MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn1 Structured version   Visualization version   GIF version

Theorem rlimcn1 15559
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
rlimcn1.1 (𝜑𝐺:𝐴𝑋)
rlimcn1.2 (𝜑𝐶𝑋)
rlimcn1.3 (𝜑𝐺𝑟 𝐶)
rlimcn1.4 (𝜑𝐹:𝑋⟶ℂ)
rlimcn1.5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
Assertion
Ref Expression
rlimcn1 (𝜑 → (𝐹𝐺) ⇝𝑟 (𝐹𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦   𝑥,𝐶,𝑦,𝑧   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝑋(𝑥,𝑦)

Proof of Theorem rlimcn1
Dummy variables 𝑤 𝑐 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcn1.1 . . . 4 (𝜑𝐺:𝐴𝑋)
21ffvelcdmda 7089 . . 3 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑋)
31feqmptd 6962 . . 3 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
4 rlimcn1.4 . . . 4 (𝜑𝐹:𝑋⟶ℂ)
54feqmptd 6962 . . 3 (𝜑𝐹 = (𝑣𝑋 ↦ (𝐹𝑣)))
6 fveq2 6892 . . 3 (𝑣 = (𝐺𝑤) → (𝐹𝑣) = (𝐹‘(𝐺𝑤)))
72, 3, 5, 6fmptco 7133 . 2 (𝜑 → (𝐹𝐺) = (𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))))
8 rlimcn1.5 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
9 fvexd 6907 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) ∧ 𝑤𝐴) → (𝐺𝑤) ∈ V)
109ralrimiva 3142 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∀𝑤𝐴 (𝐺𝑤) ∈ V)
11 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
12 rlimcn1.3 . . . . . . . . . 10 (𝜑𝐺𝑟 𝐶)
133, 12eqbrtrrd 5167 . . . . . . . . 9 (𝜑 → (𝑤𝐴 ↦ (𝐺𝑤)) ⇝𝑟 𝐶)
1413ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝑤𝐴 ↦ (𝐺𝑤)) ⇝𝑟 𝐶)
1510, 11, 14rlimi 15484 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦))
16 fvoveq1 7438 . . . . . . . . . . . . . 14 (𝑧 = (𝐺𝑤) → (abs‘(𝑧𝐶)) = (abs‘((𝐺𝑤) − 𝐶)))
1716breq1d 5153 . . . . . . . . . . . . 13 (𝑧 = (𝐺𝑤) → ((abs‘(𝑧𝐶)) < 𝑦 ↔ (abs‘((𝐺𝑤) − 𝐶)) < 𝑦))
1817imbrov2fvoveq 7440 . . . . . . . . . . . 12 (𝑧 = (𝐺𝑤) → (((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) ↔ ((abs‘((𝐺𝑤) − 𝐶)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
19 simplrr 777 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
202ad4ant14 751 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → (𝐺𝑤) ∈ 𝑋)
2118, 19, 20rspcdva 3609 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ((abs‘((𝐺𝑤) − 𝐶)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
2221imim2d 57 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ((𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2322ralimdva 3163 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) → (∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2423reximdv 3166 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) → (∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2524expr 456 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → (∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))))
2615, 25mpid 44 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2726rexlimdva 3151 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
288, 27mpd 15 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
2928ralrimiva 3142 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
304ffvelcdmda 7089 . . . . . 6 ((𝜑 ∧ (𝐺𝑤) ∈ 𝑋) → (𝐹‘(𝐺𝑤)) ∈ ℂ)
312, 30syldan 590 . . . . 5 ((𝜑𝑤𝐴) → (𝐹‘(𝐺𝑤)) ∈ ℂ)
3231ralrimiva 3142 . . . 4 (𝜑 → ∀𝑤𝐴 (𝐹‘(𝐺𝑤)) ∈ ℂ)
331fdmd 6728 . . . . 5 (𝜑 → dom 𝐺 = 𝐴)
34 rlimss 15473 . . . . . 6 (𝐺𝑟 𝐶 → dom 𝐺 ⊆ ℝ)
3512, 34syl 17 . . . . 5 (𝜑 → dom 𝐺 ⊆ ℝ)
3633, 35eqsstrrd 4018 . . . 4 (𝜑𝐴 ⊆ ℝ)
37 rlimcn1.2 . . . . 5 (𝜑𝐶𝑋)
384, 37ffvelcdmd 7090 . . . 4 (𝜑 → (𝐹𝐶) ∈ ℂ)
3932, 36, 38rlim2 15467 . . 3 (𝜑 → ((𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))) ⇝𝑟 (𝐹𝐶) ↔ ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
4029, 39mpbird 257 . 2 (𝜑 → (𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))) ⇝𝑟 (𝐹𝐶))
417, 40eqbrtrd 5165 1 (𝜑 → (𝐹𝐺) ⇝𝑟 (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  wrex 3066  Vcvv 3470  wss 3945   class class class wbr 5143  cmpt 5226  dom cdm 5673  ccom 5677  wf 6539  cfv 6543  (class class class)co 7415  cc 11131  cr 11132   < clt 11273  cle 11274  cmin 11469  +crp 13001  abscabs 15208  𝑟 crli 15456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-pm 8842  df-rlim 15460
This theorem is referenced by:  rlimcn1b  15560  rlimdiv  15619
  Copyright terms: Public domain W3C validator