MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn1 Structured version   Visualization version   GIF version

Theorem rlimcn1 15502
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
rlimcn1.1 (𝜑𝐺:𝐴𝑋)
rlimcn1.2 (𝜑𝐶𝑋)
rlimcn1.3 (𝜑𝐺𝑟 𝐶)
rlimcn1.4 (𝜑𝐹:𝑋⟶ℂ)
rlimcn1.5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
Assertion
Ref Expression
rlimcn1 (𝜑 → (𝐹𝐺) ⇝𝑟 (𝐹𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦   𝑥,𝐶,𝑦,𝑧   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝑋(𝑥,𝑦)

Proof of Theorem rlimcn1
Dummy variables 𝑤 𝑐 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcn1.1 . . . 4 (𝜑𝐺:𝐴𝑋)
21ffvelcdmda 7026 . . 3 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑋)
31feqmptd 6899 . . 3 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
4 rlimcn1.4 . . . 4 (𝜑𝐹:𝑋⟶ℂ)
54feqmptd 6899 . . 3 (𝜑𝐹 = (𝑣𝑋 ↦ (𝐹𝑣)))
6 fveq2 6831 . . 3 (𝑣 = (𝐺𝑤) → (𝐹𝑣) = (𝐹‘(𝐺𝑤)))
72, 3, 5, 6fmptco 7071 . 2 (𝜑 → (𝐹𝐺) = (𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))))
8 rlimcn1.5 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
9 fvexd 6846 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) ∧ 𝑤𝐴) → (𝐺𝑤) ∈ V)
109ralrimiva 3125 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∀𝑤𝐴 (𝐺𝑤) ∈ V)
11 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
12 rlimcn1.3 . . . . . . . . . 10 (𝜑𝐺𝑟 𝐶)
133, 12eqbrtrrd 5119 . . . . . . . . 9 (𝜑 → (𝑤𝐴 ↦ (𝐺𝑤)) ⇝𝑟 𝐶)
1413ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝑤𝐴 ↦ (𝐺𝑤)) ⇝𝑟 𝐶)
1510, 11, 14rlimi 15427 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦))
16 fvoveq1 7378 . . . . . . . . . . . . . 14 (𝑧 = (𝐺𝑤) → (abs‘(𝑧𝐶)) = (abs‘((𝐺𝑤) − 𝐶)))
1716breq1d 5105 . . . . . . . . . . . . 13 (𝑧 = (𝐺𝑤) → ((abs‘(𝑧𝐶)) < 𝑦 ↔ (abs‘((𝐺𝑤) − 𝐶)) < 𝑦))
1817imbrov2fvoveq 7380 . . . . . . . . . . . 12 (𝑧 = (𝐺𝑤) → (((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) ↔ ((abs‘((𝐺𝑤) − 𝐶)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
19 simplrr 777 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
202ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → (𝐺𝑤) ∈ 𝑋)
2118, 19, 20rspcdva 3574 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ((abs‘((𝐺𝑤) − 𝐶)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
2221imim2d 57 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ((𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2322ralimdva 3145 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) → (∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2423reximdv 3148 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) → (∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2524expr 456 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → (∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))))
2615, 25mpid 44 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2726rexlimdva 3134 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
288, 27mpd 15 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
2928ralrimiva 3125 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
304ffvelcdmda 7026 . . . . . 6 ((𝜑 ∧ (𝐺𝑤) ∈ 𝑋) → (𝐹‘(𝐺𝑤)) ∈ ℂ)
312, 30syldan 591 . . . . 5 ((𝜑𝑤𝐴) → (𝐹‘(𝐺𝑤)) ∈ ℂ)
3231ralrimiva 3125 . . . 4 (𝜑 → ∀𝑤𝐴 (𝐹‘(𝐺𝑤)) ∈ ℂ)
331fdmd 6669 . . . . 5 (𝜑 → dom 𝐺 = 𝐴)
34 rlimss 15416 . . . . . 6 (𝐺𝑟 𝐶 → dom 𝐺 ⊆ ℝ)
3512, 34syl 17 . . . . 5 (𝜑 → dom 𝐺 ⊆ ℝ)
3633, 35eqsstrrd 3966 . . . 4 (𝜑𝐴 ⊆ ℝ)
37 rlimcn1.2 . . . . 5 (𝜑𝐶𝑋)
384, 37ffvelcdmd 7027 . . . 4 (𝜑 → (𝐹𝐶) ∈ ℂ)
3932, 36, 38rlim2 15410 . . 3 (𝜑 → ((𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))) ⇝𝑟 (𝐹𝐶) ↔ ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
4029, 39mpbird 257 . 2 (𝜑 → (𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))) ⇝𝑟 (𝐹𝐶))
417, 40eqbrtrd 5117 1 (𝜑 → (𝐹𝐺) ⇝𝑟 (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  wss 3898   class class class wbr 5095  cmpt 5176  dom cdm 5621  ccom 5625  wf 6485  cfv 6489  (class class class)co 7355  cc 11015  cr 11016   < clt 11157  cle 11158  cmin 11355  +crp 12896  abscabs 15148  𝑟 crli 15399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-pm 8762  df-rlim 15403
This theorem is referenced by:  rlimcn1b  15503  rlimdiv  15560
  Copyright terms: Public domain W3C validator