Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fperdvper Structured version   Visualization version   GIF version

Theorem fperdvper 42561
Description: The derivative of a periodic function is periodic. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fperdvper.f (𝜑𝐹:ℝ⟶ℂ)
fperdvper.t (𝜑𝑇 ∈ ℝ)
fperdvper.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fperdvper.g 𝐺 = (ℝ D 𝐹)
Assertion
Ref Expression
fperdvper ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem fperdvper
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvbsss 24505 . . . . . . . 8 dom (ℝ D 𝐹) ⊆ ℝ
2 id 22 . . . . . . . . 9 (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐺)
3 fperdvper.g . . . . . . . . . 10 𝐺 = (ℝ D 𝐹)
43dmeqi 5737 . . . . . . . . 9 dom 𝐺 = dom (ℝ D 𝐹)
52, 4eleqtrdi 2900 . . . . . . . 8 (𝑥 ∈ dom 𝐺𝑥 ∈ dom (ℝ D 𝐹))
61, 5sseldi 3913 . . . . . . 7 (𝑥 ∈ dom 𝐺𝑥 ∈ ℝ)
76adantl 485 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℝ)
8 fperdvper.t . . . . . . 7 (𝜑𝑇 ∈ ℝ)
98adantr 484 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → 𝑇 ∈ ℝ)
107, 9readdcld 10659 . . . . 5 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℝ)
11 reopn 41920 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
12 retop 23367 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
13 ssidd 3938 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → ℝ ⊆ ℝ)
14 uniretop 23368 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1514isopn3 21671 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ℝ ⊆ ℝ) → (ℝ ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘ℝ) = ℝ))
1612, 13, 15sylancr 590 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐺) → (ℝ ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘ℝ) = ℝ))
1711, 16mpbii 236 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → ((int‘(topGen‘ran (,)))‘ℝ) = ℝ)
1817eqcomd 2804 . . . . 5 ((𝜑𝑥 ∈ dom 𝐺) → ℝ = ((int‘(topGen‘ran (,)))‘ℝ))
1910, 18eleqtrd 2892 . . . 4 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ((int‘(topGen‘ran (,)))‘ℝ))
205adantl 485 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥 ∈ dom (ℝ D 𝐹))
213fveq1i 6646 . . . . . . . . . 10 (𝐺𝑥) = ((ℝ D 𝐹)‘𝑥)
2221eqcomi 2807 . . . . . . . . 9 ((ℝ D 𝐹)‘𝑥) = (𝐺𝑥)
2322a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → ((ℝ D 𝐹)‘𝑥) = (𝐺𝑥))
24 dvf 24510 . . . . . . . . . . . 12 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
25 ffun 6490 . . . . . . . . . . . 12 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
2624, 25ax-mp 5 . . . . . . . . . . 11 Fun (ℝ D 𝐹)
2726a1i 11 . . . . . . . . . 10 (𝜑 → Fun (ℝ D 𝐹))
28 funbrfv2b 6698 . . . . . . . . . 10 (Fun (ℝ D 𝐹) → (𝑥(ℝ D 𝐹)(𝐺𝑥) ↔ (𝑥 ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘𝑥) = (𝐺𝑥))))
2927, 28syl 17 . . . . . . . . 9 (𝜑 → (𝑥(ℝ D 𝐹)(𝐺𝑥) ↔ (𝑥 ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘𝑥) = (𝐺𝑥))))
3029adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥(ℝ D 𝐹)(𝐺𝑥) ↔ (𝑥 ∈ dom (ℝ D 𝐹) ∧ ((ℝ D 𝐹)‘𝑥) = (𝐺𝑥))))
3120, 23, 30mpbir2and 712 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥(ℝ D 𝐹)(𝐺𝑥))
32 tgioo4 42210 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
33 eqid 2798 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
34 eqid 2798 . . . . . . . 8 (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) = (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))
35 ax-resscn 10583 . . . . . . . . 9 ℝ ⊆ ℂ
3635a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → ℝ ⊆ ℂ)
37 fperdvper.f . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℂ)
3837adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → 𝐹:ℝ⟶ℂ)
3932, 33, 34, 36, 38, 13eldv 24501 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥(ℝ D 𝐹)(𝐺𝑥) ↔ (𝑥 ∈ ((int‘(topGen‘ran (,)))‘ℝ) ∧ (𝐺𝑥) ∈ ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥))))
4031, 39mpbid 235 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘ℝ) ∧ (𝐺𝑥) ∈ ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥)))
4140simprd 499 . . . . 5 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥))
42 eqidd 2799 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) = (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))))
43 fveq2 6645 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑑 → (𝐹𝑦) = (𝐹𝑑))
4443oveq1d 7150 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑑 → ((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) = ((𝐹𝑑) − (𝐹‘(𝑥 + 𝑇))))
45 oveq1 7142 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑑 → (𝑦 − (𝑥 + 𝑇)) = (𝑑 − (𝑥 + 𝑇)))
4644, 45oveq12d 7153 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑑 → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) = (((𝐹𝑑) − (𝐹‘(𝑥 + 𝑇))) / (𝑑 − (𝑥 + 𝑇))))
