| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fvex 6918 | . . . . . . 7
⊢ (𝐹‘𝑤) ∈ V | 
| 2 | 1 | rgenw 3064 | . . . . . 6
⊢
∀𝑤 ∈ dom
𝐹(𝐹‘𝑤) ∈ V | 
| 3 | 2 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∀𝑤 ∈ dom 𝐹(𝐹‘𝑤) ∈ V) | 
| 4 |  | simpr 484 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℝ+) | 
| 5 |  | rlimclim1.3 | . . . . . . . . 9
⊢ (𝜑 → 𝐹 ⇝𝑟 𝐴) | 
| 6 |  | rlimf 15538 | . . . . . . . . 9
⊢ (𝐹 ⇝𝑟
𝐴 → 𝐹:dom 𝐹⟶ℂ) | 
| 7 | 5, 6 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) | 
| 8 | 7 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹:dom 𝐹⟶ℂ) | 
| 9 | 8 | feqmptd 6976 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹 = (𝑤 ∈ dom 𝐹 ↦ (𝐹‘𝑤))) | 
| 10 | 5 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹 ⇝𝑟
𝐴) | 
| 11 | 9, 10 | eqbrtrrd 5166 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑤 ∈ dom 𝐹 ↦ (𝐹‘𝑤)) ⇝𝑟 𝐴) | 
| 12 | 3, 4, 11 | rlimi 15550 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑧 ∈ ℝ
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦)) | 
| 13 |  | rlimclim1.2 | . . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 14 | 13 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℤ) | 
| 15 |  | flcl 13836 | . . . . . . . . . 10
⊢ (𝑧 ∈ ℝ →
(⌊‘𝑧) ∈
ℤ) | 
| 16 | 15 | peano2zd 12727 | . . . . . . . . 9
⊢ (𝑧 ∈ ℝ →
((⌊‘𝑧) + 1)
∈ ℤ) | 
| 17 | 16 | ad2antrl 728 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℤ) | 
| 18 | 17, 14 | ifcld 4571 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ) | 
| 19 | 14 | zred 12724 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℝ) | 
| 20 | 17 | zred 12724 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℝ) | 
| 21 |  | max1 13228 | . . . . . . . 8
⊢ ((𝑀 ∈ ℝ ∧
((⌊‘𝑧) + 1)
∈ ℝ) → 𝑀
≤ if(𝑀 ≤
((⌊‘𝑧) + 1),
((⌊‘𝑧) + 1),
𝑀)) | 
| 22 | 19, 20, 21 | syl2anc 584 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) | 
| 23 |  | eluz2 12885 | . . . . . . 7
⊢ (if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) | 
| 24 | 14, 18, 22, 23 | syl3anbrc 1343 | . . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ≥‘𝑀)) | 
| 25 |  | rlimclim1.1 | . . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 26 | 24, 25 | eleqtrrdi 2851 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍) | 
| 27 |  | simplrl 776 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ∈ ℝ) | 
| 28 | 16 | zred 12724 | . . . . . . . . . 10
⊢ (𝑧 ∈ ℝ →
((⌊‘𝑧) + 1)
∈ ℝ) | 
| 29 | 27, 28 | syl 17 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ∈
ℝ) | 
| 30 | 19 | adantr 480 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑀 ∈ ℝ) | 
| 31 | 29, 30 | ifcld 4571 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℝ) | 
| 32 |  | eluzelre 12890 | . . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → 𝑘 ∈ ℝ) | 
| 33 | 32 | adantl 481 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ ℝ) | 
| 34 |  | fllep1 13842 | . . . . . . . . . 10
⊢ (𝑧 ∈ ℝ → 𝑧 ≤ ((⌊‘𝑧) + 1)) | 
| 35 | 27, 34 | syl 17 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ ((⌊‘𝑧) + 1)) | 
| 36 |  | max2 13230 | . . . . . . . . . 10
⊢ ((𝑀 ∈ ℝ ∧
((⌊‘𝑧) + 1)
∈ ℝ) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) | 
| 37 | 30, 29, 36 | syl2anc 584 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) | 
| 38 | 27, 29, 31, 35, 37 | letrd 11419 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) | 
| 39 |  | eluzle 12892 | . . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘) | 
| 40 | 39 | adantl 481 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘) | 
| 41 | 27, 31, 33, 38, 40 | letrd 11419 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ 𝑘) | 
| 42 |  | breq2 5146 | . . . . . . . . 9
⊢ (𝑤 = 𝑘 → (𝑧 ≤ 𝑤 ↔ 𝑧 ≤ 𝑘)) | 
| 43 | 42 | imbrov2fvoveq 7457 | . . . . . . . 8
⊢ (𝑤 = 𝑘 → ((𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦) ↔ (𝑧 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦))) | 
| 44 |  | simplrr 777 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦)) | 
| 45 |  | rlimclim1.4 | . . . . . . . . . 10
⊢ (𝜑 → 𝑍 ⊆ dom 𝐹) | 
| 46 | 45 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑍 ⊆ dom 𝐹) | 
| 47 | 25 | uztrn2 12898 | . . . . . . . . . 10
⊢
((if(𝑀 ≤
((⌊‘𝑧) + 1),
((⌊‘𝑧) + 1),
𝑀) ∈ 𝑍 ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ 𝑍) | 
| 48 | 26, 47 | sylan 580 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ 𝑍) | 
| 49 | 46, 48 | sseldd 3983 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ dom 𝐹) | 
| 50 | 43, 44, 49 | rspcdva 3622 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (𝑧 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) | 
| 51 | 41, 50 | mpd 15 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦) | 
| 52 | 51 | ralrimiva 3145 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) → ∀𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦) | 
| 53 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (ℤ≥‘𝑗) =
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) | 
| 54 | 53 | raleqdv 3325 | . . . . . 6
⊢ (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦 ↔ ∀𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) | 
| 55 | 54 | rspcev 3621 | . . . . 5
⊢
((if(𝑀 ≤
((⌊‘𝑧) + 1),
((⌊‘𝑧) + 1),
𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈
(ℤ≥‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦) | 
| 56 | 26, 52, 55 | syl2anc 584 | . . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧
∀𝑤 ∈ dom 𝐹(𝑧 ≤ 𝑤 → (abs‘((𝐹‘𝑤) − 𝐴)) < 𝑦))) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦) | 
| 57 | 12, 56 | rexlimddv 3160 | . . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦) | 
| 58 | 57 | ralrimiva 3145 | . 2
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦) | 
| 59 |  | rlimpm 15537 | . . . 4
⊢ (𝐹 ⇝𝑟
𝐴 → 𝐹 ∈ (ℂ ↑pm
ℝ)) | 
| 60 | 5, 59 | syl 17 | . . 3
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) | 
| 61 |  | eqidd 2737 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | 
| 62 |  | rlimcl 15540 | . . . 4
⊢ (𝐹 ⇝𝑟
𝐴 → 𝐴 ∈ ℂ) | 
| 63 | 5, 62 | syl 17 | . . 3
⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 64 | 45 | sselda 3982 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ dom 𝐹) | 
| 65 | 7 | ffvelcdmda 7103 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ dom 𝐹) → (𝐹‘𝑘) ∈ ℂ) | 
| 66 | 64, 65 | syldan 591 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| 67 | 25, 13, 60, 61, 63, 66 | clim2c 15542 | . 2
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑦)) | 
| 68 | 58, 67 | mpbird 257 | 1
⊢ (𝜑 → 𝐹 ⇝ 𝐴) |