MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem6 Structured version   Visualization version   GIF version

Theorem ftc1lem6 24647
Description: Lemma for ftc1 24648. (Contributed by Mario Carneiro, 14-Aug-2014.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
Assertion
Ref Expression
ftc1lem6 (𝜑 → (𝐹𝐶) ∈ (𝐻 lim 𝐶))
Distinct variable groups:   𝑥,𝑡,𝑧,𝐶   𝑡,𝐷,𝑥,𝑧   𝑧,𝐺   𝑡,𝐴,𝑥,𝑧   𝑡,𝐵,𝑥,𝑧   𝜑,𝑡,𝑥,𝑧   𝑡,𝐹,𝑥,𝑧   𝑥,𝐿,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑧,𝑡)   𝐾(𝑥,𝑧,𝑡)   𝐿(𝑡)

Proof of Theorem ftc1lem6
Dummy variables 𝑠 𝑢 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2 ftc1.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 ftc1.b . . . 4 (𝜑𝐵 ∈ ℝ)
4 ftc1.le . . . 4 (𝜑𝐴𝐵)
5 ftc1.s . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
6 ftc1.d . . . 4 (𝜑𝐷 ⊆ ℝ)
7 ftc1.i . . . 4 (𝜑𝐹 ∈ 𝐿1)
8 ftc1.c . . . 4 (𝜑𝐶 ∈ (𝐴(,)𝐵))
9 ftc1.f . . . 4 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
10 ftc1.j . . . 4 𝐽 = (𝐿t ℝ)
11 ftc1.k . . . 4 𝐾 = (𝐿t 𝐷)
12 ftc1.l . . . 4 𝐿 = (TopOpen‘ℂfld)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ftc1lem3 24644 . . 3 (𝜑𝐹:𝐷⟶ℂ)
145, 8sseldd 3954 . . 3 (𝜑𝐶𝐷)
1513, 14ffvelrnd 6843 . 2 (𝜑 → (𝐹𝐶) ∈ ℂ)
16 cnxmet 23381 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
17 ax-resscn 10592 . . . . . . . 8 ℝ ⊆ ℂ
186, 17sstrdi 3965 . . . . . . 7 (𝜑𝐷 ⊆ ℂ)
1918adantr 484 . . . . . 6 ((𝜑𝑤 ∈ ℝ+) → 𝐷 ⊆ ℂ)
20 xmetres2 22971 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2116, 19, 20sylancr 590 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2216a1i 11 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
23 eqid 2824 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
2412cnfldtopn 23390 . . . . . . . . . . . 12 𝐿 = (MetOpen‘(abs ∘ − ))
25 eqid 2824 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
2623, 24, 25metrest 23134 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐿t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2716, 18, 26sylancr 590 . . . . . . . . . 10 (𝜑 → (𝐿t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2811, 27syl5eq 2871 . . . . . . . . 9 (𝜑𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2928oveq1d 7164 . . . . . . . 8 (𝜑 → (𝐾 CnP 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿))
3029fveq1d 6663 . . . . . . 7 (𝜑 → ((𝐾 CnP 𝐿)‘𝐶) = (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
319, 30eleqtrd 2918 . . . . . 6 (𝜑𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
3231adantr 484 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
33 simpr 488 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
3425, 24metcnpi2 23155 . . . . 5 (((((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶) ∧ 𝑤 ∈ ℝ+)) → ∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤))
3521, 22, 32, 33, 34syl22anc 837 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤))
36 simpr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝑦𝐷)
3714ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝐶𝐷)
3836, 37ovresd 7309 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) = (𝑦(abs ∘ − )𝐶))
3918adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐷 ⊆ ℂ)
4039sselda 3953 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
41 iccssre 12816 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
422, 3, 41syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
4342, 17sstrdi 3965 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
44 ioossicc 12820 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
4544, 8sseldi 3951 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (𝐴[,]𝐵))
4643, 45sseldd 3954 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℂ)
4746ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝐶 ∈ ℂ)
48 eqid 2824 . . . . . . . . . . . . 13 (abs ∘ − ) = (abs ∘ − )
4948cnmetdval 23379 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦(abs ∘ − )𝐶) = (abs‘(𝑦𝐶)))
5040, 47, 49syl2anc 587 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦(abs ∘ − )𝐶) = (abs‘(𝑦𝐶)))
5138, 50eqtrd 2859 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) = (abs‘(𝑦𝐶)))
5251breq1d 5062 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 ↔ (abs‘(𝑦𝐶)) < 𝑣))
5313adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐹:𝐷⟶ℂ)
5453ffvelrnda 6842 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℂ)
5515ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝐹𝐶) ∈ ℂ)
5648cnmetdval 23379 . . . . . . . . . . 11 (((𝐹𝑦) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) = (abs‘((𝐹𝑦) − (𝐹𝐶))))
5754, 55, 56syl2anc 587 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) = (abs‘((𝐹𝑦) − (𝐹𝐶))))
5857breq1d 5062 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤 ↔ (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))
5952, 58imbi12d 348 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) ↔ ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)))
