| Step | Hyp | Ref
| Expression |
| 1 | | cncfco.5 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝐵–cn→𝐶)) |
| 2 | | cncff 24842 |
. . . 4
⊢ (𝐺 ∈ (𝐵–cn→𝐶) → 𝐺:𝐵⟶𝐶) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
| 4 | | cncfco.4 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) |
| 5 | | cncff 24842 |
. . . 4
⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
| 6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 7 | | fco 6735 |
. . 3
⊢ ((𝐺:𝐵⟶𝐶 ∧ 𝐹:𝐴⟶𝐵) → (𝐺 ∘ 𝐹):𝐴⟶𝐶) |
| 8 | 3, 6, 7 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝐺 ∘ 𝐹):𝐴⟶𝐶) |
| 9 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → 𝐺 ∈ (𝐵–cn→𝐶)) |
| 10 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → 𝐹:𝐴⟶𝐵) |
| 11 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → 𝑥 ∈ 𝐴) |
| 12 | 10, 11 | ffvelcdmd 7080 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → (𝐹‘𝑥) ∈ 𝐵) |
| 13 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) → 𝑦 ∈
ℝ+) |
| 14 | | cncfi 24843 |
. . . . 5
⊢ ((𝐺 ∈ (𝐵–cn→𝐶) ∧ (𝐹‘𝑥) ∈ 𝐵 ∧ 𝑦 ∈ ℝ+) →
∃𝑢 ∈
ℝ+ ∀𝑣 ∈ 𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦)) |
| 15 | 9, 12, 13, 14 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) →
∃𝑢 ∈
ℝ+ ∀𝑣 ∈ 𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦)) |
| 16 | 4 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
→ 𝐹 ∈ (𝐴–cn→𝐵)) |
| 17 | | simplrl 776 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
→ 𝑥 ∈ 𝐴) |
| 18 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
→ 𝑢 ∈
ℝ+) |
| 19 | | cncfi 24843 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝑥 ∈ 𝐴 ∧ 𝑢 ∈ ℝ+) →
∃𝑧 ∈
ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢)) |
| 20 | 16, 17, 18, 19 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
→ ∃𝑧 ∈
ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢)) |
| 21 | 6 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) → 𝐹:𝐴⟶𝐵) |
| 22 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) → 𝑤 ∈ 𝐴) |
| 23 | 21, 22 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) → (𝐹‘𝑤) ∈ 𝐵) |
| 24 | | fvoveq1 7433 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = (𝐹‘𝑤) → (abs‘(𝑣 − (𝐹‘𝑥))) = (abs‘((𝐹‘𝑤) − (𝐹‘𝑥)))) |
| 25 | 24 | breq1d 5134 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝐹‘𝑤) → ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 ↔ (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢)) |
| 26 | 25 | imbrov2fvoveq 7435 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = (𝐹‘𝑤) → (((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦) ↔ ((abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹‘𝑤)) − (𝐺‘(𝐹‘𝑥)))) < 𝑦))) |
| 27 | 26 | rspcv 3602 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑤) ∈ 𝐵 → (∀𝑣 ∈ 𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦) → ((abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹‘𝑤)) − (𝐺‘(𝐹‘𝑥)))) < 𝑦))) |
| 28 | 23, 27 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) →
(∀𝑣 ∈ 𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦) → ((abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹‘𝑤)) − (𝐺‘(𝐹‘𝑥)))) < 𝑦))) |
| 29 | | fvco3 6983 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑤 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑤) = (𝐺‘(𝐹‘𝑤))) |
| 30 | 21, 22, 29 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) → ((𝐺 ∘ 𝐹)‘𝑤) = (𝐺‘(𝐹‘𝑤))) |
| 31 | 17 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) → 𝑥 ∈ 𝐴) |
| 32 | | fvco3 6983 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 33 | 21, 31, 32 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 34 | 30, 33 | oveq12d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) → (((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥)) = ((𝐺‘(𝐹‘𝑤)) − (𝐺‘(𝐹‘𝑥)))) |
| 35 | 34 | fveq2d 6885 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) →
(abs‘(((𝐺 ∘
𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) = (abs‘((𝐺‘(𝐹‘𝑤)) − (𝐺‘(𝐹‘𝑥))))) |
| 36 | 35 | breq1d 5134 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) →
((abs‘(((𝐺 ∘
𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦 ↔ (abs‘((𝐺‘(𝐹‘𝑤)) − (𝐺‘(𝐹‘𝑥)))) < 𝑦)) |
| 37 | 36 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) →
(((abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦) ↔ ((abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘(𝐹‘𝑤)) − (𝐺‘(𝐹‘𝑥)))) < 𝑦))) |
| 38 | 28, 37 | sylibrd 259 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) →
(∀𝑣 ∈ 𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦) → ((abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦))) |
| 39 | 38 | imp 406 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ (𝑧 ∈
ℝ+ ∧ 𝑤
∈ 𝐴)) ∧
∀𝑣 ∈ 𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦)) → ((abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦)) |
| 40 | 39 | an32s 652 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ ∀𝑣 ∈
𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦)) ∧ (𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴)) → ((abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦)) |
| 41 | 40 | imim2d 57 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ ∀𝑣 ∈
𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦)) ∧ (𝑧 ∈ ℝ+ ∧ 𝑤 ∈ 𝐴)) → (((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢) → ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦))) |
| 42 | 41 | anassrs 467 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ ∀𝑣 ∈
𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ 𝐴) → (((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢) → ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦))) |
| 43 | 42 | ralimdva 3153 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ ∀𝑣 ∈
𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦)) ∧ 𝑧 ∈ ℝ+) →
(∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢) → ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦))) |
| 44 | 43 | reximdva 3154 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
∧ ∀𝑣 ∈
𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦)) → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦))) |
| 45 | 44 | ex 412 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
→ (∀𝑣 ∈
𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦) → (∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑢) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦)))) |
| 46 | 20, 45 | mpid 44 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) ∧ 𝑢 ∈ ℝ+)
→ (∀𝑣 ∈
𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦))) |
| 47 | 46 | rexlimdva 3142 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) →
(∃𝑢 ∈
ℝ+ ∀𝑣 ∈ 𝐵 ((abs‘(𝑣 − (𝐹‘𝑥))) < 𝑢 → (abs‘((𝐺‘𝑣) − (𝐺‘(𝐹‘𝑥)))) < 𝑦) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦))) |
| 48 | 15, 47 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+)) →
∃𝑧 ∈
ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦)) |
| 49 | 48 | ralrimivva 3188 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦)) |
| 50 | | cncfrss 24840 |
. . . 4
⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
| 51 | 4, 50 | syl 17 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 52 | | cncfrss2 24841 |
. . . 4
⊢ (𝐺 ∈ (𝐵–cn→𝐶) → 𝐶 ⊆ ℂ) |
| 53 | 1, 52 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ⊆ ℂ) |
| 54 | | elcncf2 24839 |
. . 3
⊢ ((𝐴 ⊆ ℂ ∧ 𝐶 ⊆ ℂ) → ((𝐺 ∘ 𝐹) ∈ (𝐴–cn→𝐶) ↔ ((𝐺 ∘ 𝐹):𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦)))) |
| 55 | 51, 53, 54 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝐺 ∘ 𝐹) ∈ (𝐴–cn→𝐶) ↔ ((𝐺 ∘ 𝐹):𝐴⟶𝐶 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘(((𝐺 ∘ 𝐹)‘𝑤) − ((𝐺 ∘ 𝐹)‘𝑥))) < 𝑦)))) |
| 56 | 8, 49, 55 | mpbir2and 713 |
1
⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝐴–cn→𝐶)) |