MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbrov2fvoveq Structured version   Visualization version   GIF version

Theorem imbrov2fvoveq 7437
Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022.)
Hypothesis
Ref Expression
imbrov2fvoveq.1 (๐‘‹ = ๐‘Œ โ†’ (๐œ‘ โ†” ๐œ“))
Assertion
Ref Expression
imbrov2fvoveq (๐‘‹ = ๐‘Œ โ†’ ((๐œ‘ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด) โ†” (๐œ“ โ†’ (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด)))

Proof of Theorem imbrov2fvoveq
StepHypRef Expression
1 imbrov2fvoveq.1 . 2 (๐‘‹ = ๐‘Œ โ†’ (๐œ‘ โ†” ๐œ“))
2 fveq2 6892 . . . 4 (๐‘‹ = ๐‘Œ โ†’ (๐บโ€˜๐‘‹) = (๐บโ€˜๐‘Œ))
32fvoveq1d 7434 . . 3 (๐‘‹ = ๐‘Œ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚)) = (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚)))
43breq1d 5159 . 2 (๐‘‹ = ๐‘Œ โ†’ ((๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด โ†” (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด))
51, 4imbi12d 343 1 (๐‘‹ = ๐‘Œ โ†’ ((๐œ‘ โ†’ (๐นโ€˜((๐บโ€˜๐‘‹) ยท ๐‘‚))๐‘…๐ด) โ†” (๐œ“ โ†’ (๐นโ€˜((๐บโ€˜๐‘Œ) ยท ๐‘‚))๐‘…๐ด)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   = wceq 1540   class class class wbr 5149  โ€˜cfv 6544  (class class class)co 7412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7415
This theorem is referenced by:  rlim2  15445  rlimclim1  15494  rlimcn1  15537  climcn1  15541  caucvgrlem  15624  cncfco  24648  ftc1lem4  25789  ftc1lem6  25791  itg2gt0cn  36847  ftc1cnnclem  36863  ftc1cnnc  36864  idlimc  44642  limcperiod  44644  limclner  44667  cncfshift  44890  cncfperiod  44895  fperdvper  44935
  Copyright terms: Public domain W3C validator