MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem6 Structured version   Visualization version   GIF version

Theorem ftc1lem6 25946
Description: Lemma for ftc1 25947. (Contributed by Mario Carneiro, 14-Aug-2014.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
Assertion
Ref Expression
ftc1lem6 (𝜑 → (𝐹𝐶) ∈ (𝐻 lim 𝐶))
Distinct variable groups:   𝑥,𝑡,𝑧,𝐶   𝑡,𝐷,𝑥,𝑧   𝑧,𝐺   𝑡,𝐴,𝑥,𝑧   𝑡,𝐵,𝑥,𝑧   𝜑,𝑡,𝑥,𝑧   𝑡,𝐹,𝑥,𝑧   𝑥,𝐿,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑧,𝑡)   𝐾(𝑥,𝑧,𝑡)   𝐿(𝑡)

Proof of Theorem ftc1lem6
Dummy variables 𝑠 𝑢 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2 ftc1.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 ftc1.b . . . 4 (𝜑𝐵 ∈ ℝ)
4 ftc1.le . . . 4 (𝜑𝐴𝐵)
5 ftc1.s . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
6 ftc1.d . . . 4 (𝜑𝐷 ⊆ ℝ)
7 ftc1.i . . . 4 (𝜑𝐹 ∈ 𝐿1)
8 ftc1.c . . . 4 (𝜑𝐶 ∈ (𝐴(,)𝐵))
9 ftc1.f . . . 4 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
10 ftc1.j . . . 4 𝐽 = (𝐿t ℝ)
11 ftc1.k . . . 4 𝐾 = (𝐿t 𝐷)
12 ftc1.l . . . 4 𝐿 = (TopOpen‘ℂfld)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ftc1lem3 25943 . . 3 (𝜑𝐹:𝐷⟶ℂ)
145, 8sseldd 3936 . . 3 (𝜑𝐶𝐷)
1513, 14ffvelcdmd 7019 . 2 (𝜑 → (𝐹𝐶) ∈ ℂ)
16 cnxmet 24658 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
17 ax-resscn 11066 . . . . . . . 8 ℝ ⊆ ℂ
186, 17sstrdi 3948 . . . . . . 7 (𝜑𝐷 ⊆ ℂ)
1918adantr 480 . . . . . 6 ((𝜑𝑤 ∈ ℝ+) → 𝐷 ⊆ ℂ)
20 xmetres2 24247 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2116, 19, 20sylancr 587 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2216a1i 11 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
23 eqid 2729 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
2412cnfldtopn 24667 . . . . . . . . . . . 12 𝐿 = (MetOpen‘(abs ∘ − ))
25 eqid 2729 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
2623, 24, 25metrest 24410 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐿t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2716, 18, 26sylancr 587 . . . . . . . . . 10 (𝜑 → (𝐿t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2811, 27eqtrid 2776 . . . . . . . . 9 (𝜑𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2928oveq1d 7364 . . . . . . . 8 (𝜑 → (𝐾 CnP 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿))
3029fveq1d 6824 . . . . . . 7 (𝜑 → ((𝐾 CnP 𝐿)‘𝐶) = (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
319, 30eleqtrd 2830 . . . . . 6 (𝜑𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
3231adantr 480 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
33 simpr 484 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
3425, 24metcnpi2 24431 . . . . 5 (((((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶) ∧ 𝑤 ∈ ℝ+)) → ∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤))
3521, 22, 32, 33, 34syl22anc 838 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤))
36 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝑦𝐷)
3714ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝐶𝐷)
3836, 37ovresd 7516 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) = (𝑦(abs ∘ − )𝐶))
3918adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐷 ⊆ ℂ)
4039sselda 3935 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
41 iccssre 13332 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
422, 3, 41syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
4342, 17sstrdi 3948 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
44 ioossicc 13336 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
4544, 8sselid 3933 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (𝐴[,]𝐵))
4643, 45sseldd 3936 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℂ)
4746ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝐶 ∈ ℂ)
48 eqid 2729 . . . . . . . . . . . . 13 (abs ∘ − ) = (abs ∘ − )
4948cnmetdval 24656 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦(abs ∘ − )𝐶) = (abs‘(𝑦𝐶)))
5040, 47, 49syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦(abs ∘ − )𝐶) = (abs‘(𝑦𝐶)))
5138, 50eqtrd 2764 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) = (abs‘(𝑦𝐶)))
5251breq1d 5102 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 ↔ (abs‘(𝑦𝐶)) < 𝑣))
5313adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐹:𝐷⟶ℂ)
5453ffvelcdmda 7018 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℂ)
5515ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝐹𝐶) ∈ ℂ)
5648cnmetdval 24656 . . . . . . . . . . 11 (((𝐹𝑦) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) = (abs‘((𝐹𝑦) − (𝐹𝐶))))
5754, 55, 56syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) = (abs‘((𝐹𝑦) − (𝐹𝐶))))
