MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim1 Structured version   Visualization version   GIF version

Theorem rlimclim1 14564
Description: Forward direction of rlimclim 14565. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim1.1 𝑍 = (ℤ𝑀)
rlimclim1.2 (𝜑𝑀 ∈ ℤ)
rlimclim1.3 (𝜑𝐹𝑟 𝐴)
rlimclim1.4 (𝜑𝑍 ⊆ dom 𝐹)
Assertion
Ref Expression
rlimclim1 (𝜑𝐹𝐴)

Proof of Theorem rlimclim1
Dummy variables 𝑗 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6390 . . . . . . 7 (𝐹𝑤) ∈ V
21rgenw 3071 . . . . . 6 𝑤 ∈ dom 𝐹(𝐹𝑤) ∈ V
32a1i 11 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∀𝑤 ∈ dom 𝐹(𝐹𝑤) ∈ V)
4 simpr 477 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
5 rlimclim1.3 . . . . . . . . 9 (𝜑𝐹𝑟 𝐴)
6 rlimf 14520 . . . . . . . . 9 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐹:dom 𝐹⟶ℂ)
87adantr 472 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐹:dom 𝐹⟶ℂ)
98feqmptd 6440 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹 = (𝑤 ∈ dom 𝐹 ↦ (𝐹𝑤)))
105adantr 472 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹𝑟 𝐴)
119, 10eqbrtrrd 4835 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝑤 ∈ dom 𝐹 ↦ (𝐹𝑤)) ⇝𝑟 𝐴)
123, 4, 11rlimi 14532 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
13 rlimclim1.2 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1413ad2antrr 717 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℤ)
15 flcl 12807 . . . . . . . . . 10 (𝑧 ∈ ℝ → (⌊‘𝑧) ∈ ℤ)
1615peano2zd 11735 . . . . . . . . 9 (𝑧 ∈ ℝ → ((⌊‘𝑧) + 1) ∈ ℤ)
1716ad2antrl 719 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℤ)
1817, 14ifcld 4290 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ)
1914zred 11732 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℝ)
2017zred 11732 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℝ)
21 max1 12221 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑧) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
2219, 20, 21syl2anc 579 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
23 eluz2 11895 . . . . . . 7 (if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)))
2414, 18, 22, 23syl3anbrc 1443 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ𝑀))
25 rlimclim1.1 . . . . . 6 𝑍 = (ℤ𝑀)
2624, 25syl6eleqr 2855 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍)
27 simplrl 795 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ∈ ℝ)
2816zred 11732 . . . . . . . . . 10 (𝑧 ∈ ℝ → ((⌊‘𝑧) + 1) ∈ ℝ)
2927, 28syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ∈ ℝ)
3019adantr 472 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑀 ∈ ℝ)
3129, 30ifcld 4290 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℝ)
32 eluzelre 11900 . . . . . . . . 9 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → 𝑘 ∈ ℝ)
3332adantl 473 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ ℝ)
34 fllep1 12813 . . . . . . . . . 10 (𝑧 ∈ ℝ → 𝑧 ≤ ((⌊‘𝑧) + 1))
3527, 34syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ ((⌊‘𝑧) + 1))
36 max2 12223 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑧) + 1) ∈ ℝ) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
3730, 29, 36syl2anc 579 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
3827, 29, 31, 35, 37letrd 10450 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
39 eluzle 11902 . . . . . . . . 9 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘)
4039adantl 473 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘)
4127, 31, 33, 38, 40letrd 10450 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧𝑘)
42 breq2 4815 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑧𝑤𝑧𝑘))
4342imbrov2fvoveq 6869 . . . . . . . 8 (𝑤 = 𝑘 → ((𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦) ↔ (𝑧𝑘 → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦)))
44 simplrr 796 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
45 rlimclim1.4 . . . . . . . . . 10 (𝜑𝑍 ⊆ dom 𝐹)
4645ad3antrrr 721 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑍 ⊆ dom 𝐹)
4725uztrn2 11907 . . . . . . . . . 10 ((if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘𝑍)
4826, 47sylan 575 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘𝑍)
4946, 48sseldd 3764 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ dom 𝐹)
5043, 44, 49rspcdva 3468 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (𝑧𝑘 → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
5141, 50mpd 15 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5251ralrimiva 3113 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
53 fveq2 6377 . . . . . . 7 (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (ℤ𝑗) = (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)))
5453raleqdv 3292 . . . . . 6 (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
5554rspcev 3462 . . . . 5 ((if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5626, 52, 55syl2anc 579 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5712, 56rexlimddv 3182 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5857ralrimiva 3113 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
59 rlimpm 14519 . . . 4 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
605, 59syl 17 . . 3 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
61 eqidd 2766 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
62 rlimcl 14522 . . . 4 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
635, 62syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
6445sselda 3763 . . . 4 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
657ffvelrnda 6551 . . . 4 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℂ)
6664, 65syldan 585 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
6725, 13, 60, 61, 63, 66clim2c 14524 . 2 (𝜑 → (𝐹𝐴 ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
6858, 67mpbird 248 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  Vcvv 3350  wss 3734  ifcif 4245   class class class wbr 4811  cmpt 4890  dom cdm 5279  wf 6066  cfv 6070  (class class class)co 6844  pm cpm 8063  cc 10189  cr 10190  1c1 10192   + caddc 10194   < clt 10330  cle 10331  cmin 10522  cz 11626  cuz 11889  +crp 12031  cfl 12802  abscabs 14262  cli 14503  𝑟 crli 14504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-pm 8065  df-en 8163  df-dom 8164  df-sdom 8165  df-sup 8557  df-inf 8558  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-nn 11277  df-n0 11541  df-z 11627  df-uz 11890  df-fl 12804  df-clim 14507  df-rlim 14508
This theorem is referenced by:  rlimclim  14565  dchrisumlema  25471
  Copyright terms: Public domain W3C validator