MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem4 Structured version   Visualization version   GIF version

Theorem ftc1lem4 25946
Description: Lemma for ftc1 25949. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
ftc1.e (𝜑𝐸 ∈ ℝ+)
ftc1.r (𝜑𝑅 ∈ ℝ+)
ftc1.fc ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
ftc1.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1.x2 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
ftc1.y1 (𝜑𝑌 ∈ (𝐴[,]𝐵))
ftc1.y2 (𝜑 → (abs‘(𝑌𝐶)) < 𝑅)
Assertion
Ref Expression
ftc1lem4 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) < 𝐸)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐶   𝑡,𝐷,𝑥,𝑦,𝑧   𝑦,𝐺,𝑧   𝑡,𝐴,𝑥,𝑦,𝑧   𝑡,𝐵,𝑥,𝑦,𝑧   𝑡,𝑋,𝑥,𝑧   𝑡,𝐸,𝑦   𝑦,𝐻   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝑌,𝑥   𝑡,𝐹,𝑥,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑦,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑧,𝑡)   𝐸(𝑥,𝑧)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑦,𝑧,𝑡)   𝐾(𝑥,𝑦,𝑧,𝑡)   𝐿(𝑡)   𝑋(𝑦)   𝑌(𝑦,𝑧)

Proof of Theorem ftc1lem4
StepHypRef Expression
1 ovexd 7422 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝐶)) ∈ V)
2 ftc1.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
32rexrd 11224 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ*)
4 ftc1.x1 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (𝐴[,]𝐵))
5 ftc1.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
6 elicc2 13372 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
72, 5, 6syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
84, 7mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
98simp2d 1143 . . . . . . . . . . . . . 14 (𝜑𝐴𝑋)
10 iooss1 13341 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
113, 9, 10syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
125rexrd 11224 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
13 ftc1.y1 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ (𝐴[,]𝐵))
14 elicc2 13372 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
152, 5, 14syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
1613, 15mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
1716simp3d 1144 . . . . . . . . . . . . . 14 (𝜑𝑌𝐵)
18 iooss2 13342 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
1912, 17, 18syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
2011, 19sstrd 3957 . . . . . . . . . . . 12 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
21 ftc1.s . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
2220, 21sstrd 3957 . . . . . . . . . . 11 (𝜑 → (𝑋(,)𝑌) ⊆ 𝐷)
2322sselda 3946 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡𝐷)
24 ftc1.g . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
25 ftc1.le . . . . . . . . . . . 12 (𝜑𝐴𝐵)
26 ftc1.d . . . . . . . . . . . 12 (𝜑𝐷 ⊆ ℝ)
27 ftc1.i . . . . . . . . . . . 12 (𝜑𝐹 ∈ 𝐿1)
28 ftc1.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ (𝐴(,)𝐵))
29 ftc1.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
30 ftc1.j . . . . . . . . . . . 12 𝐽 = (𝐿t ℝ)
31 ftc1.k . . . . . . . . . . . 12 𝐾 = (𝐿t 𝐷)
32 ftc1.l . . . . . . . . . . . 12 𝐿 = (TopOpen‘ℂfld)
3324, 2, 5, 25, 21, 26, 27, 28, 29, 30, 31, 32ftc1lem3 25945 . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℂ)
3433ffvelcdmda 7056 . . . . . . . . . 10 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
3523, 34syldan 591 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
36 ioombl 25466 . . . . . . . . . . 11 (𝑋(,)𝑌) ∈ dom vol
3736a1i 11 . . . . . . . . . 10 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
38 fvexd 6873 . . . . . . . . . 10 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ V)
3933feqmptd 6929 . . . . . . . . . . 11 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
4039, 27eqeltrrd 2829 . . . . . . . . . 10 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
4122, 37, 38, 40iblss 25706 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
4221, 28sseldd 3947 . . . . . . . . . . 11 (𝜑𝐶𝐷)
4333, 42ffvelcdmd 7057 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
4443adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝐶) ∈ ℂ)
45 fconstmpt 5700 . . . . . . . . . 10 ((𝑋(,)𝑌) × {(𝐹𝐶)}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝐶))
46 mblvol 25431 . . . . . . . . . . . . 13 ((𝑋(,)𝑌) ∈ dom vol → (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌)))
4736, 46ax-mp 5 . . . . . . . . . . . 12 (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌))
48 ioossicc 13394 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
4948a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌))
50 iccssre 13390 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
512, 5, 50syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5251, 4sseldd 3947 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
5351, 13sseldd 3947 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
54 iccmbl 25467 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ∈ dom vol)
5552, 53, 54syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ∈ dom vol)
56 mblss 25432 . . . . . . . . . . . . . 14 ((𝑋[,]𝑌) ∈ dom vol → (𝑋[,]𝑌) ⊆ ℝ)
5755, 56syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
58 mblvol 25431 . . . . . . . . . . . . . . 15 ((𝑋[,]𝑌) ∈ dom vol → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
5955, 58syl 17 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
60 iccvolcl 25468 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
6152, 53, 60syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
6259, 61eqeltrrd 2829 . . . . . . . . . . . . 13 (𝜑 → (vol*‘(𝑋[,]𝑌)) ∈ ℝ)
63 ovolsscl 25387 . . . . . . . . . . . . 13 (((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ (vol*‘(𝑋[,]𝑌)) ∈ ℝ) → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6449, 57, 62, 63syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6547, 64eqeltrid 2832 . . . . . . . . . . 11 (𝜑 → (vol‘(𝑋(,)𝑌)) ∈ ℝ)
66 iblconst 25719 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℂ) → ((𝑋(,)𝑌) × {(𝐹𝐶)}) ∈ 𝐿1)
6737, 65, 43, 66syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {(𝐹𝐶)}) ∈ 𝐿1)
6845, 67eqeltrrid 2833 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝐶)) ∈ 𝐿1)