5857breq1d 5102 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤 ↔ (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))
5952, 58imbi12d 344 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) ↔ ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)))
6059ralbidva 3150 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) ↔ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)))
61 simprll 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
62 eldifsni 4741 . . . . . . . . . . . . 13 (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) → 𝑠𝐶)
6361, 62syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠𝐶)
642ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐴 ∈ ℝ)
653ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐵 ∈ ℝ)
664ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐴𝐵)
675ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (𝐴(,)𝐵) ⊆ 𝐷)
686ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐷 ⊆ ℝ)
697ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐹 ∈ 𝐿1)
708ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐶 ∈ (𝐴(,)𝐵))
719ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
72 ftc1.h . . . . . . . . . . . . 13 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
73 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑤 ∈ ℝ+)
74 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑣 ∈ ℝ+)
75 simprlr 779 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))
76 fvoveq1 7372 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (abs‘(𝑦𝐶)) = (abs‘(𝑢𝐶)))
7776breq1d 5102 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → ((abs‘(𝑦𝐶)) < 𝑣 ↔ (abs‘(𝑢𝐶)) < 𝑣))
7877imbrov2fvoveq 7374 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) ↔ ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤)))
7978rspccva 3576 . . . . . . . . . . . . . 14 ((∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) ∧ 𝑢𝐷) → ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤))
8075, 79sylan 580 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) ∧ 𝑢𝐷) → ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤))
8161eldifad 3915 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠 ∈ (𝐴[,]𝐵))
82 simprr 772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (abs‘(𝑠𝐶)) < 𝑣)
831, 64, 65, 66, 67, 68, 69, 70, 71, 10, 11, 12, 72, 73, 74, 80, 81, 82ftc1lem5 25945 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) ∧ 𝑠𝐶) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)
8463, 83mpdan 687 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)
8584expr 456 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))) → ((abs‘(𝑠𝐶)) < 𝑣 → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
8685adantld 490 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))) → ((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
8786expr 456 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) → ((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
8887ralrimdva 3129 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
8960, 88sylbid 240 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9089anassrs 467 . . . . 5 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑣 ∈ ℝ+) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9190reximdva 3142 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∃𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9235, 91mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
9392ralrimiva 3121 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
941, 2, 3, 4, 5, 6, 7, 13ftc1lem2 25941 . . . . 5 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
9594, 43, 45dvlem 25795 . . . 4 ((𝜑𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
9695, 72fmptd 7048 . . 3 (𝜑𝐻:((𝐴[,]𝐵) ∖ {𝐶})⟶ℂ)
9743ssdifssd 4098 . . 3 (𝜑 → ((𝐴[,]𝐵) ∖ {𝐶}) ⊆ ℂ)
9896, 97, 46ellimc3 25778 . 2 (𝜑 → ((𝐹𝐶) ∈ (𝐻 lim 𝐶) ↔ ((𝐹𝐶) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))))
9915, 93, 98mpbir2and 713 1 (𝜑 → (𝐹𝐶) ∈ (𝐻 lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3900  wss 3903  {csn 4577   class class class wbr 5092  cmpt 5173   × cxp 5617  cres 5621  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  +crp 12893  (,)cioo 13248  [,]cicc 13251  abscabs 15141  t crest 17324  TopOpenctopn 17325  ∞Metcxmet 21246  MetOpencmopn 21251  fldccnfld 21261   CnP ccnp 23110  𝐿1cibl 25516  citg 25517   lim climc 25761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-symdif 4204  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-itg 25522  df-0p 25569  df-limc 25765
This theorem is referenced by:  ftc1  25947
  Copyright terms: Public domain W3C validator