MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfco Structured version   Visualization version   GIF version

Theorem cncfco 24856
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cncfco.4 (𝜑𝐹 ∈ (𝐴cn𝐵))
cncfco.5 (𝜑𝐺 ∈ (𝐵cn𝐶))
Assertion
Ref Expression
cncfco (𝜑 → (𝐺𝐹) ∈ (𝐴cn𝐶))

Proof of Theorem cncfco
Dummy variables 𝑤 𝑢 𝑥 𝑦 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfco.5 . . . 4 (𝜑𝐺 ∈ (𝐵cn𝐶))
2 cncff 24842 . . . 4 (𝐺 ∈ (𝐵cn𝐶) → 𝐺:𝐵𝐶)
31, 2syl 17 . . 3 (𝜑𝐺:𝐵𝐶)
4 cncfco.4 . . . 4 (𝜑𝐹 ∈ (𝐴cn𝐵))
5 cncff 24842 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)
64, 5syl 17 . . 3 (𝜑𝐹:𝐴𝐵)
7 fco 6735 . . 3 ((𝐺:𝐵𝐶𝐹:𝐴𝐵) → (𝐺𝐹):𝐴𝐶)
83, 6, 7syl2anc 584 . 2 (𝜑 → (𝐺𝐹):𝐴𝐶)
91adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝐺 ∈ (𝐵cn𝐶))
106adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝐹:𝐴𝐵)
11 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑥𝐴)
1210, 11ffvelcdmd 7080 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → (𝐹𝑥) ∈ 𝐵)
13 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
14 cncfi 24843 . . . . 5 ((𝐺 ∈ (𝐵cn𝐶) ∧ (𝐹𝑥) ∈ 𝐵𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦))
159, 12, 13, 14syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦))
164ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝐹 ∈ (𝐴cn𝐵))
17 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝑥𝐴)
18 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝑢 ∈ ℝ+)
19 cncfi 24843 . . . . . . 7 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝑥𝐴𝑢 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
2016, 17, 18, 19syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
216ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝐹:𝐴𝐵)
22 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝑤𝐴)
2321, 22ffvelcdmd 7080 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (𝐹𝑤) ∈ 𝐵)
24 fvoveq1 7433 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐹𝑤) → (abs‘(𝑣 − (𝐹𝑥))) = (abs‘((𝐹𝑤) − (𝐹𝑥))))
2524breq1d 5134 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝐹𝑤) → ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 ↔ (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
2625imbrov2fvoveq 7435 . . . . . . . . . . . . . . . 16 (𝑣 = (𝐹𝑤) → (((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) ↔ ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
2726rspcv 3602 . . . . . . . . . . . . . . 15 ((𝐹𝑤) ∈ 𝐵 → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
2823, 27syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
29 fvco3 6983 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴𝐵𝑤𝐴) → ((𝐺𝐹)‘𝑤) = (𝐺‘(𝐹𝑤)))
3021, 22, 29syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((𝐺𝐹)‘𝑤) = (𝐺‘(𝐹𝑤)))
3117adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝑥𝐴)
32 fvco3 6983 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3321, 31, 32syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3430, 33oveq12d 7428 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥)) = ((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥))))
3534fveq2d 6885 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) = (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))))
3635breq1d 5134 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦 ↔ (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦))
3736imbi2d 340 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦) ↔ ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
3828, 37sylibrd 259 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
3938imp 406 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4039an32s 652 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4140imim2d 57 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4241anassrs 467 . . . . . . . . 9 ((((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤𝐴) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4342ralimdva 3153 . . . . . . . 8 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ 𝑧 ∈ ℝ+) → (∀𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∀𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4443reximdva 3154 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4544ex 412 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
4620, 45mpid 44 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4746rexlimdva 3142 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → (∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4815, 47mpd 15 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4948ralrimivva 3188 . 2 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
50 cncfrss 24840 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
514, 50syl 17 . . 3 (𝜑𝐴 ⊆ ℂ)
52 cncfrss2 24841 . . . 4 (𝐺 ∈ (𝐵cn𝐶) → 𝐶 ⊆ ℂ)
531, 52syl 17 . . 3 (𝜑𝐶 ⊆ ℂ)
54 elcncf2 24839 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ) → ((𝐺𝐹) ∈ (𝐴cn𝐶) ↔ ((𝐺𝐹):𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
5551, 53, 54syl2anc 584 . 2 (𝜑 → ((𝐺𝐹) ∈ (𝐴cn𝐶) ↔ ((𝐺𝐹):𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
568, 49, 55mpbir2and 713 1 (𝜑 → (𝐺𝐹) ∈ (𝐴cn𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  wss 3931   class class class wbr 5124  ccom 5663  wf 6532  cfv 6536  (class class class)co 7410  cc 11132   < clt 11274  cmin 11471  +crp 13013  abscabs 15258  cnccncf 24825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-cj 15123  df-re 15124  df-im 15125  df-abs 15260  df-cncf 24827
This theorem is referenced by:  cncfcompt2  24857  cncfmpt1f  24863  negfcncf  24873  divcncf  25405  cniccbdd  25419  cncombf  25616  cnmbf  25617  dvlip  25955  dvlipcn  25956  itgsubstlem  26012  sincn  26411  coscn  26412  logcn  26613  lgamgulmlem2  26997  ftalem3  27042  evthiccabs  45492  mulc1cncfg  45585  expcnfg  45587  cncfcompt  45879  cncficcgt0  45884  dirkercncflem2  46100  dirkercncflem4  46102  fourierdlem18  46121  fourierdlem93  46195  fourierdlem101  46203  fourierdlem111  46213
  Copyright terms: Public domain W3C validator