6935, 41, 44, 68iblsub 25723 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝐶))) ∈ 𝐿1)
701, 69itgcl 25685 . . . . . . 7 (𝜑 → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 ∈ ℂ)
7170adantr 480 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 ∈ ℂ)
7253, 52resubcld 11606 . . . . . . . 8 (𝜑 → (𝑌𝑋) ∈ ℝ)
7372adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
7473recnd 11202 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℂ)
7552, 53posdifd 11765 . . . . . . . 8 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
7675biimpa 476 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
7776gt0ne0d 11742 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ≠ 0)
7871, 74, 77divcld 11958 . . . . 5 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) ∈ ℂ)
7943adantr 480 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝐹𝐶) ∈ ℂ)
80 ltle 11262 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 < 𝑌𝑋𝑌))
8152, 53, 80syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋 < 𝑌𝑋𝑌))
8281imp 406 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → 𝑋𝑌)
8324, 2, 5, 25, 21, 26, 27, 33, 4, 13ftc1lem1 25942 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8482, 83syldan 591 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8535, 44npcand 11537 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) = (𝐹𝑡))
8685itgeq2dv 25683 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) d𝑡 = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8735, 44subcld 11533 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝐶)) ∈ ℂ)
8887, 69, 44, 68itgadd 25726 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
8986, 88eqtr3d 2766 . . . . . . . . 9 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
9089adantr 480 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
91 itgconst 25720 . . . . . . . . . . . 12 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℂ) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9237, 65, 43, 91syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9392adantr 480 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9452adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑋 ∈ ℝ)
9553adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑌 ∈ ℝ)
96 ovolioo 25469 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
9794, 95, 82, 96syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
9847, 97eqtrid 2776 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → (vol‘(𝑋(,)𝑌)) = (𝑌𝑋))
9998oveq2d 7403 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))) = ((𝐹𝐶) · (𝑌𝑋)))
10093, 99eqtrd 2764 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (𝑌𝑋)))
101100oveq2d 7403 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))))
10284, 90, 1013eqtrd 2768 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))))
103102oveq1d 7402 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))) / (𝑌𝑋)))
10479, 74mulcld 11194 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐹𝐶) · (𝑌𝑋)) ∈ ℂ)
10571, 104, 74, 77divdird 11996 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋))))
10679, 74, 77divcan4d 11964 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋)) = (𝐹𝐶))
107106oveq2d 7403 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋))) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)))
108103, 105, 1073eqtrd 2768 . . . . 5 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)))
10978, 79, 108mvrraddd 11590 . . . 4 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)))
110109fveq2d 6862 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) = (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋))))
11171, 74, 77absdivd 15424 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (abs‘(𝑌𝑋))))
112 0re 11176 . . . . . . 7 0 ∈ ℝ
113 ltle 11262 . . . . . . 7 ((0 ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
114112, 73, 113sylancr 587 . . . . . 6 ((𝜑𝑋 < 𝑌) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
11576, 114mpd 15 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (𝑌𝑋))
11673, 115absidd 15389 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘(𝑌𝑋)) = (𝑌𝑋))
117116oveq2d 7403 . . 3 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (abs‘(𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)))
118110, 111, 1173eqtrd 2768 . 2 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)))
11970abscld 15405 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
120119adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
12187abscld 15405 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝐶))) ∈ ℝ)
1221, 69iblabs 25730 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ 𝐿1)
123121, 122itgrecl 25699 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 ∈ ℝ)
124123adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 ∈ ℝ)
125 ftc1.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
126125rpred 12995 . . . . . 6 (𝜑𝐸 ∈ ℝ)
12772, 126remulcld 11204 . . . . 5 (𝜑 → ((𝑌𝑋) · 𝐸) ∈ ℝ)
128127adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → ((𝑌𝑋) · 𝐸) ∈ ℝ)
12987, 69itgabs 25736 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)
130129adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)
13176, 98breqtrrd 5135 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (vol‘(𝑋(,)𝑌)))
132126adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℝ)
133 fconstmpt 5700 . . . . . . . . . 10 ((𝑋(,)𝑌) × {𝐸}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸)
134126recnd 11202 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
135 iblconst 25719 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
13637, 65, 134, 135syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
137133, 136eqeltrrid 2833 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1)
138132, 137, 121, 122iblsub 25723 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶))))) ∈ 𝐿1)
139138adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶))))) ∈ 𝐿1)
14026, 42sseldd 3947 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
141 ftc1.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
142141rpred 12995 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
143140, 142resubcld 11606 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑅) ∈ ℝ)
