Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnclem Structured version   Visualization version   GIF version

Theorem ftc1cnnclem 34959
Description: Lemma for ftc1cnnc 34960; cf. ftc1lem4 24630. The stronger assumptions of ftc1cn 24634 are exploited to make use of weaker theorems. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cnnc.a (𝜑𝐴 ∈ ℝ)
ftc1cnnc.b (𝜑𝐵 ∈ ℝ)
ftc1cnnc.le (𝜑𝐴𝐵)
ftc1cnnc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cnnc.i (𝜑𝐹 ∈ 𝐿1)
ftc1cnnclem.c (𝜑𝑐 ∈ (𝐴(,)𝐵))
ftc1cnnclem.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
ftc1cnnclem.e (𝜑𝐸 ∈ ℝ+)
ftc1cnnclem.r (𝜑𝑅 ∈ ℝ+)
ftc1cnnclem.fc ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
ftc1cnnclem.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1cnnclem.x2 (𝜑 → (abs‘(𝑋𝑐)) < 𝑅)
ftc1cnnclem.y1 (𝜑𝑌 ∈ (𝐴[,]𝐵))
ftc1cnnclem.y2 (𝜑 → (abs‘(𝑌𝑐)) < 𝑅)
Assertion
Ref Expression
ftc1cnnclem ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) < 𝐸)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑡,𝐴   𝑥,𝐵,𝑦,𝑧,𝑡   𝑥,𝐹,𝑦,𝑧,𝑡   𝜑,𝑥,𝑦,𝑧,𝑡   𝑦,𝐺,𝑧   𝑥,𝑐,𝑦,𝑧,𝑡   𝑥,𝑋,𝑧,𝑡   𝑦,𝐸,𝑡   𝑦,𝐻   𝑥,𝑌,𝑡   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑐)   𝐴(𝑐)   𝐵(𝑐)   𝑅(𝑥,𝑧,𝑡,𝑐)   𝐸(𝑥,𝑧,𝑐)   𝐹(𝑐)   𝐺(𝑥,𝑡,𝑐)   𝐻(𝑥,𝑧,𝑡,𝑐)   𝑋(𝑦,𝑐)   𝑌(𝑦,𝑧,𝑐)

Proof of Theorem ftc1cnnclem
StepHypRef Expression
1 ovexd 7185 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝑐)) ∈ V)
2 ftc1cnnc.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
32rexrd 10685 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
4 ftc1cnnc.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
54rexrd 10685 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
6 ftc1cnnclem.x1 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (𝐴[,]𝐵))
7 elicc1 12776 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
87biimpa 479 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵))
98simp2d 1139 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → 𝐴𝑋)
103, 5, 6, 9syl21anc 835 . . . . . . . . . . . 12 (𝜑𝐴𝑋)
11 ftc1cnnclem.y1 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝐴[,]𝐵))
12 iccleub 12786 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑌 ∈ (𝐴[,]𝐵)) → 𝑌𝐵)
133, 5, 11, 12syl3anc 1367 . . . . . . . . . . . 12 (𝜑𝑌𝐵)
14 ioossioo 12823 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑋𝑌𝐵)) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
153, 5, 10, 13, 14syl22anc 836 . . . . . . . . . . 11 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
1615sselda 3966 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ (𝐴(,)𝐵))
17 ftc1cnnc.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
18 cncff 23495 . . . . . . . . . . . 12 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
1917, 18syl 17 . . . . . . . . . . 11 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
2019ffvelrnda 6845 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ℂ)
2116, 20syldan 593 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
22 ioombl 24160 . . . . . . . . . . 11 (𝑋(,)𝑌) ∈ dom vol
2322a1i 11 . . . . . . . . . 10 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
24 fvexd 6679 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ V)
2519feqmptd 6727 . . . . . . . . . . 11 (𝜑𝐹 = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑡)))
26 ftc1cnnc.i . . . . . . . . . . 11 (𝜑𝐹 ∈ 𝐿1)
2725, 26eqeltrrd 2914 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑡)) ∈ 𝐿1)
2815, 23, 24, 27iblss 24399 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
29 ftc1cnnclem.c . . . . . . . . . . 11 (𝜑𝑐 ∈ (𝐴(,)𝐵))
3019, 29ffvelrnd 6846 . . . . . . . . . 10 (𝜑 → (𝐹𝑐) ∈ ℂ)
3130adantr 483 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑐) ∈ ℂ)
32 fconstmpt 5608 . . . . . . . . . 10 ((𝑋(,)𝑌) × {(𝐹𝑐)}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐))
33 mblvol 24125 . . . . . . . . . . . . 13 ((𝑋(,)𝑌) ∈ dom vol → (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌)))
3422, 33ax-mp 5 . . . . . . . . . . . 12 (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌))
35 ioossicc 12816 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
3635a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌))
37 iccssre 12812 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
382, 4, 37syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
3938, 6sseldd 3967 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
4038, 11sseldd 3967 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
41 iccmbl 24161 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ∈ dom vol)
4239, 40, 41syl2anc 586 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ∈ dom vol)
43 mblss 24126 . . . . . . . . . . . . . 14 ((𝑋[,]𝑌) ∈ dom vol → (𝑋[,]𝑌) ⊆ ℝ)
