Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnclem Structured version   Visualization version   GIF version

Theorem ftc1cnnclem 35775
Description: Lemma for ftc1cnnc 35776; cf. ftc1lem4 25108. The stronger assumptions of ftc1cn 25112 are exploited to make use of weaker theorems. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cnnc.a (𝜑𝐴 ∈ ℝ)
ftc1cnnc.b (𝜑𝐵 ∈ ℝ)
ftc1cnnc.le (𝜑𝐴𝐵)
ftc1cnnc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cnnc.i (𝜑𝐹 ∈ 𝐿1)
ftc1cnnclem.c (𝜑𝑐 ∈ (𝐴(,)𝐵))
ftc1cnnclem.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
ftc1cnnclem.e (𝜑𝐸 ∈ ℝ+)
ftc1cnnclem.r (𝜑𝑅 ∈ ℝ+)
ftc1cnnclem.fc ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
ftc1cnnclem.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1cnnclem.x2 (𝜑 → (abs‘(𝑋𝑐)) < 𝑅)
ftc1cnnclem.y1 (𝜑𝑌 ∈ (𝐴[,]𝐵))
ftc1cnnclem.y2 (𝜑 → (abs‘(𝑌𝑐)) < 𝑅)
Assertion
Ref Expression
ftc1cnnclem ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) < 𝐸)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑡,𝐴   𝑥,𝐵,𝑦,𝑧,𝑡   𝑥,𝐹,𝑦,𝑧,𝑡   𝜑,𝑥,𝑦,𝑧,𝑡   𝑦,𝐺,𝑧   𝑥,𝑐,𝑦,𝑧,𝑡   𝑥,𝑋,𝑧,𝑡   𝑦,𝐸,𝑡   𝑦,𝐻   𝑥,𝑌,𝑡   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑐)   𝐴(𝑐)   𝐵(𝑐)   𝑅(𝑥,𝑧,𝑡,𝑐)   𝐸(𝑥,𝑧,𝑐)   𝐹(𝑐)   𝐺(𝑥,𝑡,𝑐)   𝐻(𝑥,𝑧,𝑡,𝑐)   𝑋(𝑦,𝑐)   𝑌(𝑦,𝑧,𝑐)

Proof of Theorem ftc1cnnclem
StepHypRef Expression
1 ovexd 7290 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝑐)) ∈ V)
2 ftc1cnnc.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
32rexrd 10956 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
4 ftc1cnnc.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
54rexrd 10956 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
6 ftc1cnnclem.x1 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (𝐴[,]𝐵))
7 elicc1 13052 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
87biimpa 476 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵))
98simp2d 1141 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → 𝐴𝑋)
103, 5, 6, 9syl21anc 834 . . . . . . . . . . . 12 (𝜑𝐴𝑋)
11 ftc1cnnclem.y1 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝐴[,]𝐵))
12 iccleub 13063 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑌 ∈ (𝐴[,]𝐵)) → 𝑌𝐵)
133, 5, 11, 12syl3anc 1369 . . . . . . . . . . . 12 (𝜑𝑌𝐵)
14 ioossioo 13102 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑋𝑌𝐵)) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
153, 5, 10, 13, 14syl22anc 835 . . . . . . . . . . 11 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
1615sselda 3917 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ (𝐴(,)𝐵))
17 ftc1cnnc.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
18 cncff 23962 . . . . . . . . . . . 12 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
1917, 18syl 17 . . . . . . . . . . 11 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
2019ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ℂ)
2116, 20syldan 590 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
22 ioombl 24634 . . . . . . . . . . 11 (𝑋(,)𝑌) ∈ dom vol
2322a1i 11 . . . . . . . . . 10 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
24 fvexd 6771 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ V)
2519feqmptd 6819 . . . . . . . . . . 11 (𝜑𝐹 = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑡)))
26 ftc1cnnc.i . . . . . . . . . . 11 (𝜑𝐹 ∈ 𝐿1)
2725, 26eqeltrrd 2840 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑡)) ∈ 𝐿1)
2815, 23, 24, 27iblss 24874 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
29 ftc1cnnclem.c . . . . . . . . . . 11 (𝜑𝑐 ∈ (𝐴(,)𝐵))
3019, 29ffvelrnd 6944 . . . . . . . . . 10 (𝜑 → (𝐹𝑐) ∈ ℂ)
3130adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑐) ∈ ℂ)
32 fconstmpt 5640 . . . . . . . . . 10 ((𝑋(,)𝑌) × {(𝐹𝑐)}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐))
33 mblvol 24599 . . . . . . . . . . . . 13 ((𝑋(,)𝑌) ∈ dom vol → (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌)))
3422, 33ax-mp 5 . . . . . . . . . . . 12 (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌))
35 ioossicc 13094 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
3635a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌))
37 iccssre 13090 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
382, 4, 37syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
3938, 6sseldd 3918 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
4038, 11sseldd 3918 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
41 iccmbl 24635 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ∈ dom vol)
4239, 40, 41syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ∈ dom vol)
