fveq2 6858 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝐺‘𝑋) = (𝐺‘𝑌)) | |
| 3 | 2 | fvoveq1d 7409 | . . 3 ⊢ (𝑋 = 𝑌 → (𝐹‘((𝐺‘𝑋) · 𝑂)) = (𝐹‘((𝐺‘𝑌) · 𝑂))) |
| 4 | 3 | breq1d 5117 | . 2 ⊢ (𝑋 = 𝑌 → ((𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴 ↔ (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴)) |
| 5 | 1, 4 | imbi12d 344 | 1 ⊢ (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺‘𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺‘𝑌) · 𝑂))𝑅𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: rlim2 15462 rlimclim1 15511 rlimcn1 15554 climcn1 15558 caucvgrlem 15639 cncfco 24800 ftc1lem4 25946 ftc1lem6 25948 itg2gt0cn 37669 ftc1cnnclem 37685 ftc1cnnc 37686 idlimc 45624 limcperiod 45626 limclner 45649 cncfshift 45872 cncfperiod 45877 fperdvper 45917 |
| Copyright terms: Public domain | W3C validator |