MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfco Structured version   Visualization version   GIF version

Theorem cncfco 24828
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cncfco.4 (𝜑𝐹 ∈ (𝐴cn𝐵))
cncfco.5 (𝜑𝐺 ∈ (𝐵cn𝐶))
Assertion
Ref Expression
cncfco (𝜑 → (𝐺𝐹) ∈ (𝐴cn𝐶))

Proof of Theorem cncfco
Dummy variables 𝑤 𝑢 𝑥 𝑦 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfco.5 . . . 4 (𝜑𝐺 ∈ (𝐵cn𝐶))
2 cncff 24814 . . . 4 (𝐺 ∈ (𝐵cn𝐶) → 𝐺:𝐵𝐶)
31, 2syl 17 . . 3 (𝜑𝐺:𝐵𝐶)
4 cncfco.4 . . . 4 (𝜑𝐹 ∈ (𝐴cn𝐵))
5 cncff 24814 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)
64, 5syl 17 . . 3 (𝜑𝐹:𝐴𝐵)
7 fco 6680 . . 3 ((𝐺:𝐵𝐶𝐹:𝐴𝐵) → (𝐺𝐹):𝐴𝐶)
83, 6, 7syl2anc 584 . 2 (𝜑 → (𝐺𝐹):𝐴𝐶)
91adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝐺 ∈ (𝐵cn𝐶))
106adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝐹:𝐴𝐵)
11 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑥𝐴)
1210, 11ffvelcdmd 7024 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → (𝐹𝑥) ∈ 𝐵)
13 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
14 cncfi 24815 . . . . 5 ((𝐺 ∈ (𝐵cn𝐶) ∧ (𝐹𝑥) ∈ 𝐵𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦))
159, 12, 13, 14syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦))
164ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝐹 ∈ (𝐴cn𝐵))
17 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝑥𝐴)
18 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝑢 ∈ ℝ+)
19 cncfi 24815 . . . . . . 7 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝑥𝐴𝑢 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
2016, 17, 18, 19syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
216ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝐹:𝐴𝐵)
22 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝑤𝐴)
2321, 22ffvelcdmd 7024 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (𝐹𝑤) ∈ 𝐵)
24 fvoveq1 7375 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐹𝑤) → (abs‘(𝑣 − (𝐹𝑥))) = (abs‘((𝐹𝑤) − (𝐹𝑥))))
2524breq1d 5103 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝐹𝑤) → ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 ↔ (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
2625imbrov2fvoveq 7377 . . . . . . . . . . . . . . . 16 (𝑣 = (𝐹𝑤) → (((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) ↔ ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
2726rspcv 3569 . . . . . . . . . . . . . . 15 ((𝐹𝑤) ∈ 𝐵 → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
2823, 27syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
29 fvco3 6927 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴𝐵𝑤𝐴) → ((𝐺𝐹)‘𝑤) = (𝐺‘(𝐹𝑤)))
3021, 22, 29syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((𝐺𝐹)‘𝑤) = (𝐺‘(𝐹𝑤)))
3117adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝑥𝐴)
32 fvco3 6927 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3321, 31, 32syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3430, 33oveq12d 7370 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥)) = ((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥))))
3534fveq2d 6832 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) = (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))))
3635breq1d 5103 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦 ↔ (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦))
3736imbi2d 340 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦) ↔ ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
3828, 37sylibrd 259 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
3938imp 406 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4039an32s 652 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4140imim2d 57 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4241anassrs 467 . . . . . . . . 9 ((((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤𝐴) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4342ralimdva 3145 . . . . . . . 8 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ 𝑧 ∈ ℝ+) → (∀𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∀𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4443reximdva 3146 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4544ex 412 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
4620, 45mpid 44 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4746rexlimdva 3134 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → (∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4815, 47mpd 15 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4948ralrimivva 3176 . 2 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
50 cncfrss 24812 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
514, 50syl 17 . . 3 (𝜑𝐴 ⊆ ℂ)
52 cncfrss2 24813 . . . 4 (𝐺 ∈ (𝐵cn𝐶) → 𝐶 ⊆ ℂ)
531, 52syl 17 . . 3 (𝜑𝐶 ⊆ ℂ)
54 elcncf2 24811 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ) → ((𝐺𝐹) ∈ (𝐴cn𝐶) ↔ ((𝐺𝐹):𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
5551, 53, 54syl2anc 584 . 2 (𝜑 → ((𝐺𝐹) ∈ (𝐴cn𝐶) ↔ ((𝐺𝐹):𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
568, 49, 55mpbir2and 713 1 (𝜑 → (𝐺𝐹) ∈ (𝐴cn𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898   class class class wbr 5093  ccom 5623  wf 6482  cfv 6486  (class class class)co 7352  cc 11011   < clt 11153  cmin 11351  +crp 12892  abscabs 15143  cnccncf 24797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-cj 15008  df-re 15009  df-im 15010  df-abs 15145  df-cncf 24799
This theorem is referenced by:  cncfcompt2  24829  cncfmpt1f  24835  negfcncf  24845  divcncf  25376  cniccbdd  25390  cncombf  25587  cnmbf  25588  dvlip  25926  dvlipcn  25927  itgsubstlem  25983  sincn  26382  coscn  26383  logcn  26584  lgamgulmlem2  26968  ftalem3  27013  evthiccabs  45620  mulc1cncfg  45713  expcnfg  45715  cncfcompt  46005  cncficcgt0  46010  dirkercncflem2  46226  dirkercncflem4  46228  fourierdlem18  46247  fourierdlem93  46321  fourierdlem101  46329  fourierdlem111  46339
  Copyright terms: Public domain W3C validator