MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim1 Structured version   Visualization version   GIF version

Theorem rlimclim1 15547
Description: Forward direction of rlimclim 15548. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim1.1 𝑍 = (ℤ𝑀)
rlimclim1.2 (𝜑𝑀 ∈ ℤ)
rlimclim1.3 (𝜑𝐹𝑟 𝐴)
rlimclim1.4 (𝜑𝑍 ⊆ dom 𝐹)
Assertion
Ref Expression
rlimclim1 (𝜑𝐹𝐴)

Proof of Theorem rlimclim1
Dummy variables 𝑗 𝑘 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6914 . . . . . . 7 (𝐹𝑤) ∈ V
21rgenw 3055 . . . . . 6 𝑤 ∈ dom 𝐹(𝐹𝑤) ∈ V
32a1i 11 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∀𝑤 ∈ dom 𝐹(𝐹𝑤) ∈ V)
4 simpr 483 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
5 rlimclim1.3 . . . . . . . . 9 (𝜑𝐹𝑟 𝐴)
6 rlimf 15503 . . . . . . . . 9 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
75, 6syl 17 . . . . . . . 8 (𝜑𝐹:dom 𝐹⟶ℂ)
87adantr 479 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → 𝐹:dom 𝐹⟶ℂ)
98feqmptd 6971 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹 = (𝑤 ∈ dom 𝐹 ↦ (𝐹𝑤)))
105adantr 479 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹𝑟 𝐴)
119, 10eqbrtrrd 5177 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (𝑤 ∈ dom 𝐹 ↦ (𝐹𝑤)) ⇝𝑟 𝐴)
123, 4, 11rlimi 15515 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
13 rlimclim1.2 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1413ad2antrr 724 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℤ)
15 flcl 13815 . . . . . . . . . 10 (𝑧 ∈ ℝ → (⌊‘𝑧) ∈ ℤ)
1615peano2zd 12721 . . . . . . . . 9 (𝑧 ∈ ℝ → ((⌊‘𝑧) + 1) ∈ ℤ)
1716ad2antrl 726 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℤ)
1817, 14ifcld 4579 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ)
1914zred 12718 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ∈ ℝ)
2017zred 12718 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ((⌊‘𝑧) + 1) ∈ ℝ)
21 max1 13218 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑧) + 1) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
2219, 20, 21syl2anc 582 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
23 eluz2 12880 . . . . . . 7 (if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℤ ∧ 𝑀 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)))
2414, 18, 22, 23syl3anbrc 1340 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ (ℤ𝑀))
25 rlimclim1.1 . . . . . 6 𝑍 = (ℤ𝑀)
2624, 25eleqtrrdi 2837 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍)
27 simplrl 775 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ∈ ℝ)
2816zred 12718 . . . . . . . . . 10 (𝑧 ∈ ℝ → ((⌊‘𝑧) + 1) ∈ ℝ)
2927, 28syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ∈ ℝ)
3019adantr 479 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑀 ∈ ℝ)
3129, 30ifcld 4579 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ ℝ)
32 eluzelre 12885 . . . . . . . . 9 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → 𝑘 ∈ ℝ)
3332adantl 480 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ ℝ)
34 fllep1 13821 . . . . . . . . . 10 (𝑧 ∈ ℝ → 𝑧 ≤ ((⌊‘𝑧) + 1))
3527, 34syl 17 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ ((⌊‘𝑧) + 1))
36 max2 13220 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ ((⌊‘𝑧) + 1) ∈ ℝ) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
3730, 29, 36syl2anc 582 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ((⌊‘𝑧) + 1) ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
3827, 29, 31, 35, 37letrd 11421 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧 ≤ if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))
39 eluzle 12887 . . . . . . . . 9 (𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘)
4039adantl 480 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ≤ 𝑘)
4127, 31, 33, 38, 40letrd 11421 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑧𝑘)
42 breq2 5157 . . . . . . . . 9 (𝑤 = 𝑘 → (𝑧𝑤𝑧𝑘))
4342imbrov2fvoveq 7449 . . . . . . . 8 (𝑤 = 𝑘 → ((𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦) ↔ (𝑧𝑘 → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦)))
44 simplrr 776 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
45 rlimclim1.4 . . . . . . . . . 10 (𝜑𝑍 ⊆ dom 𝐹)
4645ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑍 ⊆ dom 𝐹)
4725uztrn2 12893 . . . . . . . . . 10 ((if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘𝑍)
4826, 47sylan 578 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘𝑍)
4946, 48sseldd 3980 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → 𝑘 ∈ dom 𝐹)
5043, 44, 49rspcdva 3609 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (𝑧𝑘 → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
5141, 50mpd 15 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) ∧ 𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5251ralrimiva 3136 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
53 fveq2 6901 . . . . . . 7 (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (ℤ𝑗) = (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀)))
5453raleqdv 3315 . . . . . 6 (𝑗 = if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 ↔ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
5554rspcev 3608 . . . . 5 ((if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘if(𝑀 ≤ ((⌊‘𝑧) + 1), ((⌊‘𝑧) + 1), 𝑀))(abs‘((𝐹𝑘) − 𝐴)) < 𝑦) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5626, 52, 55syl2anc 582 . . . 4 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑧 ∈ ℝ ∧ ∀𝑤 ∈ dom 𝐹(𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5712, 56rexlimddv 3151 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
5857ralrimiva 3136 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
59 rlimpm 15502 . . . 4 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
605, 59syl 17 . . 3 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
61 eqidd 2727 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
62 rlimcl 15505 . . . 4 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
635, 62syl 17 . . 3 (𝜑𝐴 ∈ ℂ)
6445sselda 3979 . . . 4 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
657ffvelcdmda 7098 . . . 4 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℂ)
6664, 65syldan 589 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
6725, 13, 60, 61, 63, 66clim2c 15507 . 2 (𝜑 → (𝐹𝐴 ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦))
6858, 67mpbird 256 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  Vcvv 3462  wss 3947  ifcif 4533   class class class wbr 5153  cmpt 5236  dom cdm 5682  wf 6550  cfv 6554  (class class class)co 7424  pm cpm 8856  cc 11156  cr 11157  1c1 11159   + caddc 11161   < clt 11298  cle 11299  cmin 11494  cz 12610  cuz 12874  +crp 13028  cfl 13810  abscabs 15239  cli 15486  𝑟 crli 15487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fl 13812  df-clim 15490  df-rlim 15491
This theorem is referenced by:  rlimclim  15548  dchrisumlema  27517
  Copyright terms: Public domain W3C validator