47 eldifi 4054 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) → 𝑑 ∈ ℝ)
4847recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) → 𝑑 ∈ ℂ)
4948adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 ∈ ℂ)
508recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑇 ∈ ℂ)
5150adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑇 ∈ ℂ)
5249, 51npcand 10990 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑𝑇) + 𝑇) = 𝑑)
5352eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 = ((𝑑𝑇) + 𝑇))
5453fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹𝑑) = (𝐹‘((𝑑𝑇) + 𝑇)))
55 ovex 7168 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑𝑇) ∈ V
5647adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 ∈ ℝ)
578adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑇 ∈ ℝ)
5856, 57resubcld 11057 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑𝑇) ∈ ℝ)
5958ex 416 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) → (𝑑𝑇) ∈ ℝ))
6059imdistani 572 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝜑 ∧ (𝑑𝑇) ∈ ℝ))
61 eleq1 2877 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑑𝑇) → (𝑥 ∈ ℝ ↔ (𝑑𝑇) ∈ ℝ))
6261anbi2d 631 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑑𝑇) → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑 ∧ (𝑑𝑇) ∈ ℝ)))
63 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑑𝑇) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘((𝑑𝑇) + 𝑇)))
64 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑑𝑇) → (𝐹𝑥) = (𝐹‘(𝑑𝑇)))
6563, 64eqeq12d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑑𝑇) → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘((𝑑𝑇) + 𝑇)) = (𝐹‘(𝑑𝑇))))
6662, 65imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑑𝑇) → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑 ∧ (𝑑𝑇) ∈ ℝ) → (𝐹‘((𝑑𝑇) + 𝑇)) = (𝐹‘(𝑑𝑇)))))
67 fperdvper.fper . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
6866, 67vtoclg 3515 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑𝑇) ∈ V → ((𝜑 ∧ (𝑑𝑇) ∈ ℝ) → (𝐹‘((𝑑𝑇) + 𝑇)) = (𝐹‘(𝑑𝑇))))
6955, 60, 68mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹‘((𝑑𝑇) + 𝑇)) = (𝐹‘(𝑑𝑇)))
7054, 69eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹𝑑) = (𝐹‘(𝑑𝑇)))
7170adantlr 714 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹𝑑) = (𝐹‘(𝑑𝑇)))
72 simpll 766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝜑)
736ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑥 ∈ ℝ)
7472, 73, 67syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
7571, 74oveq12d 7153 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝐹𝑑) − (𝐹‘(𝑥 + 𝑇))) = ((𝐹‘(𝑑𝑇)) − (𝐹𝑥)))
7648adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 ∈ ℂ)
7772, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑇 ∈ ℂ)
787recnd 10658 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ dom 𝐺) → 𝑥 ∈ ℂ)
7978adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑥 ∈ ℂ)
8076, 77, 79subsub4d 11017 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑𝑇) − 𝑥) = (𝑑 − (𝑇 + 𝑥)))
8177, 79addcomd 10831 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑇 + 𝑥) = (𝑥 + 𝑇))
8281oveq2d 7151 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑 − (𝑇 + 𝑥)) = (𝑑 − (𝑥 + 𝑇)))
8380, 82eqtr2d 2834 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑 − (𝑥 + 𝑇)) = ((𝑑𝑇) − 𝑥))
8475, 83oveq12d 7153 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (((𝐹𝑑) − (𝐹‘(𝑥 + 𝑇))) / (𝑑 − (𝑥 + 𝑇))) = (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)))
8546, 84sylan9eqr 2855 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = 𝑑) → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) = (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)))
86 simpr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)}))
8737adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝐹:ℝ⟶ℂ)
8887, 58ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹‘(𝑑𝑇)) ∈ ℂ)
8988adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹‘(𝑑𝑇)) ∈ ℂ)
9038, 7ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ dom 𝐺) → (𝐹𝑥) ∈ ℂ)
9190adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝐹𝑥) ∈ ℂ)
9289, 91subcld 10986 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) ∈ ℂ)
9376, 77subcld 10986 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑𝑇) ∈ ℂ)
9493, 79subcld 10986 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑𝑇) − 𝑥) ∈ ℂ)
95 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → (𝑑𝑇) = 𝑥)
9648ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → 𝑑 ∈ ℂ)
