Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1cnnclem Structured version   Visualization version   GIF version

Theorem ftc1cnnclem 37692
Description: Lemma for ftc1cnnc 37693; cf. ftc1lem4 25953. The stronger assumptions of ftc1cn 25957 are exploited to make use of weaker theorems. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
ftc1cnnc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cnnc.a (𝜑𝐴 ∈ ℝ)
ftc1cnnc.b (𝜑𝐵 ∈ ℝ)
ftc1cnnc.le (𝜑𝐴𝐵)
ftc1cnnc.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cnnc.i (𝜑𝐹 ∈ 𝐿1)
ftc1cnnclem.c (𝜑𝑐 ∈ (𝐴(,)𝐵))
ftc1cnnclem.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝑐}) ↦ (((𝐺𝑧) − (𝐺𝑐)) / (𝑧𝑐)))
ftc1cnnclem.e (𝜑𝐸 ∈ ℝ+)
ftc1cnnclem.r (𝜑𝑅 ∈ ℝ+)
ftc1cnnclem.fc ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
ftc1cnnclem.x1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
ftc1cnnclem.x2 (𝜑 → (abs‘(𝑋𝑐)) < 𝑅)
ftc1cnnclem.y1 (𝜑𝑌 ∈ (𝐴[,]𝐵))
ftc1cnnclem.y2 (𝜑 → (abs‘(𝑌𝑐)) < 𝑅)
Assertion
Ref Expression
ftc1cnnclem ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) < 𝐸)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑡,𝐴   𝑥,𝐵,𝑦,𝑧,𝑡   𝑥,𝐹,𝑦,𝑧,𝑡   𝜑,𝑥,𝑦,𝑧,𝑡   𝑦,𝐺,𝑧   𝑥,𝑐,𝑦,𝑧,𝑡   𝑥,𝑋,𝑧,𝑡   𝑦,𝐸,𝑡   𝑦,𝐻   𝑥,𝑌,𝑡   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑐)   𝐴(𝑐)   𝐵(𝑐)   𝑅(𝑥,𝑧,𝑡,𝑐)   𝐸(𝑥,𝑧,𝑐)   𝐹(𝑐)   𝐺(𝑥,𝑡,𝑐)   𝐻(𝑥,𝑧,𝑡,𝑐)   𝑋(𝑦,𝑐)   𝑌(𝑦,𝑧,𝑐)

Proof of Theorem ftc1cnnclem
StepHypRef Expression
1 ovexd 7425 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝑐)) ∈ V)
2 ftc1cnnc.a . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
32rexrd 11231 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
4 ftc1cnnc.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ)
54rexrd 11231 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ*)
6 ftc1cnnclem.x1 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ (𝐴[,]𝐵))
7 elicc1 13357 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
87biimpa 476 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵))
98simp2d 1143 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑋 ∈ (𝐴[,]𝐵)) → 𝐴𝑋)
103, 5, 6, 9syl21anc 837 . . . . . . . . . . . 12 (𝜑𝐴𝑋)
11 ftc1cnnclem.y1 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝐴[,]𝐵))
12 iccleub 13369 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑌 ∈ (𝐴[,]𝐵)) → 𝑌𝐵)
133, 5, 11, 12syl3anc 1373 . . . . . . . . . . . 12 (𝜑𝑌𝐵)
14 ioossioo 13409 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝑋𝑌𝐵)) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
153, 5, 10, 13, 14syl22anc 838 . . . . . . . . . . 11 (𝜑 → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
1615sselda 3949 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ (𝐴(,)𝐵))
17 ftc1cnnc.f . . . . . . . . . . . 12 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
18 cncff 24793 . . . . . . . . . . . 12 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
1917, 18syl 17 . . . . . . . . . . 11 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
2019ffvelcdmda 7059 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ ℂ)
2116, 20syldan 591 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑡) ∈ ℂ)
22 ioombl 25473 . . . . . . . . . . 11 (𝑋(,)𝑌) ∈ dom vol
2322a1i 11 . . . . . . . . . 10 (𝜑 → (𝑋(,)𝑌) ∈ dom vol)
24 fvexd 6876 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴(,)𝐵)) → (𝐹𝑡) ∈ V)
2519feqmptd 6932 . . . . . . . . . . 11 (𝜑𝐹 = (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑡)))
26 ftc1cnnc.i . . . . . . . . . . 11 (𝜑𝐹 ∈ 𝐿1)
2725, 26eqeltrrd 2830 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑡)) ∈ 𝐿1)
2815, 23, 24, 27iblss 25713 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ 𝐿1)
29 ftc1cnnclem.c . . . . . . . . . . 11 (𝜑𝑐 ∈ (𝐴(,)𝐵))
3019, 29ffvelcdmd 7060 . . . . . . . . . 10 (𝜑 → (𝐹𝑐) ∈ ℂ)
3130adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐹𝑐) ∈ ℂ)
32 fconstmpt 5703 . . . . . . . . . 10 ((𝑋(,)𝑌) × {(𝐹𝑐)}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐))
33 mblvol 25438 . . . . . . . . . . . . 13 ((𝑋(,)𝑌) ∈ dom vol → (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌)))
3422, 33ax-mp 5 . . . . . . . . . . . 12 (vol‘(𝑋(,)𝑌)) = (vol*‘(𝑋(,)𝑌))
35 ioossicc 13401 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌)