4442, 43syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
45 mblvol 24125 . . . . . . . . . . . . . . 15 ((𝑋[,]𝑌) ∈ dom vol → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
4642, 45syl 17 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
47 iccvolcl 24162 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
4839, 40, 47syl2anc 586 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
4946, 48eqeltrrd 2914 . . . . . . . . . . . . 13 (𝜑 → (vol*‘(𝑋[,]𝑌)) ∈ ℝ)
50 ovolsscl 24081 . . . . . . . . . . . . 13 (((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ (vol*‘(𝑋[,]𝑌)) ∈ ℝ) → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
5136, 44, 49, 50syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
5234, 51eqeltrid 2917 . . . . . . . . . . 11 (𝜑 → (vol‘(𝑋(,)𝑌)) ∈ ℝ)
53 iblconst 24412 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝑐) ∈ ℂ) → ((𝑋(,)𝑌) × {(𝐹𝑐)}) ∈ 𝐿1)
5423, 52, 30, 53syl3anc 1367 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {(𝐹𝑐)}) ∈ 𝐿1)
5532, 54eqeltrrid 2918 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ 𝐿1)
56 eqid 2821 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5756subcn 23468 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5857a1i 11 . . . . . . . . . . 11 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
5919, 15feqresmpt 6728 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)))
60 rescncf 23499 . . . . . . . . . . . . 13 ((𝑋(,)𝑌) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
6115, 17, 60sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
6259, 61eqeltrrd 2914 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
63 ioossre 12792 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ⊆ ℝ
64 ax-resscn 10588 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
6563, 64sstri 3975 . . . . . . . . . . . . 13 (𝑋(,)𝑌) ⊆ ℂ
66 ssid 3988 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
67 cncfmptc 23513 . . . . . . . . . . . . 13 (((𝐹𝑐) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
6865, 66, 67mp3an23 1449 . . . . . . . . . . . 12 ((𝐹𝑐) ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
6930, 68syl 17 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7056, 58, 62, 69cncfmpt2f 23516 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
71 cnmbf 24254 . . . . . . . . . 10 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ MblFn)
7222, 70, 71sylancr 589 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ MblFn)
7321, 28, 31, 55, 72iblsubnc 34947 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ 𝐿1)
741, 73itgcl 24378 . . . . . . 7 (𝜑 → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 ∈ ℂ)
7574adantr 483 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 ∈ ℂ)
7640, 39resubcld 11062 . . . . . . . 8 (𝜑 → (𝑌𝑋) ∈ ℝ)
7776recnd 10663 . . . . . . 7 (𝜑 → (𝑌𝑋) ∈ ℂ)
7877adantr 483 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℂ)
7939, 40posdifd 11221 . . . . . . . 8 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
8079biimpa 479 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
8180gt0ne0d 11198 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ≠ 0)
8275, 78, 81divcld 11410 . . . . 5 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) ∈ ℂ)
8330adantr 483 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝐹𝑐) ∈ ℂ)
84 ltle 10723 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 < 𝑌𝑋𝑌))
8539, 40, 84syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝑋 < 𝑌𝑋𝑌))
8685imp 409 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → 𝑋𝑌)
87 ftc1cnnc.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
88 ftc1cnnc.le . . . . . . . . . 10 (𝜑𝐴𝐵)
89 ssidd 3989 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
90 ioossre 12792 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ ℝ
9190a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
9287, 2, 4, 88, 89, 91, 26, 19, 6, 11ftc1lem1 24626 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
9386, 92syldan 593 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
9421, 31npcand 10995 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) = (𝐹𝑡))
9594itgeq2dv 24376 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) d𝑡 = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
9621, 31subcld 10991 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝑐)) ∈ ℂ)
9794mpteq2dva 5153 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)))
9897, 59eqtr4d 2859 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) = (𝐹 ↾ (𝑋(,)𝑌)))
99 iblmbf 24362 . . . . . . . . . . . . . 14 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
