MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcn1 Structured version   Visualization version   GIF version

Theorem climcn1 15499
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn1.1 𝑍 = (ℤ𝑀)
climcn1.2 (𝜑𝑀 ∈ ℤ)
climcn1.3 (𝜑𝐴𝐵)
climcn1.4 ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
climcn1.5 (𝜑𝐺𝐴)
climcn1.6 (𝜑𝐻𝑊)
climcn1.7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
climcn1.8 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
climcn1.9 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
climcn1 (𝜑𝐻 ⇝ (𝐹𝐴))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝐵,𝑘,𝑧   𝑘,𝐺,𝑦,𝑧   𝑘,𝐻,𝑥   𝑘,𝐹,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑍,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐺(𝑥)   𝐻(𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   𝑍(𝑥,𝑧)

Proof of Theorem climcn1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climcn1.7 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
2 climcn1.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
3 climcn1.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
43adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
5 simpr 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
6 eqidd 2730 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
7 climcn1.5 . . . . . . . . 9 (𝜑𝐺𝐴)
87adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → 𝐺𝐴)
92, 4, 5, 6, 8climi2 15418 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
102uztrn2 12754 . . . . . . . . . . . 12 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
11 climcn1.8 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
1211adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)
13 fvoveq1 7372 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑘) → (abs‘(𝑧𝐴)) = (abs‘((𝐺𝑘) − 𝐴)))
1413breq1d 5102 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑘) → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
1514imbrov2fvoveq 7374 . . . . . . . . . . . . . . 15 (𝑧 = (𝐺𝑘) → (((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) ↔ ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)))
1615rspcva 3575 . . . . . . . . . . . . . 14 (((𝐺𝑘) ∈ 𝐵 ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
1712, 16sylan 580 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
1817an32s 652 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑘𝑍) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
1910, 18sylan2 593 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2019anassrs 467 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2120ralimdva 3141 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2221reximdva 3142 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ ∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2322ex 412 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)))
249, 23mpid 44 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (∀𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2524rexlimdva 3130 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
2625adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
271, 26mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)
2827ralrimiva 3121 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥)
29 climcn1.6 . . 3 (𝜑𝐻𝑊)
30 climcn1.9 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
31 fveq2 6822 . . . . 5 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
3231eleq1d 2813 . . . 4 (𝑧 = 𝐴 → ((𝐹𝑧) ∈ ℂ ↔ (𝐹𝐴) ∈ ℂ))
33 climcn1.4 . . . . 5 ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
3433ralrimiva 3121 . . . 4 (𝜑 → ∀𝑧𝐵 (𝐹𝑧) ∈ ℂ)
35 climcn1.3 . . . 4 (𝜑𝐴𝐵)
3632, 34, 35rspcdva 3578 . . 3 (𝜑 → (𝐹𝐴) ∈ ℂ)
37 fveq2 6822 . . . . 5 (𝑧 = (𝐺𝑘) → (𝐹𝑧) = (𝐹‘(𝐺𝑘)))
3837eleq1d 2813 . . . 4 (𝑧 = (𝐺𝑘) → ((𝐹𝑧) ∈ ℂ ↔ (𝐹‘(𝐺𝑘)) ∈ ℂ))
3934adantr 480 . . . 4 ((𝜑𝑘𝑍) → ∀𝑧𝐵 (𝐹𝑧) ∈ ℂ)
4038, 39, 11rspcdva 3578 . . 3 ((𝜑𝑘𝑍) → (𝐹‘(𝐺𝑘)) ∈ ℂ)
412, 3, 29, 30, 36, 40clim2c 15412 . 2 (𝜑 → (𝐻 ⇝ (𝐹𝐴) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹‘(𝐺𝑘)) − (𝐹𝐴))) < 𝑥))
4228, 41mpbird 257 1 (𝜑𝐻 ⇝ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007   < clt 11149  cmin 11347  cz 12471  cuz 12735  +crp 12893  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-neg 11350  df-z 12472  df-uz 12736  df-clim 15395
This theorem is referenced by:  climcn1lem  15510  climcncf  24791  climrec  45584
  Copyright terms: Public domain W3C validator