MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem4 Structured version   Visualization version   GIF version

Theorem ftc1lem4 24208
Description: Lemma for ftc1 24211. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
ftc1.e (𝜑𝐸 ∈ ℝ+)
ftc1.r (𝜑𝑅 ∈ ℝ+)
ftc1.fc ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
ftc1.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1.x2 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
ftc1.y1 (𝜑𝑌 ∈ (𝐴[,]𝐵))
ftc1.y2 (𝜑 → (abs‘(𝑌𝐶)) < 𝑅)
Assertion
Ref Expression
ftc1lem4 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) < 𝐸)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐶   𝑡,𝐷,𝑥,𝑦,𝑧   𝑦,𝐺,𝑧   𝑡,𝐴,𝑥,𝑦,𝑧   𝑡,𝐵,𝑥,𝑦,𝑧   𝑡,𝑋,𝑥,𝑧   𝑡,𝐸,𝑦   𝑦,𝐻   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝑌,𝑥   𝑡,𝐹,𝑥,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑦,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑧,𝑡)   𝐸(𝑥,𝑧)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑦,𝑧,𝑡)   𝐾(𝑥,𝑦,𝑧,𝑡)   𝐿(𝑡)   𝑋(𝑦)   𝑌(𝑦,𝑧)

Proof of Theorem ftc1lem4
StepHypRef Expression
1 ovexd 6944 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝐶)) ∈ V)
2 ftc1.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
32rexrd 10413 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ*)
4 ftc1.x1 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (𝐴[,]𝐵))
5 ftc1.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
6 elicc2 12533 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
72, 5, 6syl2anc 579 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
84, 7mpbid 224 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
98simp2d 1177 . . . . . . . . . . . . . 14 (𝜑𝐴𝑋)
10 iooss1 12505 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
113, 9, 10syl2anc 579 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
125rexrd 10413 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
13 ftc1.y1 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ (𝐴[,]𝐵))
14 elicc2 12533 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
152, 5, 14syl2anc 579 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
1613, 15mpbid 224 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
1716simp3d 1178 . . . . . . . . . . . . . 14 (𝜑𝑌𝐵)
18 iooss2 12506 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
1912, 17, 18syl2anc 579 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
2011, 19sstrd 3837 . . . . . . . . . . . 12 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
21 ftc1.s . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
2220, 21sstrd 3837 . . . . . . . . . . 11 (𝜑 → (𝑋(,)𝑌) ⊆ 𝐷)
2322sselda 3827 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡𝐷)
24 ftc1.g . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
25 ftc1.le . . . . . . . . . . . 12 (𝜑𝐴𝐵)
26 ftc1.d . . . . . . . . . . . 12 (𝜑𝐷 ⊆ ℝ)
27 ftc1.i . . . . . . . . . . . 12 (𝜑𝐹 ∈ 𝐿1)
28 ftc1.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ (𝐴(,)𝐵))
29 ftc1.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
30 ftc1.j . . . . . . . . . . . 12 𝐽 = (𝐿t ℝ)
31 ftc1.k . . . . . . . . . . . 12 𝐾 = (𝐿t 𝐷)
32 ftc1.l . . . . . . . . . . . 12 𝐿 = (TopOpen‘ℂfld)
3324, 2, 5, 25, 21, 26, 27, 28, 29, 30, 31, 32ftc1lem3 24207 . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℂ)
3433ffvelrnda 6613 . . . . . . . . . 10 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
3523, 34syldan 585 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
36 ioombl 23738 . . . . . . . . . . 11 (𝑋(,)𝑌) ∈ dom vol
3736a1i 11 . . . . . . . . . 10 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
38 fvexd 6452 . . . . . . . . . 10 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ V)
3933feqmptd 6500 . . . . . . . . . . 11 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
4039, 27eqeltrrd 2907 . . . . . . . . . 10 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
4122, 37, 38, 40iblss 23977 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
4221, 28sseldd 3828 . . . . . . . . . . 11 (𝜑𝐶𝐷)
4333, 42ffvelrnd 6614 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
4443adantr 474 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝐶) ∈ ℂ)
45 fconstmpt 5402 . . . . . . . . . 10 ((𝑋(,)𝑌) × {(𝐹𝐶)}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝐶))
46 mblvol 23703 . . . . . . . . . . . . 13 ((𝑋(,)𝑌) ∈ dom vol → (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌)))
4736, 46ax-mp 5 . . . . . . . . . . . 12 (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌))
48 ioossicc 12554 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
4948a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌))
50 iccssre 12550 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
512, 5, 50syl2anc 579 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5251, 4sseldd 3828 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
5351, 13sseldd 3828 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
54 iccmbl 23739 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ∈ dom vol)
