Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnc Structured version   Visualization version   GIF version

Theorem ftc1cnnc 35129
Description: Choice-free proof of ftc1cn 24646. (Contributed by Brendan Leahy, 20-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cnnc.a (𝜑𝐴 ∈ ℝ)
ftc1cnnc.b (𝜑𝐵 ∈ ℝ)
ftc1cnnc.le (𝜑𝐴𝐵)
ftc1cnnc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cnnc.i (𝜑𝐹 ∈ 𝐿1)
Assertion
Ref Expression
ftc1cnnc (𝜑 → (ℝ D 𝐺) = 𝐹)
Distinct variable groups:   𝑥,𝑡,𝐴   𝑥,𝐵,𝑡   𝑥,𝐹,𝑡   𝜑,𝑥,𝑡
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1cnnc
Dummy variables 𝑦 𝑧 𝑠 𝑢 𝑣 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvf 24510 . . . . 5 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
21a1i 11 . . . 4 (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ)
32ffund 6491 . . 3 (𝜑 → Fun (ℝ D 𝐺))
4 ax-resscn 10583 . . . . . . 7 ℝ ⊆ ℂ
54a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
6 ftc1cnnc.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
7 ftc1cnnc.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
8 ftc1cnnc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 ftc1cnnc.le . . . . . . 7 (𝜑𝐴𝐵)
10 ssidd 3938 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
11 ioossre 12786 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
1211a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
13 ftc1cnnc.i . . . . . . 7 (𝜑𝐹 ∈ 𝐿1)
14 ftc1cnnc.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
15 cncff 23498 . . . . . . . 8 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
1614, 15syl 17 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
176, 7, 8, 9, 10, 12, 13, 16ftc1lem2 24639 . . . . . 6 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
18 iccssre 12807 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
197, 8, 18syl2anc 587 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
20 eqid 2798 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120tgioo2 23408 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
225, 17, 19, 21, 20dvbssntr 24503 . . . . 5 (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
23 iccntr 23426 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
247, 8, 23syl2anc 587 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2522, 24sseqtrd 3955 . . . 4 (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵))
26 retop 23367 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
2721, 26eqeltrri 2887 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t ℝ) ∈ Top
2827a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t ℝ) ∈ Top)
2919adantr 484 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
30 iooretop 23371 . . . . . . . . . 10 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
3130, 21eleqtri 2888 . . . . . . . . 9 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
3231a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
33 ioossicc 12811 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3433a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
35 uniretop 23368 . . . . . . . . . 10 ℝ = (topGen‘ran (,))
3621unieqi 4813 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3735, 36eqtri 2821 . . . . . . . . 9 ℝ = ((TopOpen‘ℂfld) ↾t ℝ)
3837ssntr 21663 . . . . . . . 8 (((((TopOpen‘ℂfld) ↾t ℝ) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ) ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
3928, 29, 32, 34, 38syl22anc 837 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
40 simpr 488 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴(,)𝐵))
4139, 40sseldd 3916 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
4216ffvelrnda 6828 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
43 cnxmet 23378 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
4411, 4sstri 3924 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℂ
45 xmetres2 22968 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)))
4643, 44, 45mp2an 691 . . . . . . . . . . 11 ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵))
4746a1i 11 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)))
4843a1i 11 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
49 ssid 3937 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
50 eqid 2798 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5120cnfldtopon 23388 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
5251toponrestid 21526 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
5320, 50, 52cncfcn 23515 . . . . . . . . . . . . . . 15 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
5444, 49, 53mp2an 691 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
5514, 54eleqtrdi 2900 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
56 resttopon 21766 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
5751, 44, 56mp2an 691 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))
5857toponunii 21521 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5958eleq2i 2881 . . . . . . . . . . . . . 14 (𝑐 ∈ (𝐴(,)𝐵) ↔ 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
6059biimpi 219 . . . . . . . . . . . . 13 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
61 eqid 2798 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
6261cncnpi 21883 . . . . . . . . . . . . 13 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐))
6355, 60, 62syl2an 598 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐))
64 eqid 2798 . . . . . . . . . . . . . . . 16 ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) = ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))
6520cnfldtopn 23387 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
66 eqid 2798 . . . . . . . . . . . . . . . 16 (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))))
6764, 65, 66metrest 23131 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))))
6843, 44, 67mp2an 691 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))))
6968oveq1i 7145 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))
7069fveq1i 6646 . . . . . . . . . . . 12 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐) = (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐)
7163, 70eleqtrdi 2900 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐))