144143adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) ∈ ℝ)
14552adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 ∈ ℝ)
14622, 26sstrd 3957 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ ℝ)
147146sselda 3946 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ ℝ)
148 ftc1.x2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
14952, 140, 142absdifltd 15402 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑋𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑋𝑋 < (𝐶 + 𝑅))))
150148, 149mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶𝑅) < 𝑋𝑋 < (𝐶 + 𝑅)))
151150simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑅) < 𝑋)
152151adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) < 𝑋)
153 eliooord 13366 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑡𝑡 < 𝑌))
154153adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑋 < 𝑡𝑡 < 𝑌))
155154simpld 494 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 < 𝑡)
156144, 145, 147, 152, 155lttrd 11335 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) < 𝑡)
15753adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 ∈ ℝ)
158140, 142readdcld 11203 . . . . . . . . . . . . 13 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
159158adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶 + 𝑅) ∈ ℝ)
160154simprd 495 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < 𝑌)
161 ftc1.y2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑌𝐶)) < 𝑅)
16253, 140, 142absdifltd 15402 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑌𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑌𝑌 < (𝐶 + 𝑅))))
163161, 162mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶𝑅) < 𝑌𝑌 < (𝐶 + 𝑅)))
164163simprd 495 . . . . . . . . . . . . 13 (𝜑𝑌 < (𝐶 + 𝑅))
165164adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 < (𝐶 + 𝑅))
166147, 157, 159, 160, 165lttrd 11335 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < (𝐶 + 𝑅))
167140adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℝ)
168142adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑅 ∈ ℝ)
169147, 167, 168absdifltd 15402 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑡𝑡 < (𝐶 + 𝑅))))
170156, 166, 169mpbir2and 713 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘(𝑡𝐶)) < 𝑅)
171 fvoveq1 7410 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘(𝑦𝐶)) = (abs‘(𝑡𝐶)))
172171breq1d 5117 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘(𝑦𝐶)) < 𝑅 ↔ (abs‘(𝑡𝐶)) < 𝑅))
173172imbrov2fvoveq 7412 . . . . . . . . . . 11 (𝑦 = 𝑡 → (((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸) ↔ ((abs‘(𝑡𝐶)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸)))
174 ftc1.fc . . . . . . . . . . . . 13 ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
175174ralrimiva 3125 . . . . . . . . . . . 12 (𝜑 → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
176175adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
177173, 176, 23rspcdva 3589 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝐶)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸))
178170, 177mpd 15 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸)
179 difrp 12991 . . . . . . . . . 10 (((abs‘((𝐹𝑡) − (𝐹𝐶))) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+))
180121, 132, 179syl2anc 584 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+))
181178, 180mpbid 232 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+)
182181adantlr 715 . . . . . . 7 (((𝜑𝑋 < 𝑌) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+)
183131, 139, 182itggt0 25745 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡)
184132, 137, 121, 122itgsub 25727 . . . . . . . 8 (𝜑 → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
185184adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
186 itgconst 25720 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
18737, 65, 134, 186syl3anc 1373 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
188187adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
18998oveq2d 7403 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (vol‘(𝑋(,)𝑌))) = (𝐸 · (𝑌𝑋)))
19072recnd 11202 . . . . . . . . . . 11 (𝜑 → (𝑌𝑋) ∈ ℂ)
191134, 190mulcomd 11195 . . . . . . . . . 10 (𝜑 → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
192191adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
193188, 189, 1923eqtrd 2768 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = ((𝑌𝑋) · 𝐸))
194193oveq1d 7402 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡) = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
195185, 194eqtrd 2764 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
196183, 195breqtrd 5133 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
197123, 127posdifd 11765 . . . . . 6 (𝜑 → (∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸) ↔ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)))
198197biimpar 477 . . . . 5 ((𝜑 ∧ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸))
199196, 198syldan 591 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸))
200120, 124, 128, 130, 199lelttrd 11332 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸))
20171abscld 15405 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
202126adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → 𝐸 ∈ ℝ)
203 ltdivmul 12058 . . . 4 (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ((𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋))) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸)))
204201, 202, 73, 76, 203syl112anc 1376 . . 3 ((𝜑𝑋 < 𝑌) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸)))
205200, 204mpbird 257 . 2 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸)
206118, 205eqbrtrd 5129 1 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  wss 3914  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  +crp 12951  (,)cioo 13306  [,]cicc 13309  abscabs 15200  t crest 17383  TopOpenctopn 17384  fldccnfld 21264   CnP ccnp 23112  vol*covol 25363  volcvol 25364  𝐿1cibl 25518  citg 25519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571
This theorem is referenced by:  ftc1lem5  25947
  Copyright terms: Public domain W3C validator