MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem4 Structured version   Visualization version   GIF version

Theorem ftc1lem4 25203
Description: Lemma for ftc1 25206. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
ftc1.e (𝜑𝐸 ∈ ℝ+)
ftc1.r (𝜑𝑅 ∈ ℝ+)
ftc1.fc ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
ftc1.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1.x2 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
ftc1.y1 (𝜑𝑌 ∈ (𝐴[,]𝐵))
ftc1.y2 (𝜑 → (abs‘(𝑌𝐶)) < 𝑅)
Assertion
Ref Expression
ftc1lem4 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) < 𝐸)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐶   𝑡,𝐷,𝑥,𝑦,𝑧   𝑦,𝐺,𝑧   𝑡,𝐴,𝑥,𝑦,𝑧   𝑡,𝐵,𝑥,𝑦,𝑧   𝑡,𝑋,𝑥,𝑧   𝑡,𝐸,𝑦   𝑦,𝐻   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝑌,𝑥   𝑡,𝐹,𝑥,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑦,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑧,𝑡)   𝐸(𝑥,𝑧)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑦,𝑧,𝑡)   𝐾(𝑥,𝑦,𝑧,𝑡)   𝐿(𝑡)   𝑋(𝑦)   𝑌(𝑦,𝑧)

Proof of Theorem ftc1lem4
StepHypRef Expression
1 ovexd 7310 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝐶)) ∈ V)
2 ftc1.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
32rexrd 11025 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ*)
4 ftc1.x1 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (𝐴[,]𝐵))
5 ftc1.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
6 elicc2 13144 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
72, 5, 6syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
84, 7mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
98simp2d 1142 . . . . . . . . . . . . . 14 (𝜑𝐴𝑋)
10 iooss1 13114 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
113, 9, 10syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
125rexrd 11025 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
13 ftc1.y1 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ (𝐴[,]𝐵))
14 elicc2 13144 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
152, 5, 14syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
1613, 15mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
1716simp3d 1143 . . . . . . . . . . . . . 14 (𝜑𝑌𝐵)
18 iooss2 13115 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
1912, 17, 18syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
2011, 19sstrd 3931 . . . . . . . . . . . 12 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
21 ftc1.s . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
2220, 21sstrd 3931 . . . . . . . . . . 11 (𝜑 → (𝑋(,)𝑌) ⊆ 𝐷)
2322sselda 3921 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡𝐷)
24 ftc1.g . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
25 ftc1.le . . . . . . . . . . . 12 (𝜑𝐴𝐵)
26 ftc1.d . . . . . . . . . . . 12 (𝜑𝐷 ⊆ ℝ)
27 ftc1.i . . . . . . . . . . . 12 (𝜑𝐹 ∈ 𝐿1)
28 ftc1.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ (𝐴(,)𝐵))
29 ftc1.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
30 ftc1.j . . . . . . . . . . . 12 𝐽 = (𝐿t ℝ)
31 ftc1.k . . . . . . . . . . . 12 𝐾 = (𝐿t 𝐷)
32 ftc1.l . . . . . . . . . . . 12 𝐿 = (TopOpen‘ℂfld)
3324, 2, 5, 25, 21, 26, 27, 28, 29, 30, 31, 32ftc1lem3 25202 . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℂ)
3433ffvelrnda 6961 . . . . . . . . . 10 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
3523, 34syldan 591 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
36 ioombl 24729 . . . . . . . . . . 11 (𝑋(,)𝑌) ∈ dom vol
3736a1i 11 . . . . . . . . . 10 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
38 fvexd 6789 . . . . . . . . . 10 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ V)
3933feqmptd 6837 . . . . . . . . . . 11 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
4039, 27eqeltrrd 2840 . . . . . . . . . 10 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
4122, 37, 38, 40iblss 24969 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
4221, 28sseldd 3922 . . . . . . . . . . 11 (𝜑𝐶𝐷)
4333, 42ffvelrnd 6962 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
4443adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝐶) ∈ ℂ)
45 fconstmpt 5649 . . . . . . . . . 10 ((𝑋(,)𝑌) × {(𝐹𝐶)}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝐶))
46 mblvol 24694 . . . . . . . . . . . . 13 ((𝑋(,)𝑌) ∈ dom vol → (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌)))
4736, 46ax-mp 5 . . . . . . . . . . . 12 (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌))
48 ioossicc 13165 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
4948a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌))
50 iccssre 13161 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