9777adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → 𝑇 ∈ ℂ)
9879adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → 𝑥 ∈ ℂ)
9996, 97, 98subadd2d 11005 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → ((𝑑𝑇) = 𝑥 ↔ (𝑥 + 𝑇) = 𝑑))
10095, 99mpbid 235 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → (𝑥 + 𝑇) = 𝑑)
101100eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → 𝑑 = (𝑥 + 𝑇))
102 eldifsni 4683 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) → 𝑑 ≠ (𝑥 + 𝑇))
103102ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → 𝑑 ≠ (𝑥 + 𝑇))
104103neneqd 2992 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑𝑇) = 𝑥) → ¬ 𝑑 = (𝑥 + 𝑇))
105101, 104pm2.65da 816 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ¬ (𝑑𝑇) = 𝑥)
106105neqned 2994 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑𝑇) ≠ 𝑥)
10793, 79, 106subne0d 10995 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑𝑇) − 𝑥) ≠ 0)
10892, 94, 107divcld 11405 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) ∈ ℂ)
10942, 85, 86, 108fvmptd 6752 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) = (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)))
110109fvoveq1d 7157 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) = (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)))
111110ad4ant13 750 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏)) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) = (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)))
112 neeq1 3049 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑑𝑇) → (𝑐𝑥 ↔ (𝑑𝑇) ≠ 𝑥))
113 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑑𝑇) → (abs‘(𝑐𝑥)) = (abs‘((𝑑𝑇) − 𝑥)))
114113breq1d 5040 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = (𝑑𝑇) → ((abs‘(𝑐𝑥)) < 𝑏 ↔ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏))
115112, 114anbi12d 633 . . . . . . . . . . . . . . . . . . 19 (𝑐 = (𝑑𝑇) → ((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) ↔ ((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏)))
116115imbrov2fvoveq 7160 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑑𝑇) → (((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎) ↔ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)))
117 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎))
11847ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → 𝑑 ∈ ℝ)
1198ad4antr 731 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → 𝑇 ∈ ℝ)
120118, 119resubcld 11057 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (𝑑𝑇) ∈ ℝ)
121 elsni 4542 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑𝑇) ∈ {𝑥} → (𝑑𝑇) = 𝑥)
122105, 121nsyl 142 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ¬ (𝑑𝑇) ∈ {𝑥})
123122ad4ant13 750 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ¬ (𝑑𝑇) ∈ {𝑥})
124120, 123eldifd 3892 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (𝑑𝑇) ∈ (ℝ ∖ {𝑥}))
125116, 117, 124rspcdva 3573 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎))
126 eqidd 2799 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) = (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))))
127 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = (𝑑𝑇)) → 𝑦 = (𝑑𝑇))
128127fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = (𝑑𝑇)) → (𝐹𝑦) = (𝐹‘(𝑑𝑇)))
129128oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = (𝑑𝑇)) → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹‘(𝑑𝑇)) − (𝐹𝑥)))
130127oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = (𝑑𝑇)) → (𝑦𝑥) = ((𝑑𝑇) − 𝑥))
131129, 130oveq12d 7153 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ 𝑦 = (𝑑𝑇)) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) = (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)))
13247adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑑 ∈ ℝ)
13372, 8syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → 𝑇 ∈ ℝ)
134132, 133resubcld 11057 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑𝑇) ∈ ℝ)
135134, 122eldifd 3892 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (𝑑𝑇) ∈ (ℝ ∖ {𝑥}))
136126, 131, 135, 108fvmptd 6752 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) = (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)))
137136eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) = ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)))
138137ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → (((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) = ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)))
139138fvoveq1d 7157 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) = (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)))