43 mblss 24600 . . . . . . . . . . . . . 14 ((𝑋[,]𝑌) ∈ dom vol → (𝑋[,]𝑌) ⊆ ℝ)
4442, 43syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
45 mblvol 24599 . . . . . . . . . . . . . . 15 ((𝑋[,]𝑌) ∈ dom vol → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
4642, 45syl 17 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
47 iccvolcl 24636 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
4839, 40, 47syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
4946, 48eqeltrrd 2840 . . . . . . . . . . . . 13 (𝜑 → (vol*‘(𝑋[,]𝑌)) ∈ ℝ)
50 ovolsscl 24555 . . . . . . . . . . . . 13 (((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ (vol*‘(𝑋[,]𝑌)) ∈ ℝ) → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
5136, 44, 49, 50syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
5234, 51eqeltrid 2843 . . . . . . . . . . 11 (𝜑 → (vol‘(𝑋(,)𝑌)) ∈ ℝ)
53 iblconst 24887 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝑐) ∈ ℂ) → ((𝑋(,)𝑌) × {(𝐹𝑐)}) ∈ 𝐿1)
5423, 52, 30, 53syl3anc 1369 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {(𝐹𝑐)}) ∈ 𝐿1)
5532, 54eqeltrrid 2844 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ 𝐿1)
56 eqid 2738 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5756subcn 23935 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5857a1i 11 . . . . . . . . . . 11 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
5919, 15feqresmpt 6820 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)))
60 rescncf 23966 . . . . . . . . . . . . 13 ((𝑋(,)𝑌) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
6115, 17, 60sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
6259, 61eqeltrrd 2840 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
63 ioossre 13069 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ⊆ ℝ
64 ax-resscn 10859 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
6563, 64sstri 3926 . . . . . . . . . . . . 13 (𝑋(,)𝑌) ⊆ ℂ
66 ssid 3939 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
67 cncfmptc 23981 . . . . . . . . . . . . 13 (((𝐹𝑐) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
6865, 66, 67mp3an23 1451 . . . . . . . . . . . 12 ((𝐹𝑐) ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
6930, 68syl 17 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7056, 58, 62, 69cncfmpt2f 23984 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
71 cnmbf 24728 . . . . . . . . . 10 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ MblFn)
7222, 70, 71sylancr 586 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ MblFn)
7321, 28, 31, 55, 72iblsubnc 35765 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ 𝐿1)
741, 73itgcl 24853 . . . . . . 7 (𝜑 → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 ∈ ℂ)
7574adantr 480 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 ∈ ℂ)
7640, 39resubcld 11333 . . . . . . . 8 (𝜑 → (𝑌𝑋) ∈ ℝ)
7776recnd 10934 . . . . . . 7 (𝜑 → (𝑌𝑋) ∈ ℂ)
7877adantr 480 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℂ)
7939, 40posdifd 11492 . . . . . . . 8 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
8079biimpa 476 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
8180gt0ne0d 11469 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ≠ 0)
8275, 78, 81divcld 11681 . . . . 5 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) ∈ ℂ)
8330adantr 480 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝐹𝑐) ∈ ℂ)
84 ltle 10994 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 < 𝑌𝑋𝑌))
8539, 40, 84syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝑋 < 𝑌𝑋𝑌))
8685imp 406 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → 𝑋𝑌)
87 ftc1cnnc.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
88 ftc1cnnc.le . . . . . . . . . 10 (𝜑𝐴𝐵)
89 ssidd 3940 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
90 ioossre 13069 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ ℝ
9190a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
9287, 2, 4, 88, 89, 91, 26, 19, 6, 11ftc1lem1 25104 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
9386, 92syldan 590 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
9421, 31npcand 11266 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) = (𝐹𝑡))
9594itgeq2dv 24851 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) d𝑡 = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
9621, 31subcld 11262 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝑐)) ∈ ℂ)
9794mpteq2dva 5170 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)))