512, 5, 50syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5251, 4sseldd 3922 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
5351, 13sseldd 3922 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
54 iccmbl 24730 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ∈ dom vol)
5552, 53, 54syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ∈ dom vol)
56 mblss 24695 . . . . . . . . . . . . . 14 ((𝑋[,]𝑌) ∈ dom vol → (𝑋[,]𝑌) ⊆ ℝ)
5755, 56syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
58 mblvol 24694 . . . . . . . . . . . . . . 15 ((𝑋[,]𝑌) ∈ dom vol → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
5955, 58syl 17 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
60 iccvolcl 24731 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
6152, 53, 60syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
6259, 61eqeltrrd 2840 . . . . . . . . . . . . 13 (𝜑 → (vol*‘(𝑋[,]𝑌)) ∈ ℝ)
63 ovolsscl 24650 . . . . . . . . . . . . 13 (((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ (vol*‘(𝑋[,]𝑌)) ∈ ℝ) → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6449, 57, 62, 63syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6547, 64eqeltrid 2843 . . . . . . . . . . 11 (𝜑 → (vol‘(𝑋(,)𝑌)) ∈ ℝ)
66 iblconst 24982 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℂ) → ((𝑋(,)𝑌) × {(𝐹𝐶)}) ∈ 𝐿1)
6737, 65, 43, 66syl3anc 1370 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {(𝐹𝐶)}) ∈ 𝐿1)
6845, 67eqeltrrid 2844 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝐶)) ∈ 𝐿1)
6935, 41, 44, 68iblsub 24986 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝐶))) ∈ 𝐿1)
701, 69itgcl 24948 . . . . . . 7 (𝜑 → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 ∈ ℂ)
7170adantr 481 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 ∈ ℂ)
7253, 52resubcld 11403 . . . . . . . 8 (𝜑 → (𝑌𝑋) ∈ ℝ)
7372adantr 481 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
7473recnd 11003 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℂ)
7552, 53posdifd 11562 . . . . . . . 8 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
7675biimpa 477 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
7776gt0ne0d 11539 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ≠ 0)
7871, 74, 77divcld 11751 . . . . 5 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) ∈ ℂ)
7943adantr 481 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝐹𝐶) ∈ ℂ)
80 ltle 11063 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 < 𝑌𝑋𝑌))
8152, 53, 80syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋 < 𝑌𝑋𝑌))
8281imp 407 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → 𝑋𝑌)
8324, 2, 5, 25, 21, 26, 27, 33, 4, 13ftc1lem1 25199 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8482, 83syldan 591 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8535, 44npcand 11336 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) = (𝐹𝑡))
8685itgeq2dv 24946 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) d𝑡 = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8735, 44subcld 11332 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝐶)) ∈ ℂ)
8887, 69, 44, 68itgadd 24989 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
8986, 88eqtr3d 2780 . . . . . . . . 9 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
9089adantr 481 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
91 itgconst 24983 . . . . . . . . . . . 12 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℂ) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9237, 65, 43, 91syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9392adantr 481 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9452adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑋 ∈ ℝ)
9553adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑌 ∈ ℝ)
96 ovolioo 24732 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
9794, 95, 82, 96syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
9847, 97eqtrid 2790 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → (vol‘(𝑋(,)𝑌)) = (𝑌𝑋))
9998oveq2d 7291 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))) = ((𝐹𝐶) · (𝑌𝑋)))
10093, 99eqtrd 2778 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (𝑌𝑋)))
101100oveq2d 7291 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))))
10284, 90, 1013eqtrd 2782 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))))
103102oveq1d 7290 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))) / (𝑌𝑋)))
10479, 74mulcld 10995 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐹𝐶) · (𝑌𝑋)) ∈ ℂ)
10571, 104, 74, 77divdird 11789 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋))))