140106adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (𝑑𝑇) ≠ 𝑥)
14183eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑𝑇) − 𝑥) = (𝑑 − (𝑥 + 𝑇)))
142141adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ((𝑑𝑇) − 𝑥) = (𝑑 − (𝑥 + 𝑇)))
143142fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘((𝑑𝑇) − 𝑥)) = (abs‘(𝑑 − (𝑥 + 𝑇))))
144 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏)
145143, 144eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘((𝑑𝑇) − 𝑥)) < 𝑏)
146140, 145jca 515 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏))
147146adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → ((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏))
148 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎))
149147, 148mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)
150139, 149eqbrtrd 5052 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ∧ (((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎)) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) < 𝑎)
151150ex 416 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ((((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) < 𝑎))
152151adantllr 718 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → ((((𝑑𝑇) ≠ 𝑥 ∧ (abs‘((𝑑𝑇) − 𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘(𝑑𝑇)) − 𝑤)) < 𝑎) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) < 𝑎))
153125, 152mpd 15 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) < 𝑎)
154153adantrl 715 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏)) → (abs‘((((𝐹‘(𝑑𝑇)) − (𝐹𝑥)) / ((𝑑𝑇) − 𝑥)) − 𝑤)) < 𝑎)
155111, 154eqbrtrd 5052 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) ∧ (𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏)) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)
156155ex 416 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ∧ 𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → ((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎))
157156ralrimiva 3149 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) → ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎))
158 eqidd 2799 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ (ℝ ∖ {𝑥}) → (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) = (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))))
159 fveq2 6645 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑐 → (𝐹𝑦) = (𝐹𝑐))
160159oveq1d 7150 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑐 → ((𝐹𝑦) − (𝐹𝑥)) = ((𝐹𝑐) − (𝐹𝑥)))
161 oveq1 7142 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑐 → (𝑦𝑥) = (𝑐𝑥))
162160, 161oveq12d 7153 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑐 → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) = (((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)))
163162adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ (ℝ ∖ {𝑥}) ∧ 𝑦 = 𝑐) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) = (((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)))
164 id 22 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ (ℝ ∖ {𝑥}) → 𝑐 ∈ (ℝ ∖ {𝑥}))
165 ovexd 7170 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ (ℝ ∖ {𝑥}) → (((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) ∈ V)
166158, 163, 164, 165fvmptd 6752 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ (ℝ ∖ {𝑥}) → ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) = (((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)))
167166fvoveq1d 7157 . . . . . . . . . . . . . . . 16 (𝑐 ∈ (ℝ ∖ {𝑥}) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) = (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)))
168167ad2antlr 726 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏)) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) = (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)))
169 simpll 766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝜑)
170 eldifi 4054 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ (ℝ ∖ {𝑥}) → 𝑐 ∈ ℝ)
171170adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑐 ∈ ℝ)
172 eleq1 2877 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑐 → (𝑥 ∈ ℝ ↔ 𝑐 ∈ ℝ))
173172anbi2d 631 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑐 → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑𝑐 ∈ ℝ)))
174 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑐 → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘(𝑐 + 𝑇)))
175 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
176174, 175eqeq12d 2814 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑐 → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘(𝑐 + 𝑇)) = (𝐹𝑐)))
