MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem4 Structured version   Visualization version   GIF version

Theorem ftc1lem4 24551
Description: Lemma for ftc1 24554. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
ftc1.e (𝜑𝐸 ∈ ℝ+)
ftc1.r (𝜑𝑅 ∈ ℝ+)
ftc1.fc ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
ftc1.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1.x2 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
ftc1.y1 (𝜑𝑌 ∈ (𝐴[,]𝐵))
ftc1.y2 (𝜑 → (abs‘(𝑌𝐶)) < 𝑅)
Assertion
Ref Expression
ftc1lem4 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) < 𝐸)
Distinct variable groups:   𝑥,𝑡,𝑦,𝑧,𝐶   𝑡,𝐷,𝑥,𝑦,𝑧   𝑦,𝐺,𝑧   𝑡,𝐴,𝑥,𝑦,𝑧   𝑡,𝐵,𝑥,𝑦,𝑧   𝑡,𝑋,𝑥,𝑧   𝑡,𝐸,𝑦   𝑦,𝐻   𝜑,𝑡,𝑥,𝑦,𝑧   𝑡,𝑌,𝑥   𝑡,𝐹,𝑥,𝑦,𝑧   𝑥,𝐿,𝑦,𝑧   𝑦,𝑅
Allowed substitution hints:   𝑅(𝑥,𝑧,𝑡)   𝐸(𝑥,𝑧)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑦,𝑧,𝑡)   𝐾(𝑥,𝑦,𝑧,𝑡)   𝐿(𝑡)   𝑋(𝑦)   𝑌(𝑦,𝑧)

Proof of Theorem ftc1lem4
StepHypRef Expression
1 ovexd 7186 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝐶)) ∈ V)
2 ftc1.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
32rexrd 10683 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ*)
4 ftc1.x1 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (𝐴[,]𝐵))
5 ftc1.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
6 elicc2 12794 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
72, 5, 6syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
84, 7mpbid 233 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
98simp2d 1137 . . . . . . . . . . . . . 14 (𝜑𝐴𝑋)
10 iooss1 12766 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
113, 9, 10syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
125rexrd 10683 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
13 ftc1.y1 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ (𝐴[,]𝐵))
14 elicc2 12794 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
152, 5, 14syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
1613, 15mpbid 233 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
1716simp3d 1138 . . . . . . . . . . . . . 14 (𝜑𝑌𝐵)
18 iooss2 12767 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
1912, 17, 18syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
2011, 19sstrd 3980 . . . . . . . . . . . 12 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
21 ftc1.s . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
2220, 21sstrd 3980 . . . . . . . . . . 11 (𝜑 → (𝑋(,)𝑌) ⊆ 𝐷)
2322sselda 3970 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡𝐷)
24 ftc1.g . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
25 ftc1.le . . . . . . . . . . . 12 (𝜑𝐴𝐵)
26 ftc1.d . . . . . . . . . . . 12 (𝜑𝐷 ⊆ ℝ)
27 ftc1.i . . . . . . . . . . . 12 (𝜑𝐹 ∈ 𝐿1)
28 ftc1.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ (𝐴(,)𝐵))
29 ftc1.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
30 ftc1.j . . . . . . . . . . . 12 𝐽 = (𝐿t ℝ)
31 ftc1.k . . . . . . . . . . . 12 𝐾 = (𝐿t 𝐷)
32 ftc1.l . . . . . . . . . . . 12 𝐿 = (TopOpen‘ℂfld)
3324, 2, 5, 25, 21, 26, 27, 28, 29, 30, 31, 32ftc1lem3 24550 . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℂ)
3433ffvelrnda 6846 . . . . . . . . . 10 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ ℂ)
3523, 34syldan 591 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
36 ioombl 24081 . . . . . . . . . . 11 (𝑋(,)𝑌) ∈ dom vol
3736a1i 11 . . . . . . . . . 10 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
38 fvexd 6681 . . . . . . . . . 10 ((𝜑𝑡𝐷) → (𝐹𝑡) ∈ V)
3933feqmptd 6729 . . . . . . . . . . 11 (𝜑𝐹 = (𝑡𝐷 ↦ (𝐹𝑡)))
4039, 27eqeltrrd 2918 . . . . . . . . . 10 (𝜑 → (𝑡𝐷 ↦ (𝐹𝑡)) ∈ 𝐿1)
4122, 37, 38, 40iblss 24320 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
4221, 28sseldd 3971 . . . . . . . . . . 11 (𝜑𝐶𝐷)
4333, 42ffvelrnd 6847 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
4443adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝐶) ∈ ℂ)
45 fconstmpt 5612 . . . . . . . . . 10 ((𝑋(,)𝑌) × {(𝐹𝐶)}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝐶))
46 mblvol 24046 . . . . . . . . . . . . 13 ((𝑋(,)𝑌) ∈ dom vol → (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌)))
4736, 46ax-mp 5 . . . . . . . . . . . 12 (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌))
48 ioossicc 12815 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
4948a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌))
50 iccssre 12811 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
512, 5, 50syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5251, 4sseldd 3971 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
5351, 13sseldd 3971 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
54 iccmbl 24082 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ∈ dom vol)
5552, 53, 54syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ∈ dom vol)
56 mblss 24047 . . . . . . . . . . . . . 14 ((𝑋[,]𝑌) ∈ dom vol → (𝑋[,]𝑌) ⊆ ℝ)
5755, 56syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
