Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnc Structured version   Visualization version   GIF version

Theorem ftc1cnnc 35586
Description: Choice-free proof of ftc1cn 24940. (Contributed by Brendan Leahy, 20-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cnnc.a (𝜑𝐴 ∈ ℝ)
ftc1cnnc.b (𝜑𝐵 ∈ ℝ)
ftc1cnnc.le (𝜑𝐴𝐵)
ftc1cnnc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cnnc.i (𝜑𝐹 ∈ 𝐿1)
Assertion
Ref Expression
ftc1cnnc (𝜑 → (ℝ D 𝐺) = 𝐹)
Distinct variable groups:   𝑥,𝑡,𝐴   𝑥,𝐵,𝑡   𝑥,𝐹,𝑡   𝜑,𝑥,𝑡
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1cnnc
Dummy variables 𝑦 𝑧 𝑠 𝑢 𝑣 𝑤 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvf 24804 . . . . 5 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
21a1i 11 . . . 4 (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ)
32ffund 6549 . . 3 (𝜑 → Fun (ℝ D 𝐺))
4 ax-resscn 10786 . . . . . . 7 ℝ ⊆ ℂ
54a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
6 ftc1cnnc.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
7 ftc1cnnc.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
8 ftc1cnnc.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 ftc1cnnc.le . . . . . . 7 (𝜑𝐴𝐵)
10 ssidd 3924 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
11 ioossre 12996 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
1211a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
13 ftc1cnnc.i . . . . . . 7 (𝜑𝐹 ∈ 𝐿1)
14 ftc1cnnc.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
15 cncff 23790 . . . . . . . 8 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
1614, 15syl 17 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
176, 7, 8, 9, 10, 12, 13, 16ftc1lem2 24933 . . . . . 6 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
18 iccssre 13017 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
197, 8, 18syl2anc 587 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
20 eqid 2737 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120tgioo2 23700 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
225, 17, 19, 21, 20dvbssntr 24797 . . . . 5 (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
23 iccntr 23718 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
247, 8, 23syl2anc 587 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2522, 24sseqtrd 3941 . . . 4 (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵))
26 retop 23659 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
2721, 26eqeltrri 2835 . . . . . . . . 9 ((TopOpen‘ℂfld) ↾t ℝ) ∈ Top
2827a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((TopOpen‘ℂfld) ↾t ℝ) ∈ Top)
2919adantr 484 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
30 iooretop 23663 . . . . . . . . . 10 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
3130, 21eleqtri 2836 . . . . . . . . 9 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
3231a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
33 ioossicc 13021 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3433a1i 11 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
35 uniretop 23660 . . . . . . . . . 10 ℝ = (topGen‘ran (,))
3621unieqi 4832 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3735, 36eqtri 2765 . . . . . . . . 9 ℝ = ((TopOpen‘ℂfld) ↾t ℝ)
3837ssntr 21955 . . . . . . . 8 (((((TopOpen‘ℂfld) ↾t ℝ) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ) ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
3928, 29, 32, 34, 38syl22anc 839 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
40 simpr 488 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴(,)𝐵))
4139, 40sseldd 3902 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)))
4216ffvelrnda 6904 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
43 cnxmet 23670 . . . . . . . . . . . 12 (abs ∘ − ) ∈ (∞Met‘ℂ)
4411, 4sstri 3910 . . . . . . . . . . . 12 (𝐴(,)𝐵) ⊆ ℂ
45 xmetres2 23259 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)))
4643, 44, 45mp2an 692 . . . . . . . . . . 11 ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵))
4746a1i 11 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)))
4843a1i 11 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
49 ssid 3923 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
50 eqid 2737 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5120cnfldtopon 23680 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
5251toponrestid 21818 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
5320, 50, 52cncfcn 23807 . . . . . . . . . . . . . . 15 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
5444, 49, 53mp2an 692 . . . . . . . . . . . . . 14 ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
5514, 54eleqtrdi 2848 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
56 resttopon 22058 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
5751, 44, 56mp2an 692 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))
5857toponunii 21813 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5958eleq2i 2829 . . . . . . . . . . . . . 14 (𝑐 ∈ (𝐴(,)𝐵) ↔ 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
6059biimpi 219 . . . . . . . . . . . . 13 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