10026, 99syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ MblFn)
101 mbfres 24239 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑋(,)𝑌) ∈ dom vol) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn)
102100, 22, 101sylancl 588 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn)
10398, 102eqeltrd 2913 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) ∈ MblFn)
10496, 73, 31, 55, 103itgaddnc 34946 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
10595, 104eqtr3d 2858 . . . . . . . . 9 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
106105adantr 483 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
107 itgconst 24413 . . . . . . . . . . . 12 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝑐) ∈ ℂ) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
10823, 52, 30, 107syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
109108adantr 483 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
11039adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑋 ∈ ℝ)
11140adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑌 ∈ ℝ)
112 ovolioo 24163 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
113110, 111, 86, 112syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
11434, 113syl5eq 2868 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → (vol‘(𝑋(,)𝑌)) = (𝑌𝑋))
115114oveq2d 7166 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))) = ((𝐹𝑐) · (𝑌𝑋)))
116109, 115eqtrd 2856 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (𝑌𝑋)))
117116oveq2d 7166 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))))
11893, 106, 1173eqtrd 2860 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))))
119118oveq1d 7165 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))) / (𝑌𝑋)))
12083, 78mulcld 10655 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐹𝑐) · (𝑌𝑋)) ∈ ℂ)
12175, 120, 78, 81divdird 11448 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋))))
12283, 78, 81divcan4d 11416 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋)) = (𝐹𝑐))
123122oveq2d 7166 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋))) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)))
124119, 121, 1233eqtrd 2860 . . . . 5 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)))
12582, 83, 124mvrraddd 11046 . . . 4 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)))
126125fveq2d 6668 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) = (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋))))
12775, 78, 81absdivd 14809 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (abs‘(𝑌𝑋))))
12876adantr 483 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
129 0re 10637 . . . . . . 7 0 ∈ ℝ
130 ltle 10723 . . . . . . 7 ((0 ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
131129, 128, 130sylancr 589 . . . . . 6 ((𝜑𝑋 < 𝑌) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
13280, 131mpd 15 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (𝑌𝑋))
133128, 132absidd 14776 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘(𝑌𝑋)) = (𝑌𝑋))
134133oveq2d 7166 . . 3 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (abs‘(𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)))
135126, 127, 1343eqtrd 2860 . 2 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)))
13675abscld 14790 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℝ)
13796abscld 14790 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝑐))) ∈ ℝ)
138 cncfss 23501 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
13964, 66, 138mp2an 690 . . . . . . . . . . 11 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
140 abscncf 23503 . . . . . . . . . . 11 abs ∈ (ℂ–cn→ℝ)
141139, 140sselii 3963 . . . . . . . . . 10 abs ∈ (ℂ–cn→ℂ)
142141a1i 11 . . . . . . . . 9 (𝜑 → abs ∈ (ℂ–cn→ℂ))
143142, 70cncfmpt1f 23515 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
144 cnmbf 24254 . . . . . . . 8 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
14522, 143, 144sylancr 589 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
1461, 73, 145iblabsnc 34950 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ 𝐿1)
147137, 146itgrecl 24392 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 ∈ ℝ)
148147adantr 483 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 ∈ ℝ)
149 ftc1cnnclem.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
150149rpred 12425 . . . . . 6 (𝜑𝐸 ∈ ℝ)
15176, 150remulcld 10665 . . . . 5 (𝜑 → ((𝑌𝑋) · 𝐸) ∈ ℝ)
152151adantr 483 . . . 4 ((𝜑𝑋 < 𝑌) → ((𝑌𝑋) · 𝐸) ∈ ℝ)
15374cjcld 14549 . . . . . . . . 9 (𝜑 → (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ)
154 cncfmptc 23513 . . . . . . . . . 10 (((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
