MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim1 Structured version   Visualization version   GIF version

Theorem rlimclim1 14894
Description: Forward direction of rlimclim 14895. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim1.1 𝑍 = (ℤ𝑀)
rlimclim1.2 (𝜑𝑀 ∈ ℤ)
rlimclim1.3 (𝜑𝐹𝑟 𝐴)
rlimclim1.4 (𝜑𝑍 ⊆ dom 𝐹)
Assertion
Ref Expression
rlimclim1 (𝜑𝐹𝐴)

Proof of Theorem rlimclim1
Dummy variables 𝑗 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6676 . . . . . . 7 (𝐹𝑤) ∈ V
21rgenw 3148 . . . . . 6 𝑤 ∈ dom 𝐹(𝐹𝑤) ∈ V
32a1i 11 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∀𝑤 ∈ dom 𝐹(𝐹𝑤) ∈ V)
4 simpr 487 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
5 rlimclim1.3 . . . . . . . . 9 (𝜑𝐹𝑟 𝐴)
6 rlimf 14850 . . . . . . . . 9 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐹:dom 𝐹⟶ℂ)
87adantr 483 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐹:dom 𝐹⟶ℂ)
98feqmptd 6726 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹 = (𝑤 ∈ dom 𝐹 ↦ (𝐹𝑤)))
105adantr 483 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹𝑟 𝐴)
119, 10eqbrtrrd 5081 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝑤 ∈ dom 𝐹 ↦ (𝐹𝑤)) ⇝𝑟 𝐴)
123, 4, 11rlimi 14862 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
13 rlimclim1.2 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1413ad2antrr 724 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℤ)
15 flcl 13157 . . . . . . . . . 10 (𝑧 ∈ ℝ → (⌊‘𝑧) ∈ ℤ)
1615peano2zd 12082 . . . . . . . . 9 (𝑧 ∈ ℝ → ((⌊‘𝑧) + 1) ∈ ℤ)
1716ad2antrl 726 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℤ)
1817, 14ifcld 4510 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ)
1914zred 12079 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℝ)
2017zred 12079 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℝ)
21 max1 12570 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑧) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
2219, 20, 21syl2anc 586 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
23 eluz2 12241 . . . . . . 7 (if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)))
2414, 18, 22, 23syl3anbrc 1338 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ𝑀))
25 rlimclim1.1 . . . . . 6 𝑍 = (ℤ𝑀)
2624, 25eleqtrrdi 2922 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍)
27 simplrl 775 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ∈ ℝ)
2816zred 12079 . . . . . . . . . 10 (𝑧 ∈ ℝ → ((⌊‘𝑧) + 1) ∈ ℝ)
2927, 28syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ∈ ℝ)
3019adantr 483 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑀 ∈ ℝ)
3129, 30ifcld 4510 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℝ)
32 eluzelre 12246 . . . . . . . . 9 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → 𝑘 ∈ ℝ)
3332adantl 484 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ ℝ)
34 fllep1 13163 . . . . . . . . . 10 (𝑧 ∈ ℝ → 𝑧 ≤ ((⌊‘𝑧) + 1))
3527, 34syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ ((⌊‘𝑧) + 1))
36 max2 12572 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑧) + 1) ∈ ℝ) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
3730, 29, 36syl2anc 586 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
3827, 29, 31, 35, 37letrd 10789 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
39 eluzle 12248 . . . . . . . . 9 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘)
4039adantl 484 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘)
4127, 31, 33, 38, 40letrd 10789 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧𝑘)
42 breq2 5061 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑧𝑤𝑧𝑘))
4342imbrov2fvoveq 7173 . . . . . . . 8 (𝑤 = 𝑘 → ((𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦) ↔ (𝑧𝑘 → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦)))
44 simplrr 776 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
45 rlimclim1.4 . . . . . . . . . 10 (𝜑𝑍 ⊆ dom 𝐹)
4645ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑍 ⊆ dom 𝐹)
4725uztrn2 12254 . . . . . . . . . 10 ((if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘𝑍)
4826, 47sylan 582 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘𝑍)
4946, 48sseldd 3966 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ dom 𝐹)
5043, 44, 49rspcdva 3623 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (𝑧𝑘 → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
5141, 50mpd 15 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5251ralrimiva 3180 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
53 fveq2 6663 . . . . . . 7 (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (ℤ𝑗) = (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)))
5453raleqdv 3414 . . . . . 6 (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
5554rspcev 3621 . . . . 5 ((if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5626, 52, 55syl2anc 586 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5712, 56rexlimddv 3289 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5857ralrimiva 3180 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
59 rlimpm 14849 . . . 4 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
605, 59syl 17 . . 3 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
61 eqidd 2820 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
62 rlimcl 14852 . . . 4 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
635, 62syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
6445sselda 3965 . . . 4 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
657ffvelrnda 6844 . . . 4 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℂ)
6664, 65syldan 593 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
6725, 13, 60, 61, 63, 66clim2c 14854 . 2 (𝜑 → (𝐹𝐴 ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
6858, 67mpbird 259 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wral 3136  wrex 3137  Vcvv 3493  wss 3934  ifcif 4465   class class class wbr 5057  cmpt 5137  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7148  pm cpm 8399  cc 10527  cr 10528  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cmin 10862  cz 11973  cuz 12235  +crp 12381  cfl 13152  abscabs 14585  cli 14833  𝑟 crli 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fl 13154  df-clim 14837  df-rlim 14838
This theorem is referenced by:  rlimclim  14895  dchrisumlema  26056
  Copyright terms: Public domain W3C validator