61 eqid 2737 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
6261cncnpi 22175 . . . . . . . . . . . . 13 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑐 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐))
6355, 60, 62syl2an 599 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐))
64 eqid 2737 . . . . . . . . . . . . . . . 16 ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) = ((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))
6520cnfldtopn 23679 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
66 eqid 2737 . . . . . . . . . . . . . . . 16 (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))))
6764, 65, 66metrest 23422 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))))
6843, 44, 67mp2an 692 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = (MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))))
6968oveq1i 7223 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld)) = ((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))
7069fveq1i 6718 . . . . . . . . . . . 12 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑐) = (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐)
7163, 70eleqtrdi 2848 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐))
7271adantr 484 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐))
73 simpr 488 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
7466, 65metcnpi2 23443 . . . . . . . . . 10 (((((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵))) ∈ (∞Met‘(𝐴(,)𝐵)) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))) CnP (TopOpen‘ℂfld))‘𝑐) ∧ 𝑤 ∈ ℝ+)) → ∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤))
7547, 48, 72, 73, 74syl22anc 839 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤))
76 simpr 488 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑢 ∈ (𝐴(,)𝐵))
77 simpllr 776 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴(,)𝐵))
7876, 77ovresd 7375 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) = (𝑢(abs ∘ − )𝑐))
79 elioore 12965 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ ℝ)
8079recnd 10861 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (𝐴(,)𝐵) → 𝑢 ∈ ℂ)
8144sseli 3896 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℂ)
8281ad3antlr 731 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ℂ)
83 eqid 2737 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
8483cnmetdval 23668 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑢(abs ∘ − )𝑐) = (abs‘(𝑢𝑐)))
8580, 82, 84syl2an2 686 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢(abs ∘ − )𝑐) = (abs‘(𝑢𝑐)))
8678, 85eqtrd 2777 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) = (abs‘(𝑢𝑐)))
8786breq1d 5063 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → ((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 ↔ (abs‘(𝑢𝑐)) < 𝑣))
8816ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
8988ffvelrnda 6904 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑢) ∈ ℂ)
9042ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
9183cnmetdval 23668 . . . . . . . . . . . . . . . 16 (((𝐹𝑢) ∈ ℂ ∧ (𝐹𝑐) ∈ ℂ) → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) = (abs‘((𝐹𝑢) − (𝐹𝑐))))
9289, 90, 91syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) = (abs‘((𝐹𝑢) − (𝐹𝑐))))
9392breq1d 5063 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤 ↔ (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))
9487, 93imbi12d 348 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑢 ∈ (𝐴(,)𝐵)) → (((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) ↔ ((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)))
9594ralbidva 3117 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) ↔ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)))
96 simprll 779 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}))
97 eldifsni 4703 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → 𝑧𝑐)
9896, 97syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧𝑐)
9919ssdifssd 4057 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℝ)
10099sselda 3901 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → 𝑧 ∈ ℝ)
101100ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → 𝑧 ∈ ℝ)
102101ad2ant2r 747 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ ℝ)
103 elioore 12965 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℝ)
104103ad3antlr 731 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ ℝ)
105102, 104lttri2d 10971 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (𝑧𝑐 ↔ (𝑧 < 𝑐𝑐 < 𝑧)))
106105biimpa 480 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧𝑐) → (𝑧 < 𝑐𝑐 < 𝑧))
107 fveq2 6717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = 𝑧 → (𝐺𝑠) = (𝐺𝑧))
108107oveq1d 7228 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑧 → ((𝐺𝑠) − (𝐺𝑐)) = ((𝐺𝑧) − (𝐺𝑐)))
109 oveq1 7220 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = 𝑧 → (𝑠𝑐) = (𝑧𝑐))
110108, 109oveq12d 7231 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 = 𝑧 → (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
111 eqid 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) = (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))
