Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnc Structured version   Visualization version   GIF version

Theorem ftc1cnnc 37693
Description: Choice-free proof of ftc1cn 25957. (Contributed by Brendan Leahy, 20-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cnnc.a (𝜑𝐴 ∈ ℝ)
ftc1cnnc.b (𝜑𝐵 ∈ ℝ)
ftc1cnnc.le (𝜑𝐴𝐵)
ftc1cnnc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cnnc.i (𝜑𝐹 ∈ 𝐿1)
Assertion
Ref Expression
ftc1cnnc (𝜑 → (ℝ D 𝐺) = 𝐹)
Distinct variable groups:   𝑥,𝑡,𝐴   𝑥,𝐵,𝑡   𝑥,𝐹,𝑡   𝜑,𝑥,𝑡
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1cnnc
Dummy variables 𝑦 𝑧 𝑠 𝑢 𝑣 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvf 25815 . . . . 5 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
21a1i 11 . . . 4 (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ)
32ffund 6695 . . 3 (𝜑 → Fun (ℝ D 𝐺))
4 ax-resscn 11132 . . . . . . 7 ℝ ⊆ ℂ
54a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
6 ftc1cnnc.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
7 ftc1cnnc.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
8 ftc1cnnc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 ftc1cnnc.le . . . . . . 7 (𝜑𝐴𝐵)
10 ssidd 3973 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
11 ioossre 13375 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
1211a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
13 ftc1cnnc.i . . . . . . 7 (𝜑𝐹 ∈ 𝐿1)
14 ftc1cnnc.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
15 cncff 24793 . . . . . . . 8 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
1614, 15syl 17 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
176, 7, 8, 9, 10, 12, 13, 16ftc1lem2 25950 . . . . . 6 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
18 iccssre 13397 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
197, 8, 18syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
20 tgioo4 24700 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
21 eqid 2730 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
225, 17, 19, 20, 21dvbssntr 25808 . . . . 5 (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
23 iccntr 24717 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
247, 8, 23syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2522, 24sseqtrd 3986 . . . 4 (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵))
26 retop 24656 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
2720, 26eqeltrri 2826 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t ℝ) ∈ Top
2827a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t ℝ) ∈ Top)
2919adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
30 iooretop 24660 . . . . . . . . . 10 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
3130, 20eleqtri 2827 . . . . . . . . 9 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
3231a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
33 ioossicc 13401 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3433a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
35 uniretop 24657 . . . . . . . . . 10 ℝ = (topGen‘ran (,))
3620unieqi 4886 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3735, 36eqtri 2753 . . . . . . . . 9 ℝ = ((TopOpen‘ℂfld) ↾t ℝ)
3837ssntr 22952 . . . . . . . 8 (((((TopOpen‘ℂfld) ↾t ℝ) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ) ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
3928, 29, 32, 34, 38syl22anc 838 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
40 simpr 484 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴(,)𝐵))
4139, 40sseldd 3950 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
4216ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
43 cnxmet 24667 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
4411, 4sstri 3959 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℂ
45 xmetres2 24256 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)))
4643, 44, 45mp2an 692 . . . . . . . . . . 11 ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵))
4746a1i 11 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)))
4843a1i 11 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
49 ssid 3972 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
50 eqid 2730 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5121cnfldtopon 24677 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
5251toponrestid 22815 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
5321, 50, 52cncfcn 24810 . . . . . . . . . . . . . . 15 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
5444, 49, 53mp2an 692 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
5514, 54eleqtrdi 2839 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
56 resttopon 23055 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
5751, 44, 56mp2an 692 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))
5857toponunii 22810 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5958eleq2i 2821 . . . . . . . . . . . . . 14 (𝑐 ∈ (𝐴(,)𝐵) ↔ 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
6059biimpi 216 . . . . . . . . . . . . 13 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
61 eqid 2730 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
6261cncnpi 23172 . . . . . . . . . . . . 13 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐))
6355, 60, 62syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐))
64 eqid 2730 . . . . . . . . . . . . . . . 16 ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) = ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))
6521cnfldtopn 24676 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
66 eqid 2730 . . . . . . . . . . . . . . . 16 (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))))
6764, 65, 66metrest 24419 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))))
6843, 44, 67mp2an 692 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))))
6968oveq1i 7400 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))
7069fveq1i 6862 . . . . . . . . . . . 12 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐) = (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐)
7163, 70eleqtrdi 2839 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐))
