MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcn1 Structured version   Visualization version   GIF version

Theorem climcn1 14940
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn1.1 𝑍 = (ℤ𝑀)
climcn1.2 (𝜑𝑀 ∈ ℤ)
climcn1.3 (𝜑𝐴𝐵)
climcn1.4 ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
climcn1.5 (𝜑𝐺𝐴)
climcn1.6 (𝜑𝐻𝑊)
climcn1.7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
climcn1.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
climcn1.9 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
climcn1 (𝜑𝐻 ⇝ (𝐹𝐴))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝐵,𝑘,𝑧   𝑘,𝐺,𝑦,𝑧   𝑘,𝐻,𝑥   𝑘,𝐹,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑍,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐺(𝑥)   𝐻(𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑍(𝑥,𝑧)

Proof of Theorem climcn1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climcn1.7 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
2 climcn1.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
3 climcn1.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
43adantr 483 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
5 simpr 487 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
6 eqidd 2820 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
7 climcn1.5 . . . . . . . . 9 (𝜑𝐺𝐴)
87adantr 483 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝐺𝐴)
92, 4, 5, 6, 8climi2 14860 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
102uztrn2 12254 . . . . . . . . . . . 12 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
11 climcn1.8 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
1211adantlr 713 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
13 fvoveq1 7171 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑘) → (abs‘(𝑧𝐴)) = (abs‘((𝐺𝑘) − 𝐴)))
1413breq1d 5067 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑘) → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
1514imbrov2fvoveq 7173 . . . . . . . . . . . . . . 15 (𝑧 = (𝐺𝑘) → (((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)))
1615rspcva 3619 . . . . . . . . . . . . . 14 (((𝐺𝑘) ∈ 𝐵 ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
1712, 16sylan 582 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
1817an32s 650 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑘𝑍) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
1910, 18sylan2 594 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2019anassrs 470 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2120ralimdva 3175 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2221reximdva 3272 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2322ex 415 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)))
249, 23mpid 44 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2524rexlimdva 3282 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2625adantr 483 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
271, 26mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)
2827ralrimiva 3180 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)
29 climcn1.6 . . 3 (𝜑𝐻𝑊)
30 climcn1.9 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
31 fveq2 6663 . . . . 5 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
3231eleq1d 2895 . . . 4 (𝑧 = 𝐴 → ((𝐹𝑧) ∈ ℂ ↔ (𝐹𝐴) ∈ ℂ))
33 climcn1.4 . . . . 5 ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
3433ralrimiva 3180 . . . 4 (𝜑 → ∀𝑧𝐵 (𝐹𝑧) ∈ ℂ)
35 climcn1.3 . . . 4 (𝜑𝐴𝐵)
3632, 34, 35rspcdva 3623 . . 3 (𝜑 → (𝐹𝐴) ∈ ℂ)
37 fveq2 6663 . . . . 5 (𝑧 = (𝐺𝑘) → (𝐹𝑧) = (𝐹‘(𝐺𝑘)))
3837eleq1d 2895 . . . 4 (𝑧 = (𝐺𝑘) → ((𝐹𝑧) ∈ ℂ ↔ (𝐹‘(𝐺𝑘)) ∈ ℂ))
3934adantr 483 . . . 4 ((𝜑𝑘𝑍) → ∀𝑧𝐵 (𝐹𝑧) ∈ ℂ)
4038, 39, 11rspcdva 3623 . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝐺𝑘)) ∈ ℂ)
412, 3, 29, 30, 36, 40clim2c 14854 . 2 (𝜑 → (𝐻 ⇝ (𝐹𝐴) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
4228, 41mpbird 259 1 (𝜑𝐻 ⇝ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wral 3136  wrex 3137   class class class wbr 5057  cfv 6348  (class class class)co 7148  cc 10527   < clt 10667  cmin 10862  cz 11973  cuz 12235  +crp 12381  abscabs 14585  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-neg 10865  df-z 11974  df-uz 12236  df-clim 14837
This theorem is referenced by:  climcn1lem  14951  climcncf  23500  climrec  41873
  Copyright terms: Public domain W3C validator