5552, 53, 54syl2anc 579 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ∈ dom vol)
56 mblss 23704 . . . . . . . . . . . . . 14 ((𝑋[,]𝑌) ∈ dom vol → (𝑋[,]𝑌) ⊆ ℝ)
5755, 56syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
58 mblvol 23703 . . . . . . . . . . . . . . 15 ((𝑋[,]𝑌) ∈ dom vol → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
5955, 58syl 17 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
60 iccvolcl 23740 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
6152, 53, 60syl2anc 579 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
6259, 61eqeltrrd 2907 . . . . . . . . . . . . 13 (𝜑 → (vol*‘(𝑋[,]𝑌)) ∈ ℝ)
63 ovolsscl 23659 . . . . . . . . . . . . 13 (((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ (vol*‘(𝑋[,]𝑌)) ∈ ℝ) → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6449, 57, 62, 63syl3anc 1494 . . . . . . . . . . . 12 (𝜑 → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6547, 64syl5eqel 2910 . . . . . . . . . . 11 (𝜑 → (vol‘(𝑋(,)𝑌)) ∈ ℝ)
66 iblconst 23990 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℂ) → ((𝑋(,)𝑌) × {(𝐹𝐶)}) ∈ 𝐿1)
6737, 65, 43, 66syl3anc 1494 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {(𝐹𝐶)}) ∈ 𝐿1)
6845, 67syl5eqelr 2911 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝐶)) ∈ 𝐿1)
6935, 41, 44, 68iblsub 23994 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝐶))) ∈ 𝐿1)
701, 69itgcl 23956 . . . . . . 7 (𝜑 → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 ∈ ℂ)
7170adantr 474 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 ∈ ℂ)
7253, 52resubcld 10789 . . . . . . . 8 (𝜑 → (𝑌𝑋) ∈ ℝ)
7372adantr 474 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
7473recnd 10392 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℂ)
7552, 53posdifd 10946 . . . . . . . 8 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
7675biimpa 470 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
7776gt0ne0d 10923 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ≠ 0)
7871, 74, 77divcld 11134 . . . . 5 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) ∈ ℂ)
7943adantr 474 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝐹𝐶) ∈ ℂ)
80 ltle 10452 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 < 𝑌𝑋𝑌))
8152, 53, 80syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝑋 < 𝑌𝑋𝑌))
8281imp 397 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → 𝑋𝑌)
8324, 2, 5, 25, 21, 26, 27, 33, 4, 13ftc1lem1 24204 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8482, 83syldan 585 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8535, 44npcand 10724 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) = (𝐹𝑡))
8685itgeq2dv 23954 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) d𝑡 = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8735, 44subcld 10720 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝐶)) ∈ ℂ)
8887, 69, 44, 68itgadd 23997 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
8986, 88eqtr3d 2863 . . . . . . . . 9 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
9089adantr 474 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
91 itgconst 23991 . . . . . . . . . . . 12 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℂ) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9237, 65, 43, 91syl3anc 1494 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9392adantr 474 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9452adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑋 ∈ ℝ)
9553adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑌 ∈ ℝ)
96 ovolioo 23741 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
9794, 95, 82, 96syl3anc 1494 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
9847, 97syl5eq 2873 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → (vol‘(𝑋(,)𝑌)) = (𝑌𝑋))
9998oveq2d 6926 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))) = ((𝐹𝐶) · (𝑌𝑋)))
10093, 99eqtrd 2861 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (𝑌𝑋)))
101100oveq2d 6926 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))))
10284, 90, 1013eqtrd 2865 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))))
103102oveq1d 6925 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))) / (𝑌𝑋)))
10479, 74mulcld 10384 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐹𝐶) · (𝑌𝑋)) ∈ ℂ)
10571, 104, 74, 77divdird 11172 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋))))
10679, 74, 77divcan4d 11140 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋)) = (𝐹𝐶))
107106oveq2d 6926 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋))) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)))
108103, 105, 1073eqtrd 2865 . . . . 5 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)))
10978, 79, 108mvrraddd 10773 . . . 4 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)))
110109fveq2d 6441 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) = (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋))))
11171, 74, 77absdivd 14578 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (abs‘(𝑌𝑋))))