58 mblvol 24046 . . . . . . . . . . . . . . 15 ((𝑋[,]𝑌) ∈ dom vol → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
5955, 58syl 17 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
60 iccvolcl 24083 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
6152, 53, 60syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
6259, 61eqeltrrd 2918 . . . . . . . . . . . . 13 (𝜑 → (vol*‘(𝑋[,]𝑌)) ∈ ℝ)
63 ovolsscl 24002 . . . . . . . . . . . . 13 (((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ (vol*‘(𝑋[,]𝑌)) ∈ ℝ) → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6449, 57, 62, 63syl3anc 1365 . . . . . . . . . . . 12 (𝜑 → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
6547, 64eqeltrid 2921 . . . . . . . . . . 11 (𝜑 → (vol‘(𝑋(,)𝑌)) ∈ ℝ)
66 iblconst 24333 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℂ) → ((𝑋(,)𝑌) × {(𝐹𝐶)}) ∈ 𝐿1)
6737, 65, 43, 66syl3anc 1365 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {(𝐹𝐶)}) ∈ 𝐿1)
6845, 67eqeltrrid 2922 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝐶)) ∈ 𝐿1)
6935, 41, 44, 68iblsub 24337 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝐶))) ∈ 𝐿1)
701, 69itgcl 24299 . . . . . . 7 (𝜑 → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 ∈ ℂ)
7170adantr 481 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 ∈ ℂ)
7253, 52resubcld 11060 . . . . . . . 8 (𝜑 → (𝑌𝑋) ∈ ℝ)
7372adantr 481 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
7473recnd 10661 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℂ)
7552, 53posdifd 11219 . . . . . . . 8 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
7675biimpa 477 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
7776gt0ne0d 11196 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ≠ 0)
7871, 74, 77divcld 11408 . . . . 5 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) ∈ ℂ)
7943adantr 481 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝐹𝐶) ∈ ℂ)
80 ltle 10721 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 < 𝑌𝑋𝑌))
8152, 53, 80syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋 < 𝑌𝑋𝑌))
8281imp 407 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → 𝑋𝑌)
8324, 2, 5, 25, 21, 26, 27, 33, 4, 13ftc1lem1 24547 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8482, 83syldan 591 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8535, 44npcand 10993 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) = (𝐹𝑡))
8685itgeq2dv 24297 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) d𝑡 = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
8735, 44subcld 10989 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝐶)) ∈ ℂ)
8887, 69, 44, 68itgadd 24340 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝐶)) + (𝐹𝐶)) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
8986, 88eqtr3d 2862 . . . . . . . . 9 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
9089adantr 481 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡))
91 itgconst 24334 . . . . . . . . . . . 12 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝐶) ∈ ℂ) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9237, 65, 43, 91syl3anc 1365 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9392adantr 481 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))))
9452adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑋 ∈ ℝ)
9553adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑌 ∈ ℝ)
96 ovolioo 24084 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
9794, 95, 82, 96syl3anc 1365 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
9847, 97syl5eq 2872 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → (vol‘(𝑋(,)𝑌)) = (𝑌𝑋))
9998oveq2d 7167 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ((𝐹𝐶) · (vol‘(𝑋(,)𝑌))) = ((𝐹𝐶) · (𝑌𝑋)))
10093, 99eqtrd 2860 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡 = ((𝐹𝐶) · (𝑌𝑋)))
101100oveq2d 7167 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝐶) d𝑡) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))))
10284, 90, 1013eqtrd 2864 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))))
103102oveq1d 7166 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))) / (𝑌𝑋)))
10479, 74mulcld 10653 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐹𝐶) · (𝑌𝑋)) ∈ ℂ)
10571, 104, 74, 77divdird 11446 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 + ((𝐹𝐶) · (𝑌𝑋))) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋))))
10679, 74, 77divcan4d 11414 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋)) = (𝐹𝐶))
107106oveq2d 7167 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (((𝐹𝐶) · (𝑌𝑋)) / (𝑌𝑋))) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)))
108103, 105, 1073eqtrd 2864 . . . . 5 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)) + (𝐹𝐶)))
10978, 79, 108mvrraddd 11044 . . . 4 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋)))
110109fveq2d 6670 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) = (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋))))