15565, 66, 154mp3an23 1449 . . . . . . . . 9 ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
156153, 155syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
157 nfcv 2977 . . . . . . . . . 10 𝑥((𝐹𝑡) − (𝐹𝑐))
158 nfcsb1v 3906 . . . . . . . . . 10 𝑡𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐))
159 csbeq1a 3896 . . . . . . . . . 10 (𝑡 = 𝑥 → ((𝐹𝑡) − (𝐹𝑐)) = 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))
160157, 158, 159cbvmpt 5159 . . . . . . . . 9 (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))
161160, 70eqeltrrid 2918 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
162156, 161mulcncf 24041 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
163 cnmbf 24254 . . . . . . 7 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
16422, 162, 163sylancr 589 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
16596, 73, 145, 164itgabsnc 34955 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)
166165adantr 483 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)
167 simpr 487 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 𝑋 < 𝑌)
168150adantr 483 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℝ)
169 fconstmpt 5608 . . . . . . . . . 10 ((𝑋(,)𝑌) × {𝐸}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸)
170149rpcnd 12427 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
171 iblconst 24412 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
17223, 52, 170, 171syl3anc 1367 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
173169, 172eqeltrrid 2918 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1)
174 cncfmptc 23513 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
17565, 66, 174mp3an23 1449 . . . . . . . . . . . 12 (𝐸 ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
176170, 175syl 17 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
17756, 58, 176, 143cncfmpt2f 23516 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
178 cnmbf 24254 . . . . . . . . . 10 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ MblFn)
17922, 177, 178sylancr 589 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ MblFn)
180168, 173, 137, 146, 179iblsubnc 34947 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ 𝐿1)
181180adantr 483 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ 𝐿1)
182 ftc1cnnclem.fc . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
183182ralrimiva 3182 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
184183adantr 483 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
18590, 29sseldi 3964 . . . . . . . . . . . . . 14 (𝜑𝑐 ∈ ℝ)
186 ftc1cnnclem.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
187186rpred 12425 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
188185, 187resubcld 11062 . . . . . . . . . . . . 13 (𝜑 → (𝑐𝑅) ∈ ℝ)
189188adantr 483 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) ∈ ℝ)
19039adantr 483 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 ∈ ℝ)
191 elioore 12762 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑋(,)𝑌) → 𝑡 ∈ ℝ)
192191adantl 484 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ ℝ)
193 ftc1cnnclem.x2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑋𝑐)) < 𝑅)
19439, 185, 187absdifltd 14787 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑋𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑋𝑋 < (𝑐 + 𝑅))))
195193, 194mpbid 234 . . . . . . . . . . . . . 14 (𝜑 → ((𝑐𝑅) < 𝑋𝑋 < (𝑐 + 𝑅)))
196195simpld 497 . . . . . . . . . . . . 13 (𝜑 → (𝑐𝑅) < 𝑋)
197196adantr 483 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) < 𝑋)
198 eliooord 12790 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑡𝑡 < 𝑌))
199198adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑋 < 𝑡𝑡 < 𝑌))
200199simpld 497 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 < 𝑡)
201189, 190, 192, 197, 200lttrd 10795 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) < 𝑡)
20240adantr 483 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 ∈ ℝ)
203185, 187readdcld 10664 . . . . . . . . . . . . 13 (𝜑 → (𝑐 + 𝑅) ∈ ℝ)
204203adantr 483 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐 + 𝑅) ∈ ℝ)
205199simprd 498 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < 𝑌)
206 ftc1cnnclem.y2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑌𝑐)) < 𝑅)
20740, 185, 187absdifltd 14787 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑌𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑌𝑌 < (𝑐 + 𝑅))))
208206, 207mpbid 234 . . . . . . . . . . . . . 14 (𝜑 → ((𝑐𝑅) < 𝑌𝑌 < (𝑐 + 𝑅)))
209208simprd 498 . . . . . . . . . . . . 13 (𝜑𝑌 < (𝑐 + 𝑅))
210209adantr 483 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 < (𝑐 + 𝑅))
