MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbrov2fvoveq Structured version   Visualization version   GIF version

Theorem imbrov2fvoveq 7437
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1 (𝑋 = 𝑌 → (𝜑𝜓))
Assertion
Ref Expression
imbrov2fvoveq (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2 (𝑋 = 𝑌 → (𝜑𝜓))
2 fveq2 6891 . . . 4 (𝑋 = 𝑌 → (𝐺𝑋) = (𝐺𝑌))
32fvoveq1d 7434 . . 3 (𝑋 = 𝑌 → (𝐹‘((𝐺𝑋) · 𝑂)) = (𝐹‘((𝐺𝑌) · 𝑂)))
43breq1d 5158 . 2 (𝑋 = 𝑌 → ((𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴 ↔ (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴))
51, 4imbi12d 344 1 (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540   class class class wbr 5148  cfv 6543  (class class class)co 7412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415
This theorem is referenced by:  rlim2  15447  rlimclim1  15496  rlimcn1  15539  climcn1  15543  caucvgrlem  15626  cncfco  24746  ftc1lem4  25893  ftc1lem6  25895  itg2gt0cn  37006  ftc1cnnclem  37022  ftc1cnnc  37023  idlimc  44800  limcperiod  44802  limclner  44825  cncfshift  45048  cncfperiod  45053  fperdvper  45093
  Copyright terms: Public domain W3C validator