6059ralbidva 3191 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) ↔ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)))
61 simprll 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
62 eldifsni 4707 . . . . . . . . . . . . 13 (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) → 𝑠𝐶)
6361, 62syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠𝐶)
642ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐴 ∈ ℝ)
653ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐵 ∈ ℝ)
664ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐴𝐵)
675ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (𝐴(,)𝐵) ⊆ 𝐷)
686ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐷 ⊆ ℝ)
697ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐹 ∈ 𝐿1)
708ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐶 ∈ (𝐴(,)𝐵))
719ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
72 ftc1.h . . . . . . . . . . . . 13 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
73 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑤 ∈ ℝ+)
74 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑣 ∈ ℝ+)
75 simprlr 779 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))
76 fvoveq1 7172 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (abs‘(𝑦𝐶)) = (abs‘(𝑢𝐶)))
7776breq1d 5062 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → ((abs‘(𝑦𝐶)) < 𝑣 ↔ (abs‘(𝑢𝐶)) < 𝑣))
7877imbrov2fvoveq 7174 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) ↔ ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤)))
7978rspccva 3608 . . . . . . . . . . . . . 14 ((∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) ∧ 𝑢𝐷) → ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤))
8075, 79sylan 583 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) ∧ 𝑢𝐷) → ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤))
8161eldifad 3931 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠 ∈ (𝐴[,]𝐵))
82 simprr 772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (abs‘(𝑠𝐶)) < 𝑣)
831, 64, 65, 66, 67, 68, 69, 70, 71, 10, 11, 12, 72, 73, 74, 80, 81, 82ftc1lem5 24646 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) ∧ 𝑠𝐶) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)
8463, 83mpdan 686 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)
8584expr 460 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))) → ((abs‘(𝑠𝐶)) < 𝑣 → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
8685adantld 494 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))) → ((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
8786expr 460 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) → ((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
8887ralrimdva 3184 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
8960, 88sylbid 243 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9089anassrs 471 . . . . 5 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑣 ∈ ℝ+) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9190reximdva 3266 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∃𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9235, 91mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
9392ralrimiva 3177 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
941, 2, 3, 4, 5, 6, 7, 13ftc1lem2 24642 . . . . 5 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
9594, 43, 45dvlem 24502 . . . 4 ((𝜑𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
9695, 72fmptd 6869 . . 3 (𝜑𝐻:((𝐴[,]𝐵) ∖ {𝐶})⟶ℂ)
9743ssdifssd 4105 . . 3 (𝜑 → ((𝐴[,]𝐵) ∖ {𝐶}) ⊆ ℂ)
9896, 97, 46ellimc3 24485 . 2 (𝜑 → ((𝐹𝐶) ∈ (𝐻 lim 𝐶) ↔ ((𝐹𝐶) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))))
9915, 93, 98mpbir2and 712 1 (𝜑 → (𝐹𝐶) ∈ (𝐻 lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  cdif 3916  wss 3919  {csn 4550   class class class wbr 5052  cmpt 5132   × cxp 5540  cres 5544  ccom 5546  wf 6339  cfv 6343  (class class class)co 7149  cc 10533  cr 10534   < clt 10673  cle 10674  cmin 10868   / cdiv 11295  +crp 12386  (,)cioo 12735  [,]cicc 12738  abscabs 14593  t crest 16694  TopOpenctopn 16695  ∞Metcxmet 20530  MetOpencmopn 20535  fldccnfld 20545   CnP ccnp 21833  𝐿1cibl 24224  citg 24225   lim climc 24468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cc 9855  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-symdif 4204  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-omul 8103  df-er 8285  df-map 8404  df-pm 8405  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-dju 9327  df-card 9365  df-acn 9368  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ioo 12739  df-ioc 12740  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-fl 13166  df-mod 13242  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24071  df-vol 24072  df-mbf 24226  df-itg1 24227  df-itg2 24228  df-ibl 24229  df-itg 24230  df-0p 24277  df-limc 24472
This theorem is referenced by:  ftc1  24648
  Copyright terms: Public domain W3C validator