3635a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)𝑌) ⊆ (𝑋[,]𝑌))
37 iccssre 13397 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
382, 4, 37syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
3938, 6sseldd 3950 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ ℝ)
4038, 11sseldd 3950 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ ℝ)
41 iccmbl 25474 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ∈ dom vol)
4239, 40, 41syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑋[,]𝑌) ∈ dom vol)
43 mblss 25439 . . . . . . . . . . . . . 14 ((𝑋[,]𝑌) ∈ dom vol → (𝑋[,]𝑌) ⊆ ℝ)
4442, 43syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑋[,]𝑌) ⊆ ℝ)
45 mblvol 25438 . . . . . . . . . . . . . . 15 ((𝑋[,]𝑌) ∈ dom vol → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
4642, 45syl 17 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) = (vol*‘(𝑋[,]𝑌)))
47 iccvolcl 25475 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
4839, 40, 47syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (vol‘(𝑋[,]𝑌)) ∈ ℝ)
4946, 48eqeltrrd 2830 . . . . . . . . . . . . 13 (𝜑 → (vol*‘(𝑋[,]𝑌)) ∈ ℝ)
50 ovolsscl 25394 . . . . . . . . . . . . 13 (((𝑋(,)𝑌) ⊆ (𝑋[,]𝑌) ∧ (𝑋[,]𝑌) ⊆ ℝ ∧ (vol*‘(𝑋[,]𝑌)) ∈ ℝ) → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
5136, 44, 49, 50syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (vol*‘(𝑋(,)𝑌)) ∈ ℝ)
5234, 51eqeltrid 2833 . . . . . . . . . . 11 (𝜑 → (vol‘(𝑋(,)𝑌)) ∈ ℝ)
53 iblconst 25726 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝑐) ∈ ℂ) → ((𝑋(,)𝑌) × {(𝐹𝑐)}) ∈ 𝐿1)
5423, 52, 30, 53syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {(𝐹𝑐)}) ∈ 𝐿1)
5532, 54eqeltrrid 2834 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ 𝐿1)
56 eqid 2730 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5756subcn 24762 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5857a1i 11 . . . . . . . . . . 11 (𝜑 → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
5919, 15feqresmpt 6933 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)))
60 rescncf 24797 . . . . . . . . . . . . 13 ((𝑋(,)𝑌) ⊆ (𝐴(,)𝐵) → (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ)))
6115, 17, 60sylc 65 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
6259, 61eqeltrrd 2830 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
63 ioossre 13375 . . . . . . . . . . . . . 14 (𝑋(,)𝑌) ⊆ ℝ
64 ax-resscn 11132 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
6563, 64sstri 3959 . . . . . . . . . . . . 13 (𝑋(,)𝑌) ⊆ ℂ
66 ssid 3972 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
67 cncfmptc 24812 . . . . . . . . . . . . 13 (((𝐹𝑐) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
6865, 66, 67mp3an23 1455 . . . . . . . . . . . 12 ((𝐹𝑐) ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
6930, 68syl 17 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑐)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
7056, 58, 62, 69cncfmpt2f 24815 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
71 cnmbf 25567 . . . . . . . . . 10 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ MblFn)
7222, 70, 71sylancr 587 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ MblFn)
7321, 28, 31, 55, 72iblsubnc 37682 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) ∈ 𝐿1)
741, 73itgcl 25692 . . . . . . 7 (𝜑 → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 ∈ ℂ)
7574adantr 480 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 ∈ ℂ)
7640, 39resubcld 11613 . . . . . . . 8 (𝜑 → (𝑌𝑋) ∈ ℝ)
7776recnd 11209 . . . . . . 7 (𝜑 → (𝑌𝑋) ∈ ℂ)
7877adantr 480 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℂ)
7939, 40posdifd 11772 . . . . . . . 8 (𝜑 → (𝑋 < 𝑌 ↔ 0 < (𝑌𝑋)))
8079biimpa 476 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 0 < (𝑌𝑋))
8180gt0ne0d 11749 . . . . . 6 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ≠ 0)
8275, 78, 81divcld 11965 . . . . 5 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) ∈ ℂ)
8330adantr 480 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝐹𝑐) ∈ ℂ)
84 ltle 11269 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 < 𝑌𝑋𝑌))
8539, 40, 84syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋 < 𝑌𝑋𝑌))