211192, 202, 204, 205, 210lttrd 10795 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < (𝑐 + 𝑅))
212185adantr 483 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑐 ∈ ℝ)
213187adantr 483 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑅 ∈ ℝ)
214192, 212, 213absdifltd 14787 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑡𝑡 < (𝑐 + 𝑅))))
215201, 211, 214mpbir2and 711 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘(𝑡𝑐)) < 𝑅)
216 fvoveq1 7173 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘(𝑦𝑐)) = (abs‘(𝑡𝑐)))
217216breq1d 5068 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘(𝑦𝑐)) < 𝑅 ↔ (abs‘(𝑡𝑐)) < 𝑅))
218217imbrov2fvoveq 7175 . . . . . . . . . . 11 (𝑦 = 𝑡 → (((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸) ↔ ((abs‘(𝑡𝑐)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)))
219218rspcv 3617 . . . . . . . . . 10 (𝑡 ∈ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸) → ((abs‘(𝑡𝑐)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)))
22016, 184, 215, 219syl3c 66 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)
221 difrp 12421 . . . . . . . . . 10 (((abs‘((𝐹𝑡) − (𝐹𝑐))) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+))
222137, 168, 221syl2anc 586 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+))
223220, 222mpbid 234 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+)
224223adantlr 713 . . . . . . 7 (((𝜑𝑋 < 𝑌) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+)
225177adantr 483 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
226167, 181, 224, 225itggt0cn 34958 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡)
227168, 173, 137, 146, 179itgsubnc 34948 . . . . . . . 8 (𝜑 → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
228227adantr 483 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
229 itgconst 24413 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
23023, 52, 170, 229syl3anc 1367 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
231230adantr 483 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
232114oveq2d 7166 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (vol‘(𝑋(,)𝑌))) = (𝐸 · (𝑌𝑋)))
233170, 77mulcomd 10656 . . . . . . . . . 10 (𝜑 → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
234233adantr 483 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
235231, 232, 2343eqtrd 2860 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = ((𝑌𝑋) · 𝐸))
236235oveq1d 7165 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡) = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
237228, 236eqtrd 2856 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
238226, 237breqtrd 5084 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
239147, 151posdifd 11221 . . . . . 6 (𝜑 → (∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸) ↔ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)))
240239biimpar 480 . . . . 5 ((𝜑 ∧ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸))
241238, 240syldan 593 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸))
242136, 148, 152, 166, 241lelttrd 10792 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸))
243150adantr 483 . . . 4 ((𝜑𝑋 < 𝑌) → 𝐸 ∈ ℝ)
244 ltdivmul 11509 . . . 4 (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ((𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋))) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸)))
245136, 243, 128, 80, 244syl112anc 1370 . . 3 ((𝜑𝑋 < 𝑌) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸)))
246242, 245mpbird 259 . 2 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸)
247135, 246eqbrtrd 5080 1 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  csb 3882  cdif 3932  wss 3935  {csn 4560   class class class wbr 5058  cmpt 5138   × cxp 5547  dom cdm 5549  cres 5551  wf 6345  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531   + caddc 10534   · cmul 10536  *cxr 10668   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  +crp 12383  (,)cioo 12732  [,]cicc 12735  ccj 14449  abscabs 14587  TopOpenctopn 16689  fldccnfld 20539   Cn ccn 21826   ×t ctx 22162  cnccncf 23478  vol*covol 24057  volcvol 24058  MblFncmbf 24209  𝐿1cibl 24212  citg 24213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-symdif 4218  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cn 21829  df-cnp 21830  df-cmp 21989  df-tx 22164  df-hmeo 22357  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-ovol 24059  df-vol 24060  df-mbf 24214  df-itg1 24215  df-itg2 24216  df-ibl 24217  df-itg 24218  df-0p 24265
This theorem is referenced by:  ftc1cnnc  34960
  Copyright terms: Public domain W3C validator