MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbrov2fvoveq Structured version   Visualization version   GIF version

Theorem imbrov2fvoveq 7434
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1 (๐‘‹ = ๐‘Œ โ†’ (๐œ‘ โ†” ๐œ“))
Assertion
Ref Expression
imbrov2fvoveq (๐‘‹ = ๐‘Œ โ†’ ((๐œ‘ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด) โ†” (๐œ“ โ†’ (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด)))

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2 (๐‘‹ = ๐‘Œ โ†’ (๐œ‘ โ†” ๐œ“))
2 fveq2 6892 . . . 4 (๐‘‹ = ๐‘Œ โ†’ (๐บโ€˜๐‘‹) = (๐บโ€˜๐‘Œ))
32fvoveq1d 7431 . . 3 (๐‘‹ = ๐‘Œ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚)) = (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚)))
43breq1d 5159 . 2 (๐‘‹ = ๐‘Œ โ†’ ((๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด โ†” (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด))
51, 4imbi12d 345 1 (๐‘‹ = ๐‘Œ โ†’ ((๐œ‘ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด) โ†” (๐œ“ โ†’ (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   = wceq 1542   class class class wbr 5149  โ€˜cfv 6544  (class class class)co 7409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412
This theorem is referenced by:  rlim2  15440  rlimclim1  15489  rlimcn1  15532  climcn1  15536  caucvgrlem  15619  cncfco  24423  ftc1lem4  25556  ftc1lem6  25558  itg2gt0cn  36543  ftc1cnnclem  36559  ftc1cnnc  36560  idlimc  44342  limcperiod  44344  limclner  44367  cncfshift  44590  cncfperiod  44595  fperdvper  44635
  Copyright terms: Public domain W3C validator