7271adantr 480 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐))
73 simpr 484 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
7466, 65metcnpi2 24440 . . . . . . . . . 10 (((((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐) ∧ 𝑤 ∈ ℝ+)) → ∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤))
7547, 48, 72, 73, 74syl22anc 838 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤))
76 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑢 ∈ (𝐴(,)𝐵))
77 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴(,)𝐵))
7876, 77ovresd 7559 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) = (𝑢(abs ∘ − )𝑐))
79 elioore 13343 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ ℝ)
8079recnd 11209 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ ℂ)
8144sseli 3945 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℂ)
8281ad3antlr 731 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ℂ)
83 eqid 2730 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
8483cnmetdval 24665 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑢(abs ∘ − )𝑐) = (abs‘(𝑢𝑐)))
8580, 82, 84syl2an2 686 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢(abs ∘ − )𝑐) = (abs‘(𝑢𝑐)))
8678, 85eqtrd 2765 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) = (abs‘(𝑢𝑐)))
8786breq1d 5120 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → ((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 ↔ (abs‘(𝑢𝑐)) < 𝑣))
8816ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
8988ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑢) ∈ ℂ)
9042ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
9183cnmetdval 24665 . . . . . . . . . . . . . . . 16 (((𝐹𝑢) ∈ ℂ ∧ (𝐹𝑐) ∈ ℂ) → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) = (abs‘((𝐹𝑢) − (𝐹𝑐))))
9289, 90, 91syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) = (abs‘((𝐹𝑢) − (𝐹𝑐))))
9392breq1d 5120 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤 ↔ (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))
9487, 93imbi12d 344 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) ↔ ((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)))
9594ralbidva 3155 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) ↔ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)))
96 simprll 778 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}))
97 eldifsni 4757 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → 𝑧𝑐)
9896, 97syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧𝑐)
9919ssdifssd 4113 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℝ)
10099sselda 3949 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → 𝑧 ∈ ℝ)
101100ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → 𝑧 ∈ ℝ)
102101ad2ant2r 747 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ ℝ)
103 elioore 13343 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℝ)
104103ad3antlr 731 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ ℝ)
105102, 104lttri2d 11320 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (𝑧𝑐 ↔ (𝑧 < 𝑐𝑐 < 𝑧)))
106105biimpa 476 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧𝑐) → (𝑧 < 𝑐𝑐 < 𝑧))
107 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
108107oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑧 → ((𝐺𝑠) − (𝐺𝑐)) = ((𝐺𝑧) − (𝐺𝑐)))
109 oveq1 7397 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑧 → (𝑠𝑐) = (𝑧𝑐))
110108, 109oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 = 𝑧 → (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
111 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) = (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))
112 ovex 7423 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) ∈ V
113110, 111, 112fvmpt 6971 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
114113ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
115114ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
11617ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
117 eldifi 4097 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → 𝑧 ∈ (𝐴[,]𝐵))
118117ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → 𝑧 ∈ (𝐴[,]𝐵))
119118ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ (𝐴[,]𝐵))
120116, 119ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (𝐺𝑧) ∈ ℂ)
12133sseli 3945 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
12217ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐺𝑐) ∈ ℂ)
123121, 122sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐺𝑐) ∈ ℂ)
124123ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (𝐺𝑐) ∈ ℂ)
125102adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ ℝ)
126125recnd 11209 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ ℂ)
12781ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑐 ∈ ℂ)
128 ltne 11278 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℝ ∧ 𝑧 < 𝑐) → 𝑐𝑧)
129128necomd 2981 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ 𝑧 < 𝑐) → 𝑧𝑐)
130102, 129sylan 580 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧𝑐)
131120, 124, 126, 127, 130div2subd 12015 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) = (((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)))
132115, 131eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)))
133132fvoveq1d 7412 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)) − (𝐹𝑐))))
1347ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐴 ∈ ℝ)
1358ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐵 ∈ ℝ)
1369ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐴𝐵)
13714ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
13813ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐹 ∈ 𝐿1)
139 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ (𝐴(,)𝐵))
140 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑤 ∈ ℝ+)
141 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑣 ∈ ℝ+)
142 simprlr 779 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))
143 fvoveq1 7413 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = 𝑦 → (abs‘(𝑢𝑐)) = (abs‘(𝑦𝑐)))
144143breq1d 5120 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑦 → ((abs‘(𝑢𝑐)) < 𝑣 ↔ (abs‘(𝑦𝑐)) < 𝑣))
