MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn1 Structured version   Visualization version   GIF version

Theorem rlimcn1 15470
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
rlimcn1.1 (𝜑𝐺:𝐴𝑋)
rlimcn1.2 (𝜑𝐶𝑋)
rlimcn1.3 (𝜑𝐺𝑟 𝐶)
rlimcn1.4 (𝜑𝐹:𝑋⟶ℂ)
rlimcn1.5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
Assertion
Ref Expression
rlimcn1 (𝜑 → (𝐹𝐺) ⇝𝑟 (𝐹𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦   𝑥,𝐶,𝑦,𝑧   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝑋(𝑥,𝑦)

Proof of Theorem rlimcn1
Dummy variables 𝑤 𝑐 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcn1.1 . . . 4 (𝜑𝐺:𝐴𝑋)
21ffvelcdmda 7035 . . 3 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑋)
31feqmptd 6910 . . 3 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
4 rlimcn1.4 . . . 4 (𝜑𝐹:𝑋⟶ℂ)
54feqmptd 6910 . . 3 (𝜑𝐹 = (𝑣𝑋 ↦ (𝐹𝑣)))
6 fveq2 6842 . . 3 (𝑣 = (𝐺𝑤) → (𝐹𝑣) = (𝐹‘(𝐺𝑤)))
72, 3, 5, 6fmptco 7075 . 2 (𝜑 → (𝐹𝐺) = (𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))))
8 rlimcn1.5 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
9 fvexd 6857 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) ∧ 𝑤𝐴) → (𝐺𝑤) ∈ V)
109ralrimiva 3143 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∀𝑤𝐴 (𝐺𝑤) ∈ V)
11 simpr 485 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
12 rlimcn1.3 . . . . . . . . . 10 (𝜑𝐺𝑟 𝐶)
133, 12eqbrtrrd 5129 . . . . . . . . 9 (𝜑 → (𝑤𝐴 ↦ (𝐺𝑤)) ⇝𝑟 𝐶)
1413ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝑤𝐴 ↦ (𝐺𝑤)) ⇝𝑟 𝐶)
1510, 11, 14rlimi 15395 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦))
16 fvoveq1 7380 . . . . . . . . . . . . . 14 (𝑧 = (𝐺𝑤) → (abs‘(𝑧𝐶)) = (abs‘((𝐺𝑤) − 𝐶)))
1716breq1d 5115 . . . . . . . . . . . . 13 (𝑧 = (𝐺𝑤) → ((abs‘(𝑧𝐶)) < 𝑦 ↔ (abs‘((𝐺𝑤) − 𝐶)) < 𝑦))
1817imbrov2fvoveq 7382 . . . . . . . . . . . 12 (𝑧 = (𝐺𝑤) → (((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) ↔ ((abs‘((𝐺𝑤) − 𝐶)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
19 simplrr 776 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
202ad4ant14 750 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → (𝐺𝑤) ∈ 𝑋)
2118, 19, 20rspcdva 3582 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ((abs‘((𝐺𝑤) − 𝐶)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
2221imim2d 57 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ((𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2322ralimdva 3164 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) → (∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2423reximdv 3167 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) → (∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2524expr 457 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → (∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))))
2615, 25mpid 44 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2726rexlimdva 3152 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
288, 27mpd 15 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
2928ralrimiva 3143 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
304ffvelcdmda 7035 . . . . . 6 ((𝜑 ∧ (𝐺𝑤) ∈ 𝑋) → (𝐹‘(𝐺𝑤)) ∈ ℂ)
312, 30syldan 591 . . . . 5 ((𝜑𝑤𝐴) → (𝐹‘(𝐺𝑤)) ∈ ℂ)
3231ralrimiva 3143 . . . 4 (𝜑 → ∀𝑤𝐴 (𝐹‘(𝐺𝑤)) ∈ ℂ)
331fdmd 6679 . . . . 5 (𝜑 → dom 𝐺 = 𝐴)
34 rlimss 15384 . . . . . 6 (𝐺𝑟 𝐶 → dom 𝐺 ⊆ ℝ)
3512, 34syl 17 . . . . 5 (𝜑 → dom 𝐺 ⊆ ℝ)
3633, 35eqsstrrd 3983 . . . 4 (𝜑𝐴 ⊆ ℝ)
37 rlimcn1.2 . . . . 5 (𝜑𝐶𝑋)
384, 37ffvelcdmd 7036 . . . 4 (𝜑 → (𝐹𝐶) ∈ ℂ)
3932, 36, 38rlim2 15378 . . 3 (𝜑 → ((𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))) ⇝𝑟 (𝐹𝐶) ↔ ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
4029, 39mpbird 256 . 2 (𝜑 → (𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))) ⇝𝑟 (𝐹𝐶))
417, 40eqbrtrd 5127 1 (𝜑 → (𝐹𝐺) ⇝𝑟 (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  wss 3910   class class class wbr 5105  cmpt 5188  dom cdm 5633  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050   < clt 11189  cle 11190  cmin 11385  +crp 12915  abscabs 15119  𝑟 crli 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-pm 8768  df-rlim 15371
This theorem is referenced by:  rlimcn1b  15471  rlimdiv  15530
  Copyright terms: Public domain W3C validator