112 ovex 7246 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) ∈ V
113110, 111, 112fvmpt 6818 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
114113ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
115114ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
11617ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
117 eldifi 4041 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → 𝑧 ∈ (𝐴[,]𝐵))
118117ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → 𝑧 ∈ (𝐴[,]𝐵))
119118ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ (𝐴[,]𝐵))
120116, 119ffvelrnd 6905 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (𝐺𝑧) ∈ ℂ)
12133sseli 3896 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
12217ffvelrnda 6904 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑐 ∈ (𝐴[,]𝐵)) → (𝐺𝑐) ∈ ℂ)
123121, 122sylan2 596 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐺𝑐) ∈ ℂ)
124123ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (𝐺𝑐) ∈ ℂ)
125102adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ ℝ)
126125recnd 10861 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧 ∈ ℂ)
12781ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑐 ∈ ℂ)
128 ltne 10929 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℝ ∧ 𝑧 < 𝑐) → 𝑐𝑧)
129128necomd 2996 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ 𝑧 < 𝑐) → 𝑧𝑐)
130102, 129sylan 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → 𝑧𝑐)
131120, 124, 126, 127, 130div2subd 11658 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) = (((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)))
132115, 131eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) = (((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)))
133132fvoveq1d 7235 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)) − (𝐹𝑐))))
1347ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐴 ∈ ℝ)
1358ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐵 ∈ ℝ)
1369ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐴𝐵)
13714ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
13813ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝐹 ∈ 𝐿1)
139 simpllr 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ (𝐴(,)𝐵))
140 simplrl 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑤 ∈ ℝ+)
141 simplrr 778 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑣 ∈ ℝ+)
142 simprlr 780 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))
143 fvoveq1 7236 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑢 = 𝑦 → (abs‘(𝑢𝑐)) = (abs‘(𝑦𝑐)))
144143breq1d 5063 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑦 → ((abs‘(𝑢𝑐)) < 𝑣 ↔ (abs‘(𝑦𝑐)) < 𝑣))
145144imbrov2fvoveq 7238 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑦 → (((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) ↔ ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤)))
146145rspccva 3536 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤))
147142, 146sylan 583 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝑤))
14896, 117syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑧 ∈ (𝐴[,]𝐵))
149 simprr 773 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑧𝑐)) < 𝑣)
150121ad3antlr 731 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 𝑐 ∈ (𝐴[,]𝐵))
151103recnd 10861 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ ℂ)
152151subidd 11177 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 ∈ (𝐴(,)𝐵) → (𝑐𝑐) = 0)
153152abs00bd 14855 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 ∈ (𝐴(,)𝐵) → (abs‘(𝑐𝑐)) = 0)
154153ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑐𝑐)) = 0)
155141rpgt0d 12631 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → 0 < 𝑣)
156154, 155eqbrtrd 5075 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(𝑐𝑐)) < 𝑣)
1576, 134, 135, 136, 137, 138, 139, 111, 140, 141, 147, 148, 149, 150, 156ftc1cnnclem 35585 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘((((𝐺𝑐) − (𝐺𝑧)) / (𝑐𝑧)) − (𝐹𝑐))) < 𝑤)
158133, 157eqbrtrd 5075 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧 < 𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
159113fvoveq1d 7235 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
160159ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
161160ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) = (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))))
1626, 134, 135, 136, 137, 138, 139, 111, 140, 141, 147, 150, 156, 148, 149ftc1cnnclem 35585 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘((((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)) − (𝐹𝑐))) < 𝑤)
163161, 162eqbrtrd 5075 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑐 < 𝑧) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
164158, 163jaodan 958 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ (𝑧 < 𝑐𝑐 < 𝑧)) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
165106, 164syldan 594 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) ∧ 𝑧𝑐) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
16698, 165mpdan 687 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤)) ∧ (abs‘(𝑧𝑐)) < 𝑣)) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)