8685imp 406 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → 𝑋𝑌)
87 ftc1cnnc.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
88 ftc1cnnc.le . . . . . . . . . 10 (𝜑𝐴𝐵)
89 ssidd 3973 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
90 ioossre 13375 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ ℝ
9190a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
9287, 2, 4, 88, 89, 91, 26, 19, 6, 11ftc1lem1 25949 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
9386, 92syldan 591 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
9421, 31npcand 11544 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) = (𝐹𝑡))
9594itgeq2dv 25690 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) d𝑡 = ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡)
9621, 31subcld 11540 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((𝐹𝑡) − (𝐹𝑐)) ∈ ℂ)
9794mpteq2dva 5203 . . . . . . . . . . . . 13 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) = (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐹𝑡)))
9897, 59eqtr4d 2768 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) = (𝐹 ↾ (𝑋(,)𝑌)))
99 iblmbf 25675 . . . . . . . . . . . . . 14 (𝐹 ∈ 𝐿1𝐹 ∈ MblFn)
10026, 99syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ MblFn)
101 mbfres 25552 . . . . . . . . . . . . 13 ((𝐹 ∈ MblFn ∧ (𝑋(,)𝑌) ∈ dom vol) → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn)
102100, 22, 101sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑋(,)𝑌)) ∈ MblFn)
10398, 102eqeltrd 2829 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐))) ∈ MblFn)
10496, 73, 31, 55, 103itgaddnc 37681 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)(((𝐹𝑡) − (𝐹𝑐)) + (𝐹𝑐)) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
10595, 104eqtr3d 2767 . . . . . . . . 9 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
106105adantr 480 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑡) d𝑡 = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡))
107 itgconst 25727 . . . . . . . . . . . 12 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ (𝐹𝑐) ∈ ℂ) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
10823, 52, 30, 107syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
109108adantr 480 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))))
11039adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑋 ∈ ℝ)
11140adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋 < 𝑌) → 𝑌 ∈ ℝ)
112 ovolioo 25476 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
113110, 111, 86, 112syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑋 < 𝑌) → (vol*‘(𝑋(,)𝑌)) = (𝑌𝑋))
11434, 113eqtrid 2777 . . . . . . . . . . 11 ((𝜑𝑋 < 𝑌) → (vol‘(𝑋(,)𝑌)) = (𝑌𝑋))
115114oveq2d 7406 . . . . . . . . . 10 ((𝜑𝑋 < 𝑌) → ((𝐹𝑐) · (vol‘(𝑋(,)𝑌))) = ((𝐹𝑐) · (𝑌𝑋)))
116109, 115eqtrd 2765 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡 = ((𝐹𝑐) · (𝑌𝑋)))
117116oveq2d 7406 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ∫(𝑋(,)𝑌)(𝐹𝑐) d𝑡) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))))
11893, 106, 1173eqtrd 2769 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐺𝑌) − (𝐺𝑋)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))))
119118oveq1d 7405 . . . . . 6 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))) / (𝑌𝑋)))
12083, 78mulcld 11201 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ((𝐹𝑐) · (𝑌𝑋)) ∈ ℂ)
12175, 120, 78, 81divdird 12003 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 + ((𝐹𝑐) · (𝑌𝑋))) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋))))
12283, 78, 81divcan4d 11971 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋)) = (𝐹𝑐))
123122oveq2d 7406 . . . . . 6 ((𝜑𝑋 < 𝑌) → ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (((𝐹𝑐) · (𝑌𝑋)) / (𝑌𝑋))) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)))
124119, 121, 1233eqtrd 2769 . . . . 5 ((𝜑𝑋 < 𝑌) → (((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) = ((∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)) + (𝐹𝑐)))
12582, 83, 124mvrraddd 11597 . . . 4 ((𝜑𝑋 < 𝑌) → ((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐)) = (∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋)))