7271adantr 484 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐))
73 simpr 488 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
7466, 65metcnpi2 23152 . . . . . . . . . 10 (((((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐) ∧ 𝑤 ∈ ℝ+)) → ∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤))
7547, 48, 72, 73, 74syl22anc 837 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤))
76 simpr 488 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑢 ∈ (𝐴(,)𝐵))
77 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴(,)𝐵))
7876, 77ovresd 7295 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) = (𝑢(abs ∘ − )𝑐))
79 elioore 12756 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ ℝ)
8079recnd 10658 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ ℂ)
8144sseli 3911 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℂ)
8281ad3antlr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ℂ)
83 eqid 2798 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
8483cnmetdval 23376 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑢(abs ∘ − )𝑐) = (abs‘(𝑢𝑐)))
8580, 82, 84syl2an2 685 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢(abs ∘ − )𝑐) = (abs‘(𝑢𝑐)))
8678, 85eqtrd 2833 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) = (abs‘(𝑢𝑐)))
8786breq1d 5040 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → ((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 ↔ (abs‘(𝑢𝑐)) < 𝑣))
8816ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
8988ffvelrnda 6828 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑢) ∈ ℂ)
9042ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
9183cnmetdval 23376 . . . . . . . . . . . . . . . 16 (((𝐹𝑢) ∈ ℂ ∧ (𝐹𝑐) ∈ ℂ) → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) = (abs‘((𝐹𝑢) − (𝐹𝑐))))
9289, 90, 91syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) = (abs‘((𝐹𝑢) − (𝐹𝑐))))
9392breq1d 5040 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤 ↔ (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))
9487, 93imbi12d 348 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) ↔ ((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)))
9594ralbidva 3161 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) ↔ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)))
96 simprll 778 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}))
97 eldifsni 4683 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → 𝑧𝑐)
9896, 97syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧𝑐)
9919ssdifssd 4070 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℝ)
10099sselda 3915 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → 𝑧 ∈ ℝ)
101100ad2ant2r 746 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → 𝑧 ∈ ℝ)
102101ad2ant2r 746 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ ℝ)
103 elioore 12756 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℝ)
104103ad3antlr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ ℝ)
105102, 104lttri2d 10768 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (𝑧𝑐 ↔ (𝑧 < 𝑐𝑐 < 𝑧)))
106105biimpa 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧𝑐) → (𝑧 < 𝑐𝑐 < 𝑧))
107 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
108107oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑧 → ((𝐺𝑠) − (𝐺𝑐)) = ((𝐺𝑧) − (𝐺𝑐)))
109 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑧 → (𝑠𝑐) = (𝑧𝑐))
110108, 109oveq12d 7153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 = 𝑧 → (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
111 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) = (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))
112 ovex 7168 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) ∈ V
113110, 111, 112fvmpt 6745 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
114113ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
115114ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
11617ad4antr 731 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
117 eldifi 4054 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → 𝑧 ∈ (𝐴[,]𝐵))
118117ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → 𝑧 ∈ (𝐴[,]𝐵))
119118ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ (𝐴[,]𝐵))
120116, 119ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (𝐺𝑧) ∈ ℂ)
12133sseli 3911 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
12217ffvelrnda 6828 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐺𝑐) ∈ ℂ)
123121, 122sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐺𝑐) ∈ ℂ)
124123ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (𝐺𝑐) ∈ ℂ)
125102adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ ℝ)
126125recnd 10658 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ ℂ)
12781ad4antlr 732 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑐 ∈ ℂ)
128 ltne 10726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℝ ∧ 𝑧 < 𝑐) → 𝑐𝑧)
129128necomd 3042 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ 𝑧 < 𝑐) → 𝑧𝑐)
130102, 129sylan 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧𝑐)
131120, 124, 126, 127, 130div2subd 11455 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) = (((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)))
132115, 131eqtrd 2833 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)))
133132fvoveq1d 7157 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)) − (𝐹𝑐))))
1347ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐴 ∈ ℝ)
1358ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐵 ∈ ℝ)
1369ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐴𝐵)
13714ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
13813ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐹 ∈ 𝐿1)
139 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ (𝐴(,)𝐵))
140 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑤 ∈ ℝ+)
141 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑣 ∈ ℝ+)
142 simprlr 779 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))
143 fvoveq1 7158 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = 𝑦 → (abs‘(𝑢𝑐)) = (abs‘(𝑦𝑐)))
144143breq1d 5040 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑦 → ((abs‘(𝑢𝑐)) < 𝑣 ↔ (abs‘(𝑦𝑐)) < 𝑣))