167166expr 460 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → ((abs‘(𝑧𝑐)) < 𝑣 → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
168167adantld 494 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ∧ ∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤))) → ((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
169168expr 460 . . . . . . . . . . . . 13 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → (∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) → ((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
170169ralrimdva 3110 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((abs‘(𝑢𝑐)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝑐))) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
17195, 170sylbid 243 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
172171anassrs 471 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣 ∈ ℝ+) → (∀𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∀𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
173172reximdva 3193 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → (∃𝑣 ∈ ℝ+𝑢 ∈ (𝐴(,)𝐵)((𝑢((abs ∘ − ) ↾ ((𝐴(,)𝐵) × (𝐴(,)𝐵)))𝑐) < 𝑣 → ((𝐹𝑢)(abs ∘ − )(𝐹𝑐)) < 𝑤) → ∃𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤)))
17475, 173mpd 15 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
175174ralrimiva 3105 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))
17617adantr 484 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝐺:(𝐴[,]𝐵)⟶ℂ)
17719, 4sstrdi 3913 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
178177adantr 484 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐴[,]𝐵) ⊆ ℂ)
179121adantl 485 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
180176, 178, 179dvlem 24793 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴(,)𝐵)) ∧ 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐})) → (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)) ∈ ℂ)
181180fmpttd 6932 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))):((𝐴[,]𝐵) ∖ {𝑐})⟶ℂ)
182177ssdifssd 4057 . . . . . . . . 9 (𝜑 → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℂ)
183182adantr 484 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐴[,]𝐵) ∖ {𝑐}) ⊆ ℂ)
18481adantl 485 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ ℂ)
185181, 183, 184ellimc3 24776 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐) ↔ ((𝐹𝑐) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐})((𝑧𝑐 ∧ (abs‘(𝑧𝑐)) < 𝑣) → (abs‘(((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐)))‘𝑧) − (𝐹𝑐))) < 𝑤))))
18642, 175, 185mpbir2and 713 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))
187 eqid 2737 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℝ) = ((TopOpen‘ℂfld) ↾t ℝ)
188187, 20, 111, 5, 17, 19eldv 24795 . . . . . . 7 (𝜑 → (𝑐(ℝ D 𝐺)(𝐹𝑐) ↔ (𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)) ∧ (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))))
189188adantr 484 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝑐(ℝ D 𝐺)(𝐹𝑐) ↔ (𝑐 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴[,]𝐵)) ∧ (𝐹𝑐) ∈ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑠) − (𝐺𝑐)) / (𝑠𝑐))) lim 𝑐))))
19041, 186, 189mpbir2and 713 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐(ℝ D 𝐺)(𝐹𝑐))
191 vex 3412 . . . . . 6 𝑐 ∈ V
192 fvex 6730 . . . . . 6 (𝐹𝑐) ∈ V
193191, 192breldm 5777 . . . . 5 (𝑐(ℝ D 𝐺)(𝐹𝑐) → 𝑐 ∈ dom (ℝ D 𝐺))
194190, 193syl 17 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ dom (ℝ D 𝐺))
19525, 194eqelssd 3922 . . 3 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
196 df-fn 6383 . . 3 ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)))
1973, 195, 196sylanbrc 586 . 2 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
19816ffnd 6546 . 2 (𝜑𝐹 Fn (𝐴(,)𝐵))
1993adantr 484 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺))
200 funbrfv 6763 . . 3 (Fun (ℝ D 𝐺) → (𝑐(ℝ D 𝐺)(𝐹𝑐) → ((ℝ D 𝐺)‘𝑐) = (𝐹𝑐)))
201199, 190, 200sylc 65 . 2 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑐) = (𝐹𝑐))
202197, 198, 201eqfnfvd 6855 1 (𝜑 → (ℝ D 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  cdif 3863  wss 3866  {csn 4541   cuni 4819   class class class wbr 5053  cmpt 5135   × cxp 5549  dom cdm 5551  ran crn 5552  cres 5553  ccom 5555  Fun wfun 6374   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  +crp 12586  (,)cioo 12935  [,]cicc 12938  abscabs 14797  t crest 16925  TopOpenctopn 16926  topGenctg 16942  ∞Metcxmet 20348  MetOpencmopn 20353  fldccnfld 20363  Topctop 21790  TopOnctopon 21807  intcnt 21914   Cn ccn 22121   CnP ccnp 22122  cnccncf 23773  𝐿1cibl 24514  citg 24515   lim climc 24759   D cdv 24760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-symdif 4157  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-cmp 22284  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-ovol 24361  df-vol 24362  df-mbf 24516  df-itg1 24517  df-itg2 24518  df-ibl 24519  df-itg 24520  df-0p 24567  df-limc 24763  df-dv 24764
This theorem is referenced by:  ftc2nc  35596
  Copyright terms: Public domain W3C validator