MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbrov2fvoveq Structured version   Visualization version   GIF version

Theorem imbrov2fvoveq 7433
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1 (๐‘‹ = ๐‘Œ โ†’ (๐œ‘ โ†” ๐œ“))
Assertion
Ref Expression
imbrov2fvoveq (๐‘‹ = ๐‘Œ โ†’ ((๐œ‘ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด) โ†” (๐œ“ โ†’ (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด)))

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2 (๐‘‹ = ๐‘Œ โ†’ (๐œ‘ โ†” ๐œ“))
2 fveq2 6891 . . . 4 (๐‘‹ = ๐‘Œ โ†’ (๐บโ€˜๐‘‹) = (๐บโ€˜๐‘Œ))
32fvoveq1d 7430 . . 3 (๐‘‹ = ๐‘Œ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚)) = (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚)))
43breq1d 5158 . 2 (๐‘‹ = ๐‘Œ โ†’ ((๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด โ†” (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด))
51, 4imbi12d 344 1 (๐‘‹ = ๐‘Œ โ†’ ((๐œ‘ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด) โ†” (๐œ“ โ†’ (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   = wceq 1541   class class class wbr 5148  โ€˜cfv 6543  (class class class)co 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411
This theorem is referenced by:  rlim2  15439  rlimclim1  15488  rlimcn1  15531  climcn1  15535  caucvgrlem  15618  cncfco  24422  ftc1lem4  25555  ftc1lem6  25557  itg2gt0cn  36538  ftc1cnnclem  36554  ftc1cnnc  36555  idlimc  44332  limcperiod  44334  limclner  44357  cncfshift  44580  cncfperiod  44585  fperdvper  44625
  Copyright terms: Public domain W3C validator