9897, 59eqtr4d 2781 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) = (𝐹 ↾ (𝑋(,)𝑌)))
99 iblmbf 24837 . . . . . . . . . . . . . 14 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
10026, 99syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ MblFn)
101 mbfres 24713 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑋(,)𝑌) ∈ dom vol) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn)
102100, 22, 101sylancl 585 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn)
10398, 102eqeltrd 2839 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) ∈ MblFn)
10496, 73, 31, 55, 103itgaddnc 35764 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
10595, 104eqtr3d 2780 . . . . . . . . 9 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
106105adantr 480 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
107 itgconst 24888 . . . . . . . . . . . 12 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝑐) ∈ ℂ) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
10823, 52, 30, 107syl3anc 1369 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
109108adantr 480 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
11039adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑋 ∈ ℝ)
11140adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑌 ∈ ℝ)
112 ovolioo 24637 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
113110, 111, 86, 112syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
11434, 113syl5eq 2791 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → (vol‘(𝑋(,)𝑌)) = (𝑌𝑋))
115114oveq2d 7271 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))) = ((𝐹𝑐) · (𝑌𝑋)))
116109, 115eqtrd 2778 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (𝑌𝑋)))
117116oveq2d 7271 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))))
11893, 106, 1173eqtrd 2782 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))))
119118oveq1d 7270 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))) / (𝑌𝑋)))
12083, 78mulcld 10926 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐹𝑐) · (𝑌𝑋)) ∈ ℂ)
12175, 120, 78, 81divdird 11719 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋))))
12283, 78, 81divcan4d 11687 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋)) = (𝐹𝑐))
123122oveq2d 7271 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋))) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)))
124119, 121, 1233eqtrd 2782 . . . . 5 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)))
12582, 83, 124mvrraddd 11317 . . . 4 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)))
126125fveq2d 6760 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) = (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋))))
12775, 78, 81absdivd 15095 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (abs‘(𝑌𝑋))))
12876adantr 480 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
129 0re 10908 . . . . . . 7 0 ∈ ℝ
130 ltle 10994 . . . . . . 7 ((0 ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
131129, 128, 130sylancr 586 . . . . . 6 ((𝜑𝑋 < 𝑌) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
13280, 131mpd 15 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (𝑌𝑋))
133128, 132absidd 15062 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘(𝑌𝑋)) = (𝑌𝑋))
134133oveq2d 7271 . . 3 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (abs‘(𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)))
135126, 127, 1343eqtrd 2782 . 2 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)))
13675abscld 15076 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℝ)
13796abscld 15076 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝑐))) ∈ ℝ)
138 cncfss 23968 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
13964, 66, 138mp2an 688 . . . . . . . . . . 11 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
140 abscncf 23970 . . . . . . . . . . 11 abs ∈ (ℂ–cn→ℝ)
141139, 140sselii 3914 . . . . . . . . . 10 abs ∈ (ℂ–cn→ℂ)
142141a1i 11 . . . . . . . . 9 (𝜑 → abs ∈ (ℂ–cn→ℂ))
143142, 70cncfmpt1f 23983 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
144 cnmbf 24728 . . . . . . . 8 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
14522, 143, 144sylancr 586 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
1461, 73, 145iblabsnc 35768 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ 𝐿1)
147137, 146itgrecl 24867 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 ∈ ℝ)
148147adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 ∈ ℝ)
149 ftc1cnnclem.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
150149rpred 12701 . . . . . 6 (𝜑𝐸 ∈ ℝ)