11171, 74, 77absdivd 14808 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡 / (𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (abs‘(𝑌𝑋))))
112 0re 10635 . . . . . . 7 0 ∈ ℝ
113 ltle 10721 . . . . . . 7 ((0 ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
114112, 73, 113sylancr 587 . . . . . 6 ((𝜑𝑋 < 𝑌) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
11576, 114mpd 15 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (𝑌𝑋))
11673, 115absidd 14775 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘(𝑌𝑋)) = (𝑌𝑋))
117116oveq2d 7167 . . 3 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (abs‘(𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)))
118110, 111, 1173eqtrd 2864 . 2 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)))
11970abscld 14789 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
120119adantr 481 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
12187abscld 14789 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝐶))) ∈ ℝ)
1221, 69iblabs 24344 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ 𝐿1)
123121, 122itgrecl 24313 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 ∈ ℝ)
124123adantr 481 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 ∈ ℝ)
125 ftc1.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
126125rpred 12424 . . . . . 6 (𝜑𝐸 ∈ ℝ)
12772, 126remulcld 10663 . . . . 5 (𝜑 → ((𝑌𝑋) · 𝐸) ∈ ℝ)
128127adantr 481 . . . 4 ((𝜑𝑋 < 𝑌) → ((𝑌𝑋) · 𝐸) ∈ ℝ)
12987, 69itgabs 24350 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)
130129adantr 481 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)
13176, 98breqtrrd 5090 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (vol‘(𝑋(,)𝑌)))
132126adantr 481 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℝ)
133 fconstmpt 5612 . . . . . . . . . 10 ((𝑋(,)𝑌) × {𝐸}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸)
134126recnd 10661 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
135 iblconst 24333 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
13637, 65, 134, 135syl3anc 1365 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
137133, 136eqeltrrid 2922 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1)
138132, 137, 121, 122iblsub 24337 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶))))) ∈ 𝐿1)
139138adantr 481 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶))))) ∈ 𝐿1)
14026, 42sseldd 3971 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
141 ftc1.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
142141rpred 12424 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
143140, 142resubcld 11060 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑅) ∈ ℝ)
144143adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) ∈ ℝ)
14552adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 ∈ ℝ)
14622, 26sstrd 3980 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ ℝ)
147146sselda 3970 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ ℝ)
148 ftc1.x2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑋𝐶)) < 𝑅)
14952, 140, 142absdifltd 14786 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑋𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑋𝑋 < (𝐶 + 𝑅))))
150148, 149mpbid 233 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶𝑅) < 𝑋𝑋 < (𝐶 + 𝑅)))
151150simpld 495 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝑅) < 𝑋)
152151adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) < 𝑋)
153 eliooord 12789 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑡𝑡 < 𝑌))
154153adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑋 < 𝑡𝑡 < 𝑌))
155154simpld 495 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 < 𝑡)
156144, 145, 147, 152, 155lttrd 10793 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶𝑅) < 𝑡)
15753adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 ∈ ℝ)
158140, 142readdcld 10662 . . . . . . . . . . . . 13 (𝜑 → (𝐶 + 𝑅) ∈ ℝ)
159158adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐶 + 𝑅) ∈ ℝ)
160154simprd 496 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < 𝑌)
161 ftc1.y2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑌𝐶)) < 𝑅)
16253, 140, 142absdifltd 14786 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑌𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑌𝑌 < (𝐶 + 𝑅))))
163161, 162mpbid 233 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶𝑅) < 𝑌𝑌 < (𝐶 + 𝑅)))
164163simprd 496 . . . . . . . . . . . . 13 (𝜑𝑌 < (𝐶 + 𝑅))
165164adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 < (𝐶 + 𝑅))
166147, 157, 159, 160, 165lttrd 10793 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < (𝐶 + 𝑅))
167140adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐶 ∈ ℝ)
168142adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑅 ∈ ℝ)
169147, 167, 168absdifltd 14786 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝐶)) < 𝑅 ↔ ((𝐶𝑅) < 𝑡𝑡 < (𝐶 + 𝑅))))
