MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim1 Structured version   Visualization version   GIF version

Theorem rlimclim1 15424
Description: Forward direction of rlimclim 15425. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim1.1 𝑍 = (ℤ𝑀)
rlimclim1.2 (𝜑𝑀 ∈ ℤ)
rlimclim1.3 (𝜑𝐹𝑟 𝐴)
rlimclim1.4 (𝜑𝑍 ⊆ dom 𝐹)
Assertion
Ref Expression
rlimclim1 (𝜑𝐹𝐴)

Proof of Theorem rlimclim1
Dummy variables 𝑗 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6853 . . . . . . 7 (𝐹𝑤) ∈ V
21rgenw 3067 . . . . . 6 𝑤 ∈ dom 𝐹(𝐹𝑤) ∈ V
32a1i 11 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∀𝑤 ∈ dom 𝐹(𝐹𝑤) ∈ V)
4 simpr 485 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
5 rlimclim1.3 . . . . . . . . 9 (𝜑𝐹𝑟 𝐴)
6 rlimf 15380 . . . . . . . . 9 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐹:dom 𝐹⟶ℂ)
87adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐹:dom 𝐹⟶ℂ)
98feqmptd 6908 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹 = (𝑤 ∈ dom 𝐹 ↦ (𝐹𝑤)))
105adantr 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹𝑟 𝐴)
119, 10eqbrtrrd 5128 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝑤 ∈ dom 𝐹 ↦ (𝐹𝑤)) ⇝𝑟 𝐴)
123, 4, 11rlimi 15392 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
13 rlimclim1.2 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1413ad2antrr 724 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℤ)
15 flcl 13697 . . . . . . . . . 10 (𝑧 ∈ ℝ → (⌊‘𝑧) ∈ ℤ)
1615peano2zd 12607 . . . . . . . . 9 (𝑧 ∈ ℝ → ((⌊‘𝑧) + 1) ∈ ℤ)
1716ad2antrl 726 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℤ)
1817, 14ifcld 4531 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ)
1914zred 12604 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℝ)
2017zred 12604 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℝ)
21 max1 13101 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑧) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
2219, 20, 21syl2anc 584 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
23 eluz2 12766 . . . . . . 7 (if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)))
2414, 18, 22, 23syl3anbrc 1343 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ𝑀))
25 rlimclim1.1 . . . . . 6 𝑍 = (ℤ𝑀)
2624, 25eleqtrrdi 2849 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍)
27 simplrl 775 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ∈ ℝ)
2816zred 12604 . . . . . . . . . 10 (𝑧 ∈ ℝ → ((⌊‘𝑧) + 1) ∈ ℝ)
2927, 28syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ∈ ℝ)
3019adantr 481 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑀 ∈ ℝ)
3129, 30ifcld 4531 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℝ)
32 eluzelre 12771 . . . . . . . . 9 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → 𝑘 ∈ ℝ)
3332adantl 482 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ ℝ)
34 fllep1 13703 . . . . . . . . . 10 (𝑧 ∈ ℝ → 𝑧 ≤ ((⌊‘𝑧) + 1))
3527, 34syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ ((⌊‘𝑧) + 1))
36 max2 13103 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑧) + 1) ∈ ℝ) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
3730, 29, 36syl2anc 584 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
3827, 29, 31, 35, 37letrd 11309 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
39 eluzle 12773 . . . . . . . . 9 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘)
4039adantl 482 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘)
4127, 31, 33, 38, 40letrd 11309 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧𝑘)
42 breq2 5108 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑧𝑤𝑧𝑘))
4342imbrov2fvoveq 7379 . . . . . . . 8 (𝑤 = 𝑘 → ((𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦) ↔ (𝑧𝑘 → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦)))
44 simplrr 776 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
45 rlimclim1.4 . . . . . . . . . 10 (𝜑𝑍 ⊆ dom 𝐹)
4645ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑍 ⊆ dom 𝐹)
4725uztrn2 12779 . . . . . . . . . 10 ((if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘𝑍)
4826, 47sylan 580 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘𝑍)
4946, 48sseldd 3944 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ dom 𝐹)
5043, 44, 49rspcdva 3581 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (𝑧𝑘 → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
5141, 50mpd 15 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5251ralrimiva 3142 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
53 fveq2 6840 . . . . . . 7 (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (ℤ𝑗) = (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)))
5453raleqdv 3312 . . . . . 6 (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
5554rspcev 3580 . . . . 5 ((if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5626, 52, 55syl2anc 584 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5712, 56rexlimddv 3157 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5857ralrimiva 3142 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
59 rlimpm 15379 . . . 4 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
605, 59syl 17 . . 3 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
61 eqidd 2737 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
62 rlimcl 15382 . . . 4 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
635, 62syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
6445sselda 3943 . . . 4 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
657ffvelcdmda 7032 . . . 4 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℂ)
6664, 65syldan 591 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
6725, 13, 60, 61, 63, 66clim2c 15384 . 2 (𝜑 → (𝐹𝐴 ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
6858, 67mpbird 256 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3063  wrex 3072  Vcvv 3444  wss 3909  ifcif 4485   class class class wbr 5104  cmpt 5187  dom cdm 5632  wf 6490  cfv 6494  (class class class)co 7354  pm cpm 8763  cc 11046  cr 11047  1c1 11049   + caddc 11051   < clt 11186  cle 11187  cmin 11382  cz 12496  cuz 12760  +crp 12912  cfl 13692  abscabs 15116  cli 15363  𝑟 crli 15364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125  ax-pre-sup 11126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7800  df-2nd 7919  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-er 8645  df-pm 8765  df-en 8881  df-dom 8882  df-sdom 8883  df-sup 9375  df-inf 9376  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-nn 12151  df-n0 12411  df-z 12497  df-uz 12761  df-fl 13694  df-clim 15367  df-rlim 15368
This theorem is referenced by:  rlimclim  15425  dchrisumlema  26832
  Copyright terms: Public domain W3C validator