126125fveq2d 6865 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) = (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋))))
12775, 78, 81absdivd 15431 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘(∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡 / (𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (abs‘(𝑌𝑋))))
12876adantr 480 . . . . 5 ((𝜑𝑋 < 𝑌) → (𝑌𝑋) ∈ ℝ)
129 0re 11183 . . . . . . 7 0 ∈ ℝ
130 ltle 11269 . . . . . . 7 ((0 ∈ ℝ ∧ (𝑌𝑋) ∈ ℝ) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
131129, 128, 130sylancr 587 . . . . . 6 ((𝜑𝑋 < 𝑌) → (0 < (𝑌𝑋) → 0 ≤ (𝑌𝑋)))
13280, 131mpd 15 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 ≤ (𝑌𝑋))
133128, 132absidd 15396 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘(𝑌𝑋)) = (𝑌𝑋))
134133oveq2d 7406 . . 3 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (abs‘(𝑌𝑋))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)))
135126, 127, 1343eqtrd 2769 . 2 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) = ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)))
13675abscld 15412 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℝ)
13796abscld 15412 . . . . . 6 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝑐))) ∈ ℝ)
138 cncfss 24799 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
13964, 66, 138mp2an 692 . . . . . . . . . . 11 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
140 abscncf 24801 . . . . . . . . . . 11 abs ∈ (ℂ–cn→ℝ)
141139, 140sselii 3946 . . . . . . . . . 10 abs ∈ (ℂ–cn→ℂ)
142141a1i 11 . . . . . . . . 9 (𝜑 → abs ∈ (ℂ–cn→ℂ))
143142, 70cncfmpt1f 24814 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
144 cnmbf 25567 . . . . . . . 8 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
14522, 143, 144sylancr 587 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
1461, 73, 145iblabsnc 37685 . . . . . 6 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ 𝐿1)
147137, 146itgrecl 25706 . . . . 5 (𝜑 → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 ∈ ℝ)
148147adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 ∈ ℝ)
149 ftc1cnnclem.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
150149rpred 13002 . . . . . 6 (𝜑𝐸 ∈ ℝ)
15176, 150remulcld 11211 . . . . 5 (𝜑 → ((𝑌𝑋) · 𝐸) ∈ ℝ)
152151adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → ((𝑌𝑋) · 𝐸) ∈ ℝ)
15374cjcld 15169 . . . . . . . . 9 (𝜑 → (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ)
154 cncfmptc 24812 . . . . . . . . . 10 (((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
15565, 66, 154mp3an23 1455 . . . . . . . . 9 ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℂ → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
156153, 155syl 17 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ (∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
157 nfcv 2892 . . . . . . . . . 10 𝑥((𝐹𝑡) − (𝐹𝑐))
158 nfcsb1v 3889 . . . . . . . . . 10 𝑡𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐))
159 csbeq1a 3879 . . . . . . . . . 10 (𝑡 = 𝑥 → ((𝐹𝑡) − (𝐹𝑐)) = 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))
160157, 158, 159cbvmpt 5212 . . . . . . . . 9 (𝑡 ∈ (𝑋(,)𝑌) ↦ ((𝐹𝑡) − (𝐹𝑐))) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))
161160, 70eqeltrrid 2834 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
162156, 161mulcncf 25353 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
163 cnmbf 25567 . . . . . . 7 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
16422, 162, 163sylancr 587 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ ((∗‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) · 𝑥 / 𝑡((𝐹𝑡) − (𝐹𝑐)))) ∈ MblFn)
16596, 73, 145, 164itgabsnc 37690 . . . . 5 (𝜑 → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)
166165adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ≤ ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)
167 simpr 484 . . . . . . 7 ((𝜑𝑋 < 𝑌) → 𝑋 < 𝑌)
168150adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝐸 ∈ ℝ)
169 fconstmpt 5703 . . . . . . . . . 10 ((𝑋(,)𝑌) × {𝐸}) = (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸)
170149rpcnd 13004 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℂ)
