MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn1 Structured version   Visualization version   GIF version

Theorem rlimcn1 15561
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
rlimcn1.1 (𝜑𝐺:𝐴𝑋)
rlimcn1.2 (𝜑𝐶𝑋)
rlimcn1.3 (𝜑𝐺𝑟 𝐶)
rlimcn1.4 (𝜑𝐹:𝑋⟶ℂ)
rlimcn1.5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
Assertion
Ref Expression
rlimcn1 (𝜑 → (𝐹𝐺) ⇝𝑟 (𝐹𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦   𝑥,𝐶,𝑦,𝑧   𝑧,𝑋
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝑋(𝑥,𝑦)

Proof of Theorem rlimcn1
Dummy variables 𝑤 𝑐 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcn1.1 . . . 4 (𝜑𝐺:𝐴𝑋)
21ffvelcdmda 7059 . . 3 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑋)
31feqmptd 6932 . . 3 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
4 rlimcn1.4 . . . 4 (𝜑𝐹:𝑋⟶ℂ)
54feqmptd 6932 . . 3 (𝜑𝐹 = (𝑣𝑋 ↦ (𝐹𝑣)))
6 fveq2 6861 . . 3 (𝑣 = (𝐺𝑤) → (𝐹𝑣) = (𝐹‘(𝐺𝑤)))
72, 3, 5, 6fmptco 7104 . 2 (𝜑 → (𝐹𝐺) = (𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))))
8 rlimcn1.5 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
9 fvexd 6876 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) ∧ 𝑤𝐴) → (𝐺𝑤) ∈ V)
109ralrimiva 3126 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∀𝑤𝐴 (𝐺𝑤) ∈ V)
11 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
12 rlimcn1.3 . . . . . . . . . 10 (𝜑𝐺𝑟 𝐶)
133, 12eqbrtrrd 5134 . . . . . . . . 9 (𝜑 → (𝑤𝐴 ↦ (𝐺𝑤)) ⇝𝑟 𝐶)
1413ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (𝑤𝐴 ↦ (𝐺𝑤)) ⇝𝑟 𝐶)
1510, 11, 14rlimi 15486 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦))
16 fvoveq1 7413 . . . . . . . . . . . . . 14 (𝑧 = (𝐺𝑤) → (abs‘(𝑧𝐶)) = (abs‘((𝐺𝑤) − 𝐶)))
1716breq1d 5120 . . . . . . . . . . . . 13 (𝑧 = (𝐺𝑤) → ((abs‘(𝑧𝐶)) < 𝑦 ↔ (abs‘((𝐺𝑤) − 𝐶)) < 𝑦))
1817imbrov2fvoveq 7415 . . . . . . . . . . . 12 (𝑧 = (𝐺𝑤) → (((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) ↔ ((abs‘((𝐺𝑤) − 𝐶)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
19 simplrr 777 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
202ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → (𝐺𝑤) ∈ 𝑋)
2118, 19, 20rspcdva 3592 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ((abs‘((𝐺𝑤) − 𝐶)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
2221imim2d 57 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) ∧ 𝑤𝐴) → ((𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2322ralimdva 3146 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) → (∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2423reximdv 3149 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑦 ∈ ℝ+ ∧ ∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))) → (∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2524expr 456 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → (∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐺𝑤) − 𝐶)) < 𝑦) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))))
2615, 25mpid 44 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
2726rexlimdva 3135 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
288, 27mpd 15 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
2928ralrimiva 3126 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥))
304ffvelcdmda 7059 . . . . . 6 ((𝜑 ∧ (𝐺𝑤) ∈ 𝑋) → (𝐹‘(𝐺𝑤)) ∈ ℂ)
312, 30syldan 591 . . . . 5 ((𝜑𝑤𝐴) → (𝐹‘(𝐺𝑤)) ∈ ℂ)
3231ralrimiva 3126 . . . 4 (𝜑 → ∀𝑤𝐴 (𝐹‘(𝐺𝑤)) ∈ ℂ)
331fdmd 6701 . . . . 5 (𝜑 → dom 𝐺 = 𝐴)
34 rlimss 15475 . . . . . 6 (𝐺𝑟 𝐶 → dom 𝐺 ⊆ ℝ)
3512, 34syl 17 . . . . 5 (𝜑 → dom 𝐺 ⊆ ℝ)
3633, 35eqsstrrd 3985 . . . 4 (𝜑𝐴 ⊆ ℝ)
37 rlimcn1.2 . . . . 5 (𝜑𝐶𝑋)
384, 37ffvelcdmd 7060 . . . 4 (𝜑 → (𝐹𝐶) ∈ ℂ)
3932, 36, 38rlim2 15469 . . 3 (𝜑 → ((𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))) ⇝𝑟 (𝐹𝐶) ↔ ∀𝑥 ∈ ℝ+𝑐 ∈ ℝ ∀𝑤𝐴 (𝑐𝑤 → (abs‘((𝐹‘(𝐺𝑤)) − (𝐹𝐶))) < 𝑥)))
4029, 39mpbird 257 . 2 (𝜑 → (𝑤𝐴 ↦ (𝐹‘(𝐺𝑤))) ⇝𝑟 (𝐹𝐶))
417, 40eqbrtrd 5132 1 (𝜑 → (𝐹𝐺) ⇝𝑟 (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  dom cdm 5641  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074   < clt 11215  cle 11216  cmin 11412  +crp 12958  abscabs 15207  𝑟 crli 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-pm 8805  df-rlim 15462
This theorem is referenced by:  rlimcn1b  15562  rlimdiv  15619
  Copyright terms: Public domain W3C validator