MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfco Structured version   Visualization version   GIF version

Theorem cncfco 24847
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cncfco.4 (𝜑𝐹 ∈ (𝐴cn𝐵))
cncfco.5 (𝜑𝐺 ∈ (𝐵cn𝐶))
Assertion
Ref Expression
cncfco (𝜑 → (𝐺𝐹) ∈ (𝐴cn𝐶))

Proof of Theorem cncfco
Dummy variables 𝑤 𝑢 𝑥 𝑦 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfco.5 . . . 4 (𝜑𝐺 ∈ (𝐵cn𝐶))
2 cncff 24833 . . . 4 (𝐺 ∈ (𝐵cn𝐶) → 𝐺:𝐵𝐶)
31, 2syl 17 . . 3 (𝜑𝐺:𝐵𝐶)
4 cncfco.4 . . . 4 (𝜑𝐹 ∈ (𝐴cn𝐵))
5 cncff 24833 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)
64, 5syl 17 . . 3 (𝜑𝐹:𝐴𝐵)
7 fco 6752 . . 3 ((𝐺:𝐵𝐶𝐹:𝐴𝐵) → (𝐺𝐹):𝐴𝐶)
83, 6, 7syl2anc 582 . 2 (𝜑 → (𝐺𝐹):𝐴𝐶)
91adantr 479 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝐺 ∈ (𝐵cn𝐶))
106adantr 479 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝐹:𝐴𝐵)
11 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑥𝐴)
1210, 11ffvelcdmd 7100 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → (𝐹𝑥) ∈ 𝐵)
13 simprr 771 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → 𝑦 ∈ ℝ+)
14 cncfi 24834 . . . . 5 ((𝐺 ∈ (𝐵cn𝐶) ∧ (𝐹𝑥) ∈ 𝐵𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦))
159, 12, 13, 14syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦))
164ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝐹 ∈ (𝐴cn𝐵))
17 simplrl 775 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝑥𝐴)
18 simpr 483 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → 𝑢 ∈ ℝ+)
19 cncfi 24834 . . . . . . 7 ((𝐹 ∈ (𝐴cn𝐵) ∧ 𝑥𝐴𝑢 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
2016, 17, 18, 19syl3anc 1368 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
216ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝐹:𝐴𝐵)
22 simprr 771 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝑤𝐴)
2321, 22ffvelcdmd 7100 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (𝐹𝑤) ∈ 𝐵)
24 fvoveq1 7449 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝐹𝑤) → (abs‘(𝑣 − (𝐹𝑥))) = (abs‘((𝐹𝑤) − (𝐹𝑥))))
2524breq1d 5162 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝐹𝑤) → ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 ↔ (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢))
2625imbrov2fvoveq 7451 . . . . . . . . . . . . . . . 16 (𝑣 = (𝐹𝑤) → (((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) ↔ ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
2726rspcv 3607 . . . . . . . . . . . . . . 15 ((𝐹𝑤) ∈ 𝐵 → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
2823, 27syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
29 fvco3 7002 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴𝐵𝑤𝐴) → ((𝐺𝐹)‘𝑤) = (𝐺‘(𝐹𝑤)))
3021, 22, 29syl2anc 582 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((𝐺𝐹)‘𝑤) = (𝐺‘(𝐹𝑤)))
3117adantr 479 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → 𝑥𝐴)
32 fvco3 7002 . . . . . . . . . . . . . . . . . . 19 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3321, 31, 32syl2anc 582 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3430, 33oveq12d 7444 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥)) = ((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥))))
3534fveq2d 6906 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) = (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))))
3635breq1d 5162 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦 ↔ (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦))
3736imbi2d 339 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦) ↔ ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹𝑤)) − (𝐺‘(𝐹𝑥)))) < 𝑦)))
3828, 37sylibrd 258 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
3938imp 405 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4039an32s 650 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → ((abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4140imim2d 57 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ (𝑧 ∈ ℝ+𝑤𝐴)) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4241anassrs 466 . . . . . . . . 9 ((((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤𝐴) → (((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4342ralimdva 3164 . . . . . . . 8 (((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) ∧ 𝑧 ∈ ℝ+) → (∀𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∀𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4443reximdva 3165 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) ∧ ∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦)) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4544ex 411 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑢) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
4620, 45mpid 44 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+) → (∀𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4746rexlimdva 3152 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → (∃𝑢 ∈ ℝ+𝑣𝐵 ((abs‘(𝑣 − (𝐹𝑥))) < 𝑢 → (abs‘((𝐺𝑣) − (𝐺‘(𝐹𝑥)))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦)))
4815, 47mpd 15 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ ℝ+)) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
4948ralrimivva 3198 . 2 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))
50 cncfrss 24831 . . . 4 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
514, 50syl 17 . . 3 (𝜑𝐴 ⊆ ℂ)
52 cncfrss2 24832 . . . 4 (𝐺 ∈ (𝐵cn𝐶) → 𝐶 ⊆ ℂ)
531, 52syl 17 . . 3 (𝜑𝐶 ⊆ ℂ)
54 elcncf2 24830 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ) → ((𝐺𝐹) ∈ (𝐴cn𝐶) ↔ ((𝐺𝐹):𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
5551, 53, 54syl2anc 582 . 2 (𝜑 → ((𝐺𝐹) ∈ (𝐴cn𝐶) ↔ ((𝐺𝐹):𝐴𝐶 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘(((𝐺𝐹)‘𝑤) − ((𝐺𝐹)‘𝑥))) < 𝑦))))
568, 49, 55mpbir2and 711 1 (𝜑 → (𝐺𝐹) ∈ (𝐴cn𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3058  wrex 3067  wss 3949   class class class wbr 5152  ccom 5686  wf 6549  cfv 6553  (class class class)co 7426  cc 11144   < clt 11286  cmin 11482  +crp 13014  abscabs 15221  cnccncf 24816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-2 12313  df-cj 15086  df-re 15087  df-im 15088  df-abs 15223  df-cncf 24818
This theorem is referenced by:  cncfcompt2  24848  cncfmpt1f  24854  negfcncf  24864  divcncf  25396  cniccbdd  25410  cncombf  25607  cnmbf  25608  dvlip  25946  dvlipcn  25947  itgsubstlem  26003  sincn  26401  coscn  26402  logcn  26601  lgamgulmlem2  26982  ftalem3  27027  evthiccabs  44910  mulc1cncfg  45006  expcnfg  45008  cncfcompt  45300  cncficcgt0  45305  dirkercncflem2  45521  dirkercncflem4  45523  fourierdlem18  45542  fourierdlem93  45616  fourierdlem101  45624  fourierdlem111  45634
  Copyright terms: Public domain W3C validator