145144imbrov2fvoveq 7160 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑦 → (((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) ↔ ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤)))
146145rspccva 3570 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤))
147142, 146sylan 583 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤))
14896, 117syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ (𝐴[,]𝐵))
149 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑧𝑐)) < 𝑣)
150121ad3antlr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ (𝐴[,]𝐵))
151103recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℂ)
152151subidd 10974 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ (𝐴(,)𝐵) → (𝑐𝑐) = 0)
153152abs00bd 14643 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ (𝐴(,)𝐵) → (abs‘(𝑐𝑐)) = 0)
154153ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑐𝑐)) = 0)
155141rpgt0d 12422 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 0 < 𝑣)
156154, 155eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑐𝑐)) < 𝑣)
1576, 134, 135, 136, 137, 138, 139, 111, 140, 141, 147, 148, 149, 150, 156ftc1cnnclem 35128 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘((((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)) − (𝐹𝑐))) < 𝑤)
158133, 157eqbrtrd 5052 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
159113fvoveq1d 7157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
160159ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
161160ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
1626, 134, 135, 136, 137, 138, 139, 111, 140, 141, 147, 150, 156, 148, 149ftc1cnnclem 35128 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))) < 𝑤)
163161, 162eqbrtrd 5052 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
164158, 163jaodan 955 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ (𝑧 < 𝑐𝑐 < 𝑧)) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
165106, 164syldan 594 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
16698, 165mpdan 686 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
167166expr 460 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → ((abs‘(𝑧𝑐)) < 𝑣 → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
168167adantld 494 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → ((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
169168expr 460 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → (∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) → ((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
170169ralrimdva 3154 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
17195, 170sylbid 243 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
172171anassrs 471 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ ℝ+) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
173172reximdva 3233 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → (∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∃𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
17475, 173mpd 15 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
175174ralrimiva 3149 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
17617adantr 484 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
17719, 4sstrdi 3927 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
178177adantr 484 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℂ)
179121adantl 485 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
180176, 178, 179dvlem 24499 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)) ∈ ℂ)
181180fmpttd 6856 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))):((𝐴[,]𝐵) ∖ {𝑐})⟶ℂ)
182177ssdifssd 4070 . . . . . . . . 9 (𝜑 → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℂ)
183182adantr 484 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℂ)
18481adantl 485 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ℂ)
185181, 183, 184ellimc3 24482 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐) ↔ ((𝐹𝑐) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))))
18642, 175, 185mpbir2and 712 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))
187 eqid 2798 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
188187, 20, 111, 5, 17, 19eldv 24501 . . . . . . 7 (𝜑 → (𝑐(ℝ D 𝐺)(𝐹𝑐) ↔ (𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)) ∧ (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))))
189188adantr 484 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝑐(ℝ D 𝐺)(𝐹𝑐) ↔ (𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)) ∧ (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))))
19041, 186, 189mpbir2and 712 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐(ℝ D 𝐺)(𝐹𝑐))
191 vex 3444 . . . . . 6 𝑐 ∈ V
192 fvex 6658 . . . . . 6 (𝐹𝑐) ∈ V
193191, 192breldm 5741 . . . . 5 (𝑐(ℝ D 𝐺)(𝐹𝑐) → 𝑐 ∈ dom (ℝ D 𝐺))
194190, 193syl 17 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ dom (ℝ D 𝐺))
19525, 194eqelssd 3936 . . 3 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
196 df-fn 6327 . . 3 ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)))
1973, 195, 196sylanbrc 586 . 2 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
19816ffnd 6488 . 2 (𝜑𝐹 Fn (𝐴(,)𝐵))
1993adantr 484 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺))
200 funbrfv 6691 . . 3 (Fun (ℝ D 𝐺) → (𝑐(ℝ D 𝐺)(𝐹𝑐) → ((ℝ D 𝐺)‘𝑐) = (𝐹𝑐)))
201199, 190, 200sylc 65 . 2 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑐) = (𝐹𝑐))
202197, 198, 201eqfnfvd 6782 1 (𝜑 → (ℝ D 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cdif 3878  wss 3881  {csn 4525   cuni 4800   class class class wbr 5030  cmpt 5110   × cxp 5517  dom cdm 5519  ran crn 5520  cres 5521  ccom 5523  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  +crp 12377  (,)cioo 12726  [,]cicc 12729  abscabs 14585  t crest 16686  TopOpenctopn 16687  topGenctg 16703  ∞Metcxmet 20076  MetOpencmopn 20081  fldccnfld 20091  Topctop 21498  TopOnctopon 21515  intcnt 21622   Cn ccn 21829   CnP ccnp 21830  cnccncf 23481  𝐿1cibl 24221  citg 24222   lim climc 24465   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-symdif 4169  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-itg 24227  df-0p 24274  df-limc 24469  df-dv 24470
This theorem is referenced by:  ftc2nc  35139
  Copyright terms: Public domain W3C validator