MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbrov2fvoveq Structured version   Visualization version   GIF version

Theorem imbrov2fvoveq 7374
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1 (𝑋 = 𝑌 → (𝜑𝜓))
Assertion
Ref Expression
imbrov2fvoveq (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2 (𝑋 = 𝑌 → (𝜑𝜓))
2 fveq2 6822 . . . 4 (𝑋 = 𝑌 → (𝐺𝑋) = (𝐺𝑌))
32fvoveq1d 7371 . . 3 (𝑋 = 𝑌 → (𝐹‘((𝐺𝑋) · 𝑂)) = (𝐹‘((𝐺𝑌) · 𝑂)))
43breq1d 5102 . 2 (𝑋 = 𝑌 → ((𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴 ↔ (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴))
51, 4imbi12d 344 1 (𝑋 = 𝑌 → ((𝜑 → (𝐹‘((𝐺𝑋) · 𝑂))𝑅𝐴) ↔ (𝜓 → (𝐹‘((𝐺𝑌) · 𝑂))𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540   class class class wbr 5092  cfv 6482  (class class class)co 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352
This theorem is referenced by:  rlim2  15403  rlimclim1  15452  rlimcn1  15495  climcn1  15499  caucvgrlem  15580  cncfco  24798  ftc1lem4  25944  ftc1lem6  25946  itg2gt0cn  37659  ftc1cnnclem  37675  ftc1cnnc  37676  idlimc  45611  limcperiod  45613  limclner  45636  cncfshift  45859  cncfperiod  45864  fperdvper  45904
  Copyright terms: Public domain W3C validator