177173, 176imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑐 → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑𝑐 ∈ ℝ) → (𝐹‘(𝑐 + 𝑇)) = (𝐹𝑐))))
178177, 67chvarvv 2005 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑐 ∈ ℝ) → (𝐹‘(𝑐 + 𝑇)) = (𝐹𝑐))
179178eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑐 ∈ ℝ) → (𝐹𝑐) = (𝐹‘(𝑐 + 𝑇)))
180169, 171, 179syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝐹𝑐) = (𝐹‘(𝑐 + 𝑇)))
1816ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑥 ∈ ℝ)
182169, 181, 67syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
183182eqcomd 2804 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝐹𝑥) = (𝐹‘(𝑥 + 𝑇)))
184180, 183oveq12d 7153 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → ((𝐹𝑐) − (𝐹𝑥)) = ((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))))
185171recnd 10658 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑐 ∈ ℂ)
18678adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑥 ∈ ℂ)
187169, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑇 ∈ ℂ)
188185, 186, 187pnpcan2d 11024 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → ((𝑐 + 𝑇) − (𝑥 + 𝑇)) = (𝑐𝑥))
189188eqcomd 2804 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝑐𝑥) = ((𝑐 + 𝑇) − (𝑥 + 𝑇)))
190184, 189oveq12d 7153 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) = (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))))
191190fvoveq1d 7157 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)) = (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)))
192191ad4ant13 750 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)) = (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)))
193 neeq1 3049 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = (𝑐 + 𝑇) → (𝑑 ≠ (𝑥 + 𝑇) ↔ (𝑐 + 𝑇) ≠ (𝑥 + 𝑇)))
194 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 = (𝑐 + 𝑇) → (abs‘(𝑑 − (𝑥 + 𝑇))) = (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))))
195194breq1d 5040 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = (𝑐 + 𝑇) → ((abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏 ↔ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏))
196193, 195anbi12d 633 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = (𝑐 + 𝑇) → ((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) ↔ ((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏)))
197196imbrov2fvoveq 7160 . . . . . . . . . . . . . . . . . . 19 (𝑑 = (𝑐 + 𝑇) → (((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎) ↔ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)))
198 simpllr 775 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎))
199170ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → 𝑐 ∈ ℝ)
2008ad4antr 731 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → 𝑇 ∈ ℝ)
201199, 200readdcld 10659 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (𝑐 + 𝑇) ∈ ℝ)
202 eldifsni 4683 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ (ℝ ∖ {𝑥}) → 𝑐𝑥)
203202adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑐𝑥)
204185, 186, 187, 203addneintr2d 10837 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝑐 + 𝑇) ≠ (𝑥 + 𝑇))
205204ad4ant13 750 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (𝑐 + 𝑇) ≠ (𝑥 + 𝑇))
206 nelsn 4565 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) → ¬ (𝑐 + 𝑇) ∈ {(𝑥 + 𝑇)})
207205, 206syl 17 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ¬ (𝑐 + 𝑇) ∈ {(𝑥 + 𝑇)})
208201, 207eldifd 3892 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (𝑐 + 𝑇) ∈ (ℝ ∖ {(𝑥 + 𝑇)}))
209197, 198, 208rspcdva 3573 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎))
210 eqidd 2799 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) = (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))))
211 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = (𝑐 + 𝑇) → (𝐹𝑦) = (𝐹‘(𝑐 + 𝑇)))
212211oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = (𝑐 + 𝑇) → ((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) = ((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))))
213 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = (𝑐 + 𝑇) → (𝑦 − (𝑥 + 𝑇)) = ((𝑐 + 𝑇) − (𝑥 + 𝑇)))
214212, 213oveq12d 7153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = (𝑐 + 𝑇) → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) = (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))))
215214adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ 𝑦 = (𝑐 + 𝑇)) → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) = (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))))
216169, 8syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → 𝑇 ∈ ℝ)