171 iblconst 25726 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
17223, 52, 170, 171syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((𝑋(,)𝑌) × {𝐸}) ∈ 𝐿1)
173169, 172eqeltrrid 2834 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ 𝐿1)
174 cncfmptc 24812 . . . . . . . . . . . . 13 ((𝐸 ∈ ℂ ∧ (𝑋(,)𝑌) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
17565, 66, 174mp3an23 1455 . . . . . . . . . . . 12 (𝐸 ∈ ℂ → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
176170, 175syl 17 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ 𝐸) ∈ ((𝑋(,)𝑌)–cn→ℂ))
17756, 58, 176, 143cncfmpt2f 24815 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
178 cnmbf 25567 . . . . . . . . . 10 (((𝑋(,)𝑌) ∈ dom vol ∧ (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ)) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ MblFn)
17922, 177, 178sylancr 587 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ MblFn)
180168, 173, 137, 146, 179iblsubnc 37682 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ 𝐿1)
181180adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ 𝐿1)
182 ftc1cnnclem.fc . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
183182ralrimiva 3126 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
184183adantr 480 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸))
18590, 29sselid 3947 . . . . . . . . . . . . . 14 (𝜑𝑐 ∈ ℝ)
186 ftc1cnnclem.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ ℝ+)
187186rpred 13002 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
188185, 187resubcld 11613 . . . . . . . . . . . . 13 (𝜑 → (𝑐𝑅) ∈ ℝ)
189188adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) ∈ ℝ)
19039adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 ∈ ℝ)
191 elioore 13343 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑋(,)𝑌) → 𝑡 ∈ ℝ)
192191adantl 481 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 ∈ ℝ)
193 ftc1cnnclem.x2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑋𝑐)) < 𝑅)
19439, 185, 187absdifltd 15409 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑋𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑋𝑋 < (𝑐 + 𝑅))))
195193, 194mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → ((𝑐𝑅) < 𝑋𝑋 < (𝑐 + 𝑅)))
196195simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑐𝑅) < 𝑋)
197196adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) < 𝑋)
198 eliooord 13373 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑋(,)𝑌) → (𝑋 < 𝑡𝑡 < 𝑌))
199198adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑋 < 𝑡𝑡 < 𝑌))
200199simpld 494 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑋 < 𝑡)
201189, 190, 192, 197, 200lttrd 11342 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐𝑅) < 𝑡)
20240adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 ∈ ℝ)
203185, 187readdcld 11210 . . . . . . . . . . . . 13 (𝜑 → (𝑐 + 𝑅) ∈ ℝ)
204203adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝑐 + 𝑅) ∈ ℝ)
205199simprd 495 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < 𝑌)
206 ftc1cnnclem.y2 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑌𝑐)) < 𝑅)
20740, 185, 187absdifltd 15409 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝑌𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑌𝑌 < (𝑐 + 𝑅))))
208206, 207mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → ((𝑐𝑅) < 𝑌𝑌 < (𝑐 + 𝑅)))
209208simprd 495 . . . . . . . . . . . . 13 (𝜑𝑌 < (𝑐 + 𝑅))
210209adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑌 < (𝑐 + 𝑅))
211192, 202, 204, 205, 210lttrd 11342 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑡 < (𝑐 + 𝑅))
212185adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑐 ∈ ℝ)
213187adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → 𝑅 ∈ ℝ)
214192, 212, 213absdifltd 15409 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘(𝑡𝑐)) < 𝑅 ↔ ((𝑐𝑅) < 𝑡𝑡 < (𝑐 + 𝑅))))
215201, 211, 214mpbir2and 713 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘(𝑡𝑐)) < 𝑅)
216 fvoveq1 7413 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (abs‘(𝑦𝑐)) = (abs‘(𝑡𝑐)))
217216breq1d 5120 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((abs‘(𝑦𝑐)) < 𝑅 ↔ (abs‘(𝑡𝑐)) < 𝑅))