10679, 74, 77divcan4d 11757 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋)) = (𝐹𝐶))
107106oveq2d 7291 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋))) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)))
108103, 105, 1073eqtrd 2782 . . . . 5 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)))
10978, 79, 108mvrraddd 11387 . . . 4 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)))
110109fveq2d 6778 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) = (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋))))
11171, 74, 77absdivd 15167 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (abs‘(𝑌𝑋))))
112 0re 10977 . . . . . . 7 0 ∈ ℝ
113 ltle 11063 . . . . . . 7 ((0 ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
114112, 73, 113sylancr 587 . . . . . 6 ((𝜑𝑋 < 𝑌) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
11576, 114mpd 15 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (𝑌𝑋))
11673, 115absidd 15134 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘(𝑌𝑋)) = (𝑌𝑋))
117116oveq2d 7291 . . 3 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (abs‘(𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)))
118110, 111, 1173eqtrd 2782 . 2 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)))
11970abscld 15148 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
120119adantr 481 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
12187abscld 15148 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝐶))) ∈ ℝ)
1221, 69iblabs 24993 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ 𝐿1)
123121, 122itgrecl 24962 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 ∈ ℝ)
124123adantr 481 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 ∈ ℝ)
125 ftc1.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
126125rpred 12772 . . . . . 6 (𝜑𝐸 ∈ ℝ)
12772, 126remulcld 11005 . . . . 5 (𝜑 → ((𝑌𝑋) · 𝐸) ∈ ℝ)
128127adantr 481 . . . 4 ((𝜑𝑋 < 𝑌) → ((𝑌𝑋) · 𝐸) ∈ ℝ)
12987, 69itgabs 24999 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)
130129adantr 481 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)
13176, 98breqtrrd 5102 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (vol‘(𝑋(,)𝑌)))
132126adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℝ)
133 fconstmpt 5649 . . . . . . . . . 10 ((𝑋(,)𝑌) × {𝐸}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸)
134126recnd 11003 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
135 iblconst 24982 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
13637, 65, 134, 135syl3anc 1370 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
137133, 136eqeltrrid 2844 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1)
138132, 137, 121, 122iblsub 24986 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶))))) ∈ 𝐿1)
139138adantr 481 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶))))) ∈ 𝐿1)
14026, 42sseldd 3922 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
141 ftc1.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
142141rpred 12772 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
143140, 142resubcld 11403 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑅) ∈ ℝ)
144143adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) ∈ ℝ)
14552adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 ∈ ℝ)
14622, 26sstrd 3931 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ ℝ)
147146sselda 3921 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ ℝ)
148 ftc1.x2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
14952, 140, 142absdifltd 15145 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑋𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑋𝑋 < (𝐶 + 𝑅))))
150148, 149mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶𝑅) < 𝑋𝑋 < (𝐶 + 𝑅)))
151150simpld 495 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑅) < 𝑋)
152151adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) < 𝑋)
153 eliooord 13138 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑡𝑡 < 𝑌))
154153adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑋 < 𝑡𝑡 < 𝑌))
155154simpld 495 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 < 𝑡)
156144, 145, 147, 152, 155lttrd 11136 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) < 𝑡)
15753adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 ∈ ℝ)
158140, 142readdcld 11004 . . . . . . . . . . . . 13 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
159158adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶 + 𝑅) ∈ ℝ)
160154simprd 496 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < 𝑌)
161 ftc1.y2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑌𝐶)) < 𝑅)