145144imbrov2fvoveq 7415 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑦 → (((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) ↔ ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤)))
146145rspccva 3590 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤))
147142, 146sylan 580 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤))
14896, 117syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ (𝐴[,]𝐵))
149 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑧𝑐)) < 𝑣)
150121ad3antlr 731 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ (𝐴[,]𝐵))
151103recnd 11209 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℂ)
152151subidd 11528 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ (𝐴(,)𝐵) → (𝑐𝑐) = 0)
153152abs00bd 15264 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ (𝐴(,)𝐵) → (abs‘(𝑐𝑐)) = 0)
154153ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑐𝑐)) = 0)
155141rpgt0d 13005 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 0 < 𝑣)
156154, 155eqbrtrd 5132 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑐𝑐)) < 𝑣)
1576, 134, 135, 136, 137, 138, 139, 111, 140, 141, 147, 148, 149, 150, 156ftc1cnnclem 37692 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘((((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)) − (𝐹𝑐))) < 𝑤)
158133, 157eqbrtrd 5132 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
159113fvoveq1d 7412 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
160159ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
161160ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
1626, 134, 135, 136, 137, 138, 139, 111, 140, 141, 147, 150, 156, 148, 149ftc1cnnclem 37692 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))) < 𝑤)
163161, 162eqbrtrd 5132 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
164158, 163jaodan 959 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ (𝑧 < 𝑐𝑐 < 𝑧)) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
165106, 164syldan 591 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
16698, 165mpdan 687 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
167166expr 456 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → ((abs‘(𝑧𝑐)) < 𝑣 → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
168167adantld 490 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → ((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
169168expr 456 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → (∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) → ((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
170169ralrimdva 3134 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
17195, 170sylbid 240 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
172171anassrs 467 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ ℝ+) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
173172reximdva 3147 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → (∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∃𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
17475, 173mpd 15 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
175174ralrimiva 3126 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
17617adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
17719, 4sstrdi 3962 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
178177adantr 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℂ)
179121adantl 481 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
180176, 178, 179dvlem 25804 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)) ∈ ℂ)
181180fmpttd 7090 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))):((𝐴[,]𝐵) ∖ {𝑐})⟶ℂ)
182177ssdifssd 4113 . . . . . . . . 9 (𝜑 → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℂ)
183182adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℂ)
18481adantl 481 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ℂ)
185181, 183, 184ellimc3 25787 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐) ↔ ((𝐹𝑐) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))))
18642, 175, 185mpbir2and 713 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))
187 eqid 2730 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
188187, 21, 111, 5, 17, 19eldv 25806 . . . . . . 7 (𝜑 → (𝑐(ℝ D 𝐺)(𝐹𝑐) ↔ (𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)) ∧ (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))))
189188adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝑐(ℝ D 𝐺)(𝐹𝑐) ↔ (𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)) ∧ (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))))
19041, 186, 189mpbir2and 713 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐(ℝ D 𝐺)(𝐹𝑐))
191 vex 3454 . . . . . 6 𝑐 ∈ V
192 fvex 6874 . . . . . 6 (𝐹𝑐) ∈ V
193191, 192breldm 5875 . . . . 5 (𝑐(ℝ D 𝐺)(𝐹𝑐) → 𝑐 ∈ dom (ℝ D 𝐺))
194190, 193syl 17 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ dom (ℝ D 𝐺))
19525, 194eqelssd 3971 . . 3 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
196 df-fn 6517 . . 3 ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)))
1973, 195, 196sylanbrc 583 . 2 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
19816ffnd 6692 . 2 (𝜑𝐹 Fn (𝐴(,)𝐵))
1993adantr 480 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺))
200 funbrfv 6912 . . 3 (Fun (ℝ D 𝐺) → (𝑐(ℝ D 𝐺)(𝐹𝑐) → ((ℝ D 𝐺)‘𝑐) = (𝐹𝑐)))
201199, 190, 200sylc 65 . 2 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑐) = (𝐹𝑐))
202197, 198, 201eqfnfvd 7009 1 (𝜑 → (ℝ D 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  wss 3917  {csn 4592   cuni 4874   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  ran crn 5642  cres 5643  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  +crp 12958  (,)cioo 13313  [,]cicc 13316  abscabs 15207  t crest 17390  TopOpenctopn 17391  topGenctg 17407  ∞Metcxmet 21256  MetOpencmopn 21261  fldccnfld 21271  Topctop 22787  TopOnctopon 22804  intcnt 22911   Cn ccn 23118   CnP ccnp 23119  cnccncf 24776  𝐿1cibl 25525  citg 25526   lim climc 25770   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774  df-dv 25775
This theorem is referenced by:  ftc2nc  37703
  Copyright terms: Public domain W3C validator