112 0re 10365 . . . . . . 7 0 ∈ ℝ
113 ltle 10452 . . . . . . 7 ((0 ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
114112, 73, 113sylancr 581 . . . . . 6 ((𝜑𝑋 < 𝑌) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
11576, 114mpd 15 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (𝑌𝑋))
11673, 115absidd 14545 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘(𝑌𝑋)) = (𝑌𝑋))
117116oveq2d 6926 . . 3 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (abs‘(𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)))
118110, 111, 1173eqtrd 2865 . 2 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)))
11970abscld 14559 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
120119adantr 474 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
12187abscld 14559 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝐶))) ∈ ℝ)
1221, 69iblabs 24001 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ 𝐿1)
123121, 122itgrecl 23970 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 ∈ ℝ)
124123adantr 474 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 ∈ ℝ)
125 ftc1.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
126125rpred 12163 . . . . . 6 (𝜑𝐸 ∈ ℝ)
12772, 126remulcld 10394 . . . . 5 (𝜑 → ((𝑌𝑋) · 𝐸) ∈ ℝ)
128127adantr 474 . . . 4 ((𝜑𝑋 < 𝑌) → ((𝑌𝑋) · 𝐸) ∈ ℝ)
12987, 69itgabs 24007 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)
130129adantr 474 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)
13176, 98breqtrrd 4903 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (vol‘(𝑋(,)𝑌)))
132126adantr 474 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℝ)
133 fconstmpt 5402 . . . . . . . . . 10 ((𝑋(,)𝑌) × {𝐸}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸)
134126recnd 10392 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
135 iblconst 23990 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
13637, 65, 134, 135syl3anc 1494 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
137133, 136syl5eqelr 2911 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1)
138132, 137, 121, 122iblsub 23994 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶))))) ∈ 𝐿1)
139138adantr 474 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶))))) ∈ 𝐿1)
14026, 42sseldd 3828 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
141 ftc1.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
142141rpred 12163 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
143140, 142resubcld 10789 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑅) ∈ ℝ)
144143adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) ∈ ℝ)
14552adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 ∈ ℝ)
14622, 26sstrd 3837 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ ℝ)
147146sselda 3827 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ ℝ)
148 ftc1.x2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
14952, 140, 142absdifltd 14556 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑋𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑋𝑋 < (𝐶 + 𝑅))))
150148, 149mpbid 224 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶𝑅) < 𝑋𝑋 < (𝐶 + 𝑅)))
151150simpld 490 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑅) < 𝑋)
152151adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) < 𝑋)
153 eliooord 12528 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑡𝑡 < 𝑌))
154153adantl 475 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑋 < 𝑡𝑡 < 𝑌))
155154simpld 490 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 < 𝑡)
156144, 145, 147, 152, 155lttrd 10524 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) < 𝑡)
15753adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 ∈ ℝ)
158140, 142readdcld 10393 . . . . . . . . . . . . 13 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
159158adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶 + 𝑅) ∈ ℝ)
160154simprd 491 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < 𝑌)
161 ftc1.y2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑌𝐶)) < 𝑅)
16253, 140, 142absdifltd 14556 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑌𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑌𝑌 < (𝐶 + 𝑅))))
163161, 162mpbid 224 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶𝑅) < 𝑌𝑌 < (𝐶 + 𝑅)))
164163simprd 491 . . . . . . . . . . . . 13 (𝜑𝑌 < (𝐶 + 𝑅))
165164adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 < (𝐶 + 𝑅))
166147, 157, 159, 160, 165lttrd 10524 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < (𝐶 + 𝑅))
167140adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℝ)
168142adantr 474 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑅 ∈ ℝ)
169147, 167, 168absdifltd 14556 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑡𝑡 < (𝐶 + 𝑅))))
170156, 166, 169mpbir2and 704 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘(𝑡𝐶)) < 𝑅)
171 fvoveq1 6933 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘(𝑦𝐶)) = (abs‘(𝑡𝐶)))
172171breq1d 4885 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘(𝑦𝐶)) < 𝑅 ↔ (abs‘(𝑡𝐶)) < 𝑅))