15176, 150remulcld 10936 . . . . 5 (𝜑 → ((𝑌𝑋) · 𝐸) ∈ ℝ)
152151adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → ((𝑌𝑋) · 𝐸) ∈ ℝ)
15374cjcld 14835 . . . . . . . . 9 (𝜑 → (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ)
154 cncfmptc 23981 . . . . . . . . . 10 (((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
15565, 66, 154mp3an23 1451 . . . . . . . . 9 ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
156153, 155syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
157 nfcv 2906 . . . . . . . . . 10 𝑥((𝐹𝑡) − (𝐹𝑐))
158 nfcsb1v 3853 . . . . . . . . . 10 𝑡𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐))
159 csbeq1a 3842 . . . . . . . . . 10 (𝑡 = 𝑥 → ((𝐹𝑡) − (𝐹𝑐)) = 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))
160157, 158, 159cbvmpt 5181 . . . . . . . . 9 (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))
161160, 70eqeltrrid 2844 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
162156, 161mulcncf 24515 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
163 cnmbf 24728 . . . . . . 7 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
16422, 162, 163sylancr 586 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
16596, 73, 145, 164itgabsnc 35773 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)
166165adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)
167 simpr 484 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 𝑋 < 𝑌)
168150adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℝ)
169 fconstmpt 5640 . . . . . . . . . 10 ((𝑋(,)𝑌) × {𝐸}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸)
170149rpcnd 12703 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
171 iblconst 24887 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
17223, 52, 170, 171syl3anc 1369 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
173169, 172eqeltrrid 2844 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1)
174 cncfmptc 23981 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
17565, 66, 174mp3an23 1451 . . . . . . . . . . . 12 (𝐸 ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
176170, 175syl 17 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
17756, 58, 176, 143cncfmpt2f 23984 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
178 cnmbf 24728 . . . . . . . . . 10 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ MblFn)
17922, 177, 178sylancr 586 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ MblFn)
180168, 173, 137, 146, 179iblsubnc 35765 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ 𝐿1)
181180adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ 𝐿1)
182 ftc1cnnclem.fc . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
183182ralrimiva 3107 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
184183adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
18590, 29sselid 3915 . . . . . . . . . . . . . 14 (𝜑𝑐 ∈ ℝ)
186 ftc1cnnclem.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
187186rpred 12701 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
188185, 187resubcld 11333 . . . . . . . . . . . . 13 (𝜑 → (𝑐𝑅) ∈ ℝ)
189188adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) ∈ ℝ)
19039adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 ∈ ℝ)
191 elioore 13038 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑋(,)𝑌) → 𝑡 ∈ ℝ)
192191adantl 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ ℝ)
193 ftc1cnnclem.x2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑋𝑐)) < 𝑅)
19439, 185, 187absdifltd 15073 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑋𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑋𝑋 < (𝑐 + 𝑅))))
195193, 194mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ((𝑐𝑅) < 𝑋𝑋 < (𝑐 + 𝑅)))
196195simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑐𝑅) < 𝑋)
197196adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) < 𝑋)
198 eliooord 13067 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑡𝑡 < 𝑌))
199198adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑋 < 𝑡𝑡 < 𝑌))
200199simpld 494 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 < 𝑡)
201189, 190, 192, 197, 200lttrd 11066 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) < 𝑡)
20240adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 ∈ ℝ)
203185, 187readdcld 10935 . . . . . . . . . . . . 13 (𝜑 → (𝑐 + 𝑅) ∈ ℝ)
204203adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐 + 𝑅) ∈ ℝ)
205199simprd 495 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < 𝑌)
206 ftc1cnnclem.y2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑌𝑐)) < 𝑅)