217171, 216readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝑐 + 𝑇) ∈ ℝ)
218204, 206syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → ¬ (𝑐 + 𝑇) ∈ {(𝑥 + 𝑇)})
219217, 218eldifd 3892 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (𝑐 + 𝑇) ∈ (ℝ ∖ {(𝑥 + 𝑇)}))
220 ovexd 7170 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) ∈ V)
221210, 215, 219, 220fvmptd 6752 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) = (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))))
222221eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) = ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)))
223222ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → (((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) = ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)))
224223fvoveq1d 7157 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)) = (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)))
225204adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (𝑐 + 𝑇) ≠ (𝑥 + 𝑇))
226170recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 ∈ (ℝ ∖ {𝑥}) → 𝑐 ∈ ℂ)
227226ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → 𝑐 ∈ ℂ)
228186adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → 𝑥 ∈ ℂ)
229187adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → 𝑇 ∈ ℂ)
230227, 228, 229pnpcan2d 11024 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ((𝑐 + 𝑇) − (𝑥 + 𝑇)) = (𝑐𝑥))
231230fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) = (abs‘(𝑐𝑥)))
232 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(𝑐𝑥)) < 𝑏)
233231, 232eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏)
234225, 233jca 515 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏))
235234adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → ((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏))
236 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎))
237235, 236mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)
238224, 237eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) ∧ (((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎)) → (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)) < 𝑎)
239238ex 416 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ((((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎) → (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)) < 𝑎))
240239adantllr 718 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → ((((𝑐 + 𝑇) ≠ (𝑥 + 𝑇) ∧ (abs‘((𝑐 + 𝑇) − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘(𝑐 + 𝑇)) − 𝑤)) < 𝑎) → (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)) < 𝑎))
241209, 240mpd 15 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘((((𝐹‘(𝑐 + 𝑇)) − (𝐹‘(𝑥 + 𝑇))) / ((𝑐 + 𝑇) − (𝑥 + 𝑇))) − 𝑤)) < 𝑎)
242192, 241eqbrtrd 5052 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)) < 𝑎)
243242adantrl 715 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏)) → (abs‘((((𝐹𝑐) − (𝐹𝑥)) / (𝑐𝑥)) − 𝑤)) < 𝑎)
244168, 243eqbrtrd 5052 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) ∧ (𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏)) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)
245244ex 416 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) ∧ 𝑐 ∈ (ℝ ∖ {𝑥})) → ((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎))
246245ralrimiva 3149 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ dom 𝐺) ∧ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)) → ∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎))
247157, 246impbida 800 . . . . . . . . . . 11 ((𝜑𝑥 ∈ dom 𝐺) → (∀𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎) ↔ ∀𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)))
248247rexbidv 3256 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom 𝐺) → (∃𝑏 ∈ ℝ+𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎) ↔ ∃𝑏 ∈ ℝ+𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)))
249248ralbidv 3162 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎)))
250249anbi2d 631 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑤 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎)) ↔ (𝑤 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎))))
25138, 36, 7dvlem 24499 . . . . . . . . . 10 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑦 ∈ (ℝ ∖ {𝑥})) → (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) ∈ ℂ)
252251fmpttd 6856 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))):(ℝ ∖ {𝑥})⟶ℂ)
25336ssdifssd 4070 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (ℝ ∖ {𝑥}) ⊆ ℂ)