170156, 166, 169mpbir2and 709 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘(𝑡𝐶)) < 𝑅)
171 fvoveq1 7174 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘(𝑦𝐶)) = (abs‘(𝑡𝐶)))
172171breq1d 5072 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘(𝑦𝐶)) < 𝑅 ↔ (abs‘(𝑡𝐶)) < 𝑅))
173172imbrov2fvoveq 7176 . . . . . . . . . . 11 (𝑦 = 𝑡 → (((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸) ↔ ((abs‘(𝑡𝐶)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸)))
174 ftc1.fc . . . . . . . . . . . . 13 ((𝜑𝑦𝐷) → ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
175174ralrimiva 3186 . . . . . . . . . . . 12 (𝜑 → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
176175adantr 481 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝐸))
177173, 176, 23rspcdva 3628 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝐶)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸))
178170, 177mpd 15 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸)
179 difrp 12420 . . . . . . . . . 10 (((abs‘((𝐹𝑡) − (𝐹𝐶))) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+))
180121, 132, 179syl2anc 584 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘((𝐹𝑡) − (𝐹𝐶))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+))
181178, 180mpbid 233 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+)
182181adantlr 711 . . . . . . 7 (((𝜑𝑋 < 𝑌) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) ∈ ℝ+)
183131, 139, 182itggt0 24357 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡)
184132, 137, 121, 122itgsub 24341 . . . . . . . 8 (𝜑 → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
185184adantr 481 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
186 itgconst 24334 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
18737, 65, 134, 186syl3anc 1365 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
188187adantr 481 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
18998oveq2d 7167 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (vol‘(𝑋(,)𝑌))) = (𝐸 · (𝑌𝑋)))
19072recnd 10661 . . . . . . . . . . 11 (𝜑 → (𝑌𝑋) ∈ ℂ)
191134, 190mulcomd 10654 . . . . . . . . . 10 (𝜑 → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
192191adantr 481 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
193188, 189, 1923eqtrd 2864 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = ((𝑌𝑋) · 𝐸))
194193oveq1d 7166 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡) = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
195185, 194eqtrd 2860 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝐶)))) d𝑡 = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
196183, 195breqtrd 5088 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡))
197123, 127posdifd 11219 . . . . . 6 (𝜑 → (∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸) ↔ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)))
198197biimpar 478 . . . . 5 ((𝜑 ∧ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡)) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸))
199196, 198syldan 591 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝐶))) d𝑡 < ((𝑌𝑋) · 𝐸))
200120, 124, 128, 130, 199lelttrd 10790 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸))
20171abscld 14789 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ)
202126adantr 481 . . . 4 ((𝜑𝑋 < 𝑌) → 𝐸 ∈ ℝ)
203 ltdivmul 11507 . . . 4 (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ((𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋))) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸)))
204201, 202, 73, 76, 203syl112anc 1368 . . 3 ((𝜑𝑋 < 𝑌) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) < ((𝑌𝑋) · 𝐸)))
205200, 204mpbird 258 . 2 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝐶)) d𝑡) / (𝑌𝑋)) < 𝐸)
206118, 205eqbrtrd 5084 1 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝐶))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106  wral 3142  Vcvv 3499  cdif 3936  wss 3939  {csn 4563   class class class wbr 5062  cmpt 5142   × cxp 5551  dom cdm 5553  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529   + caddc 10532   · cmul 10534  *cxr 10666   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  +crp 12382  (,)cioo 12731  [,]cicc 12734  abscabs 14586  t crest 16686  TopOpenctopn 16687  fldccnfld 20461   CnP ccnp 21749  vol*covol 23978  volcvol 23979  𝐿1cibl 24133  citg 24134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-symdif 4222  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-disj 5028  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-ofr 7403  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cn 21751  df-cnp 21752  df-cmp 21911  df-tx 22086  df-hmeo 22279  df-xms 22845  df-ms 22846  df-tms 22847  df-cncf 23401  df-ovol 23980  df-vol 23981  df-mbf 24135  df-itg1 24136  df-itg2 24137  df-ibl 24138  df-itg 24139  df-0p 24186
This theorem is referenced by:  ftc1lem5  24552
  Copyright terms: Public domain W3C validator