16253, 140, 142absdifltd 15145 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑌𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑌𝑌 < (𝐶 + 𝑅))))
163161, 162mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶𝑅) < 𝑌𝑌 < (𝐶 + 𝑅)))
164163simprd 496 . . . . . . . . . . . . 13 (𝜑𝑌 < (𝐶 + 𝑅))
165164adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 < (𝐶 + 𝑅))
166147, 157, 159, 160, 165lttrd 11136 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < (𝐶 + 𝑅))
167140adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℝ)
168142adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑅 ∈ ℝ)
169147, 167, 168absdifltd 15145 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑡𝑡 < (𝐶 + 𝑅))))
170156, 166, 169mpbir2and 710 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘(𝑡𝐶)) < 𝑅)
171 fvoveq1 7298 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘(𝑦𝐶)) = (abs‘(𝑡𝐶)))
172171breq1d 5084 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘(𝑦𝐶)) < 𝑅 ↔ (abs‘(𝑡𝐶)) < 𝑅))
173172imbrov2fvoveq 7300 . . . . . . . . . . 11 (𝑦 = 𝑡 → (((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸) ↔ ((abs‘(𝑡𝐶)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸)))
174 ftc1.fc . . . . . . . . . . . . 13 ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
175174ralrimiva 3103 . . . . . . . . . . . 12 (𝜑 → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
176175adantr 481 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
177173, 176, 23rspcdva 3562 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝐶)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸))
178170, 177mpd 15 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸)
179 difrp 12768 . . . . . . . . . 10 (((abs‘((𝐹𝑡) − (𝐹𝐶))) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+))
180121, 132, 179syl2anc 584 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+))
181178, 180mpbid 231 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+)
182181adantlr 712 . . . . . . 7 (((𝜑𝑋 < 𝑌) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+)
183131, 139, 182itggt0 25008 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡)
184132, 137, 121, 122itgsub 24990 . . . . . . . 8 (𝜑 → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
185184adantr 481 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
186 itgconst 24983 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
18737, 65, 134, 186syl3anc 1370 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
188187adantr 481 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
18998oveq2d 7291 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (vol‘(𝑋(,)𝑌))) = (𝐸 · (𝑌𝑋)))
19072recnd 11003 . . . . . . . . . . 11 (𝜑 → (𝑌𝑋) ∈ ℂ)
191134, 190mulcomd 10996 . . . . . . . . . 10 (𝜑 → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
192191adantr 481 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
193188, 189, 1923eqtrd 2782 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = ((𝑌𝑋) · 𝐸))
194193oveq1d 7290 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡) = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
195185, 194eqtrd 2778 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
196183, 195breqtrd 5100 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
197123, 127posdifd 11562 . . . . . 6 (𝜑 → (∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸) ↔ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)))
198197biimpar 478 . . . . 5 ((𝜑 ∧ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸))
199196, 198syldan 591 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸))
200120, 124, 128, 130, 199lelttrd 11133 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸))
20171abscld 15148 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
202126adantr 481 . . . 4 ((𝜑𝑋 < 𝑌) → 𝐸 ∈ ℝ)
203 ltdivmul 11850 . . . 4 (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ((𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋))) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸)))
204201, 202, 73, 76, 203syl112anc 1373 . . 3 ((𝜑𝑋 < 𝑌) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸)))
205200, 204mpbird 256 . 2 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸)
206118, 205eqbrtrd 5096 1 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cdif 3884  wss 3887  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  +crp 12730  (,)cioo 13079  [,]cicc 13082  abscabs 14945  t crest 17131  TopOpenctopn 17132  fldccnfld 20597   CnP ccnp 22376  vol*covol 24626  volcvol 24627  𝐿1cibl 24781  citg 24782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834
This theorem is referenced by:  ftc1lem5  25204
  Copyright terms: Public domain W3C validator