218217imbrov2fvoveq 7415 . . . . . . . . . . 11 (𝑦 = 𝑡 → (((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸) ↔ ((abs‘(𝑡𝑐)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)))
219218rspcv 3587 . . . . . . . . . 10 (𝑡 ∈ (𝐴(,)𝐵) → (∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝑐)) < 𝑅 → (abs‘((𝐹𝑦) − (𝐹𝑐))) < 𝐸) → ((abs‘(𝑡𝑐)) < 𝑅 → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)))
22016, 184, 215, 219syl3c 66 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸)
221 difrp 12998 . . . . . . . . . 10 (((abs‘((𝐹𝑡) − (𝐹𝑐))) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+))
222137, 168, 221syl2anc 584 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → ((abs‘((𝐹𝑡) − (𝐹𝑐))) < 𝐸 ↔ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+))
223220, 222mpbid 232 . . . . . . . 8 ((𝜑𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+)
224223adantlr 715 . . . . . . 7 (((𝜑𝑋 < 𝑌) ∧ 𝑡 ∈ (𝑋(,)𝑌)) → (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) ∈ ℝ+)
225177adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (𝑡 ∈ (𝑋(,)𝑌) ↦ (𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐))))) ∈ ((𝑋(,)𝑌)–cn→ℂ))
226167, 181, 224, 225itggt0cn 37691 . . . . . 6 ((𝜑𝑋 < 𝑌) → 0 < ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡)
227168, 173, 137, 146, 179itgsubnc 37683 . . . . . . . 8 (𝜑 → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
228227adantr 480 . . . . . . 7 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
229 itgconst 25727 . . . . . . . . . . 11 (((𝑋(,)𝑌) ∈ dom vol ∧ (vol‘(𝑋(,)𝑌)) ∈ ℝ ∧ 𝐸 ∈ ℂ) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
23023, 52, 170, 229syl3anc 1373 . . . . . . . . . 10 (𝜑 → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
231230adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = (𝐸 · (vol‘(𝑋(,)𝑌))))
232114oveq2d 7406 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (vol‘(𝑋(,)𝑌))) = (𝐸 · (𝑌𝑋)))
233170, 77mulcomd 11202 . . . . . . . . . 10 (𝜑 → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
234233adantr 480 . . . . . . . . 9 ((𝜑𝑋 < 𝑌) → (𝐸 · (𝑌𝑋)) = ((𝑌𝑋) · 𝐸))
235231, 232, 2343eqtrd 2769 . . . . . . . 8 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)𝐸 d𝑡 = ((𝑌𝑋) · 𝐸))
236235oveq1d 7405 . . . . . . 7 ((𝜑𝑋 < 𝑌) → (∫(𝑋(,)𝑌)𝐸 d𝑡 − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡) = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
237228, 236eqtrd 2765 . . . . . 6 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(𝐸 − (abs‘((𝐹𝑡) − (𝐹𝑐)))) d𝑡 = (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
238226, 237breqtrd 5136 . . . . 5 ((𝜑𝑋 < 𝑌) → 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡))
239147, 151posdifd 11772 . . . . . 6 (𝜑 → (∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸) ↔ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)))
240239biimpar 477 . . . . 5 ((𝜑 ∧ 0 < (((𝑌𝑋) · 𝐸) − ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡)) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸))
241238, 240syldan 591 . . . 4 ((𝜑𝑋 < 𝑌) → ∫(𝑋(,)𝑌)(abs‘((𝐹𝑡) − (𝐹𝑐))) d𝑡 < ((𝑌𝑋) · 𝐸))
242136, 148, 152, 166, 241lelttrd 11339 . . 3 ((𝜑𝑋 < 𝑌) → (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸))
243150adantr 480 . . . 4 ((𝜑𝑋 < 𝑌) → 𝐸 ∈ ℝ)
244 ltdivmul 12065 . . . 4 (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) ∈ ℝ ∧ 𝐸 ∈ ℝ ∧ ((𝑌𝑋) ∈ ℝ ∧ 0 < (𝑌𝑋))) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸)))
245136, 243, 128, 80, 244syl112anc 1376 . . 3 ((𝜑𝑋 < 𝑌) → (((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸 ↔ (abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) < ((𝑌𝑋) · 𝐸)))
246242, 245mpbird 257 . 2 ((𝜑𝑋 < 𝑌) → ((abs‘∫(𝑋(,)𝑌)((𝐹𝑡) − (𝐹𝑐)) d𝑡) / (𝑌𝑋)) < 𝐸)
247135, 246eqbrtrd 5132 1 ((𝜑𝑋 < 𝑌) → (abs‘((((𝐺𝑌) − (𝐺𝑋)) / (𝑌𝑋)) − (𝐹𝑐))) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  csb 3865  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  +crp 12958  (,)cioo 13313  [,]cicc 13316  ccj 15069  abscabs 15207  TopOpenctopn 17391  fldccnfld 21271   Cn ccn 23118   ×t ctx 23454  cnccncf 24776  vol*covol 25370  volcvol 25371  MblFncmbf 25522  𝐿1cibl 25525  citg 25526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578
This theorem is referenced by:  ftc1cnnc  37693
  Copyright terms: Public domain W3C validator