20740, 185, 187absdifltd 15073 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑌𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑌𝑌 < (𝑐 + 𝑅))))
208206, 207mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ((𝑐𝑅) < 𝑌𝑌 < (𝑐 + 𝑅)))
209208simprd 495 . . . . . . . . . . . . 13 (𝜑𝑌 < (𝑐 + 𝑅))
210209adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 < (𝑐 + 𝑅))
211192, 202, 204, 205, 210lttrd 11066 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < (𝑐 + 𝑅))
212185adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑐 ∈ ℝ)
213187adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑅 ∈ ℝ)
214192, 212, 213absdifltd 15073 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑡𝑡 < (𝑐 + 𝑅))))
215201, 211, 214mpbir2and 709 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘(𝑡𝑐)) < 𝑅)
216 fvoveq1 7278 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘(𝑦𝑐)) = (abs‘(𝑡𝑐)))
217216breq1d 5080 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘(𝑦𝑐)) < 𝑅 ↔ (abs‘(𝑡𝑐)) < 𝑅))
218217imbrov2fvoveq 7280 . . . . . . . . . . 11 (𝑦 = 𝑡 → (((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸) ↔ ((abs‘(𝑡𝑐)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)))
219218rspcv 3547 . . . . . . . . . 10 (𝑡 ∈ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸) → ((abs‘(𝑡𝑐)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)))
22016, 184, 215, 219syl3c 66 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)
221 difrp 12697 . . . . . . . . . 10 (((abs‘((𝐹𝑡) − (𝐹𝑐))) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+))
222137, 168, 221syl2anc 583 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+))
223220, 222mpbid 231 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+)
224223adantlr 711 . . . . . . 7 (((𝜑𝑋 < 𝑌) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+)
225177adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
226167, 181, 224, 225itggt0cn 35774 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡)
227168, 173, 137, 146, 179itgsubnc 35766 . . . . . . . 8 (𝜑 → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
228227adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
229 itgconst 24888 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
23023, 52, 170, 229syl3anc 1369 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
231230adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
232114oveq2d 7271 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (vol‘(𝑋(,)𝑌))) = (𝐸 · (𝑌𝑋)))
233170, 77mulcomd 10927 . . . . . . . . . 10 (𝜑 → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
234233adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
235231, 232, 2343eqtrd 2782 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = ((𝑌𝑋) · 𝐸))
236235oveq1d 7270 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡) = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
237228, 236eqtrd 2778 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
238226, 237breqtrd 5096 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
239147, 151posdifd 11492 . . . . . 6 (𝜑 → (∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸) ↔ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)))
240239biimpar 477 . . . . 5 ((𝜑 ∧ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸))
241238, 240syldan 590 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸))
242136, 148, 152, 166, 241lelttrd 11063 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸))
243150adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → 𝐸 ∈ ℝ)
244 ltdivmul 11780 . . . 4 (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ((𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋))) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸)))
245136, 243, 128, 80, 244syl112anc 1372 . . 3 ((𝜑𝑋 < 𝑌) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸)))
246242, 245mpbird 256 . 2 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸)
247135, 246eqbrtrd 5092 1 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  csb 3828  cdif 3880  wss 3883  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  +crp 12659  (,)cioo 13008  [,]cicc 13011  ccj 14735  abscabs 14873  TopOpenctopn 17049  fldccnfld 20510   Cn ccn 22283   ×t ctx 22619  cnccncf 23945  vol*covol 24531  volcvol 24532  MblFncmbf 24683  𝐿1cibl 24686  citg 24687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cn 22286  df-cnp 22287  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739
This theorem is referenced by:  ftc1cnnc  35776
  Copyright terms: Public domain W3C validator