173172imbrov2fvoveq 6935 . . . . . . . . . . 11 (𝑦 = 𝑡 → (((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸) ↔ ((abs‘(𝑡𝐶)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸)))
174 ftc1.fc . . . . . . . . . . . . 13 ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
175174ralrimiva 3175 . . . . . . . . . . . 12 (𝜑 → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
176175adantr 474 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
177173, 176, 23rspcdva 3532 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝐶)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸))
178170, 177mpd 15 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸)
179 difrp 12159 . . . . . . . . . 10 (((abs‘((𝐹𝑡) − (𝐹𝐶))) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+))
180121, 132, 179syl2anc 579 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+))
181178, 180mpbid 224 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+)
182181adantlr 706 . . . . . . 7 (((𝜑𝑋 < 𝑌) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+)
183131, 139, 182itggt0 24014 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡)
184132, 137, 121, 122itgsub 23998 . . . . . . . 8 (𝜑 → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
185184adantr 474 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
186 itgconst 23991 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
18737, 65, 134, 186syl3anc 1494 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
188187adantr 474 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
18998oveq2d 6926 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (vol‘(𝑋(,)𝑌))) = (𝐸 · (𝑌𝑋)))
19072recnd 10392 . . . . . . . . . . 11 (𝜑 → (𝑌𝑋) ∈ ℂ)
191134, 190mulcomd 10385 . . . . . . . . . 10 (𝜑 → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
192191adantr 474 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
193188, 189, 1923eqtrd 2865 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = ((𝑌𝑋) · 𝐸))
194193oveq1d 6925 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡) = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
195185, 194eqtrd 2861 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
196183, 195breqtrd 4901 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
197123, 127posdifd 10946 . . . . . 6 (𝜑 → (∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸) ↔ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)))
198197biimpar 471 . . . . 5 ((𝜑 ∧ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸))
199196, 198syldan 585 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸))
200120, 124, 128, 130, 199lelttrd 10521 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸))
20171abscld 14559 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
202126adantr 474 . . . 4 ((𝜑𝑋 < 𝑌) → 𝐸 ∈ ℝ)
203 ltdivmul 11235 . . . 4 (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ((𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋))) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸)))
204201, 202, 73, 76, 203syl112anc 1497 . . 3 ((𝜑𝑋 < 𝑌) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸)))
205200, 204mpbird 249 . 2 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸)
206118, 205eqbrtrd 4897 1 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  cdif 3795  wss 3798  {csn 4399   class class class wbr 4875  cmpt 4954   × cxp 5344  dom cdm 5346  cfv 6127  (class class class)co 6910  cc 10257  cr 10258  0cc0 10259   + caddc 10262   · cmul 10264  *cxr 10397   < clt 10398  cle 10399  cmin 10592   / cdiv 11016  +crp 12119  (,)cioo 12470  [,]cicc 12473  abscabs 14358  t crest 16441  TopOpenctopn 16442  fldccnfld 20113   CnP ccnp 21407  vol*covol 23635  volcvol 23636  𝐿1cibl 23790  citg 23791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cc 9579  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-symdif 4072  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-disj 4844  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-ofr 7163  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-omul 7836  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-acn 9088  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ioo 12474  df-ioc 12475  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-rlim 14604  df-sum 14801  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-rest 16443  df-topn 16444  df-0g 16462  df-gsum 16463  df-topgen 16464  df-pt 16465  df-prds 16468  df-xrs 16522  df-qtop 16527  df-imas 16528  df-xps 16530  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-mulg 17902  df-cntz 18107  df-cmn 18555  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cn 21409  df-cnp 21410  df-cmp 21568  df-tx 21743  df-hmeo 21936  df-xms 22502  df-ms 22503  df-tms 22504  df-cncf 23058  df-ovol 23637  df-vol 23638  df-mbf 23792  df-itg1 23793  df-itg2 23794  df-ibl 23795  df-itg 23796  df-0p 23843
This theorem is referenced by:  ftc1lem5  24209
  Copyright terms: Public domain W3C validator