254252, 253, 78ellimc3 24482 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → (𝑤 ∈ ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥) ↔ (𝑤 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ (ℝ ∖ {𝑥})((𝑐𝑥 ∧ (abs‘(𝑐𝑥)) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)))‘𝑐) − 𝑤)) < 𝑎))))
25538, 36, 10dvlem 24499 . . . . . . . . . 10 (((𝜑𝑥 ∈ dom 𝐺) ∧ 𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)})) → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) ∈ ℂ)
256255fmpttd 6856 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))):(ℝ ∖ {(𝑥 + 𝑇)})⟶ℂ)
25736ssdifssd 4070 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (ℝ ∖ {(𝑥 + 𝑇)}) ⊆ ℂ)
25810recnd 10658 . . . . . . . . 9 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇) ∈ ℂ)
259256, 257, 258ellimc3 24482 . . . . . . . 8 ((𝜑𝑥 ∈ dom 𝐺) → (𝑤 ∈ ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)) ↔ (𝑤 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑑 ∈ (ℝ ∖ {(𝑥 + 𝑇)})((𝑑 ≠ (𝑥 + 𝑇) ∧ (abs‘(𝑑 − (𝑥 + 𝑇))) < 𝑏) → (abs‘(((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))))‘𝑑) − 𝑤)) < 𝑎))))
260250, 254, 2593bitr4d 314 . . . . . . 7 ((𝜑𝑥 ∈ dom 𝐺) → (𝑤 ∈ ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥) ↔ 𝑤 ∈ ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇))))
261260eqrdv 2796 . . . . . 6 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥) = ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)))
262 fveq2 6645 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
263262oveq1d 7150 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) = ((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))))
264 oveq1 7142 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 − (𝑥 + 𝑇)) = (𝑧 − (𝑥 + 𝑇)))
265263, 264oveq12d 7153 . . . . . . . 8 (𝑦 = 𝑧 → (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇))) = (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇))))
266265cbvmptv 5133 . . . . . . 7 (𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) = (𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇))))
267266oveq1i 7145 . . . . . 6 ((𝑦 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑦) − (𝐹‘(𝑥 + 𝑇))) / (𝑦 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)) = ((𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇))
268261, 267eqtrdi 2849 . . . . 5 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑦 ∈ (ℝ ∖ {𝑥}) ↦ (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥))) lim 𝑥) = ((𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)))
26941, 268eleqtrd 2892 . . . 4 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ((𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)))
270 eqid 2798 . . . . . 6 (𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) = (𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇))))
27135a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
272 ssidd 3938 . . . . . 6 (𝜑 → ℝ ⊆ ℝ)
27332, 33, 270, 271, 37, 272eldv 24501 . . . . 5 (𝜑 → ((𝑥 + 𝑇)(ℝ D 𝐹)(𝐺𝑥) ↔ ((𝑥 + 𝑇) ∈ ((int‘(topGen‘ran (,)))‘ℝ) ∧ (𝐺𝑥) ∈ ((𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)))))
274273adantr 484 . . . 4 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇)(ℝ D 𝐹)(𝐺𝑥) ↔ ((𝑥 + 𝑇) ∈ ((int‘(topGen‘ran (,)))‘ℝ) ∧ (𝐺𝑥) ∈ ((𝑧 ∈ (ℝ ∖ {(𝑥 + 𝑇)}) ↦ (((𝐹𝑧) − (𝐹‘(𝑥 + 𝑇))) / (𝑧 − (𝑥 + 𝑇)))) lim (𝑥 + 𝑇)))))
27519, 269, 274mpbir2and 712 . . 3 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇)(ℝ D 𝐹)(𝐺𝑥))
2763a1i 11 . . . 4 ((𝜑𝑥 ∈ dom 𝐺) → 𝐺 = (ℝ D 𝐹))
277276breqd 5041 . . 3 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇)𝐺(𝐺𝑥) ↔ (𝑥 + 𝑇)(ℝ D 𝐹)(𝐺𝑥)))
278275, 277mpbird 260 . 2 ((𝜑𝑥 ∈ dom 𝐺) → (𝑥 + 𝑇)𝐺(𝐺𝑥))
2793a1i 11 . . . . . 6 (𝜑𝐺 = (ℝ D 𝐹))
280279funeqd 6346 . . . . 5 (𝜑 → (Fun 𝐺 ↔ Fun (ℝ D 𝐹)))
28127, 280mpbird 260 . . . 4 (𝜑 → Fun 𝐺)
282281adantr 484 . . 3 ((𝜑𝑥 ∈ dom 𝐺) → Fun 𝐺)
283 funbrfv2b 6698 . . 3 (Fun 𝐺 → ((𝑥 + 𝑇)𝐺(𝐺𝑥) ↔ ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))))
284282, 283syl 17 . 2 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇)𝐺(𝐺𝑥) ↔ ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥))))
285278, 284mpbid 235 1 ((𝜑𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525   + caddc 10529   < clt 10664  cmin 10859   / cdiv 11286  +crp 12377  (,)cioo 12726  abscabs 14585  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20091  Topctop 21498  intcnt 21622   lim climc 24465   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cnp 21833  df-haus 21920  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-limc 24469  df-dv 24470
This theorem is referenced by:  fourierdlem94  42842  fourierdlem97  42845  fourierdlem113  42861
  Copyright terms: Public domain W3C validator