MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem6 Structured version   Visualization version   GIF version

Theorem ftc1lem6 24017
Description: Lemma for ftc1 24018. (Contributed by Mario Carneiro, 14-Aug-2014.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
Assertion
Ref Expression
ftc1lem6 (𝜑 → (𝐹𝐶) ∈ (𝐻 lim 𝐶))
Distinct variable groups:   𝑥,𝑡,𝑧,𝐶   𝑡,𝐷,𝑥,𝑧   𝑧,𝐺   𝑡,𝐴,𝑥,𝑧   𝑡,𝐵,𝑥,𝑧   𝜑,𝑡,𝑥,𝑧   𝑡,𝐹,𝑥,𝑧   𝑥,𝐿,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑧,𝑡)   𝐾(𝑥,𝑧,𝑡)   𝐿(𝑡)

Proof of Theorem ftc1lem6
Dummy variables 𝑠 𝑢 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2 ftc1.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 ftc1.b . . . 4 (𝜑𝐵 ∈ ℝ)
4 ftc1.le . . . 4 (𝜑𝐴𝐵)
5 ftc1.s . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
6 ftc1.d . . . 4 (𝜑𝐷 ⊆ ℝ)
7 ftc1.i . . . 4 (𝜑𝐹 ∈ 𝐿1)
8 ftc1.c . . . 4 (𝜑𝐶 ∈ (𝐴(,)𝐵))
9 ftc1.f . . . 4 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
10 ftc1.j . . . 4 𝐽 = (𝐿t ℝ)
11 ftc1.k . . . 4 𝐾 = (𝐿t 𝐷)
12 ftc1.l . . . 4 𝐿 = (TopOpen‘ℂfld)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ftc1lem3 24014 . . 3 (𝜑𝐹:𝐷⟶ℂ)
145, 8sseldd 3753 . . 3 (𝜑𝐶𝐷)
1513, 14ffvelrnd 6501 . 2 (𝜑 → (𝐹𝐶) ∈ ℂ)
16 cnxmet 22789 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
17 ax-resscn 10193 . . . . . . . 8 ℝ ⊆ ℂ
186, 17syl6ss 3764 . . . . . . 7 (𝜑𝐷 ⊆ ℂ)
1918adantr 466 . . . . . 6 ((𝜑𝑤 ∈ ℝ+) → 𝐷 ⊆ ℂ)
20 xmetres2 22379 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2116, 19, 20sylancr 575 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2216a1i 11 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
23 eqid 2771 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
2412cnfldtopn 22798 . . . . . . . . . . . 12 𝐿 = (MetOpen‘(abs ∘ − ))
25 eqid 2771 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
2623, 24, 25metrest 22542 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐿t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2716, 18, 26sylancr 575 . . . . . . . . . 10 (𝜑 → (𝐿t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2811, 27syl5eq 2817 . . . . . . . . 9 (𝜑𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2928oveq1d 6806 . . . . . . . 8 (𝜑 → (𝐾 CnP 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿))
3029fveq1d 6332 . . . . . . 7 (𝜑 → ((𝐾 CnP 𝐿)‘𝐶) = (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
319, 30eleqtrd 2852 . . . . . 6 (𝜑𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
3231adantr 466 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
33 simpr 471 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
3425, 24metcnpi2 22563 . . . . 5 (((((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶) ∧ 𝑤 ∈ ℝ+)) → ∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤))
3521, 22, 32, 33, 34syl22anc 1477 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤))
36 simpr 471 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝑦𝐷)
3714ad2antrr 705 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝐶𝐷)
3836, 37ovresd 6946 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) = (𝑦(abs ∘ − )𝐶))
3918adantr 466 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐷 ⊆ ℂ)
4039sselda 3752 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
41 iccssre 12453 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
422, 3, 41syl2anc 573 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
4342, 17syl6ss 3764 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
44 ioossicc 12457 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
4544, 8sseldi 3750 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (𝐴[,]𝐵))
4643, 45sseldd 3753 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℂ)
4746ad2antrr 705 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝐶 ∈ ℂ)
48 eqid 2771 . . . . . . . . . . . . 13 (abs ∘ − ) = (abs ∘ − )
4948cnmetdval 22787 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦(abs ∘ − )𝐶) = (abs‘(𝑦𝐶)))
5040, 47, 49syl2anc 573 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦(abs ∘ − )𝐶) = (abs‘(𝑦𝐶)))
5138, 50eqtrd 2805 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) = (abs‘(𝑦𝐶)))
5251breq1d 4796 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 ↔ (abs‘(𝑦𝐶)) < 𝑣))
5313adantr 466 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐹:𝐷⟶ℂ)
5453ffvelrnda 6500 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℂ)
5515ad2antrr 705 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝐹𝐶) ∈ ℂ)
5648cnmetdval 22787 . . . . . . . . . . 11 (((𝐹𝑦) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) = (abs‘((𝐹𝑦) − (𝐹𝐶))))
5754, 55, 56syl2anc 573 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) = (abs‘((𝐹𝑦) − (𝐹𝐶))))
5857breq1d 4796 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤 ↔ (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))
5952, 58imbi12d 333 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) ↔ ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)))
6059ralbidva 3134 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) ↔ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)))
61 simprll 764 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
62 eldifsni 4457 . . . . . . . . . . . . 13 (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) → 𝑠𝐶)
6361, 62syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠𝐶)
642ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐴 ∈ ℝ)
653ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐵 ∈ ℝ)
664ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐴𝐵)
675ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (𝐴(,)𝐵) ⊆ 𝐷)
686ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐷 ⊆ ℝ)
697ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐹 ∈ 𝐿1)
708ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐶 ∈ (𝐴(,)𝐵))
719ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
72 ftc1.h . . . . . . . . . . . . 13 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
73 simplrl 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑤 ∈ ℝ+)
74 simplrr 763 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑣 ∈ ℝ+)
75 simprlr 765 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))
76 fvoveq1 6814 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (abs‘(𝑦𝐶)) = (abs‘(𝑢𝐶)))
7776breq1d 4796 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → ((abs‘(𝑦𝐶)) < 𝑣 ↔ (abs‘(𝑢𝐶)) < 𝑣))
78 fveq2 6330 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (𝐹𝑦) = (𝐹𝑢))
7978fvoveq1d 6813 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (abs‘((𝐹𝑦) − (𝐹𝐶))) = (abs‘((𝐹𝑢) − (𝐹𝐶))))
8079breq1d 4796 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤 ↔ (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤))
8177, 80imbi12d 333 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) ↔ ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤)))
8281rspccva 3459 . . . . . . . . . . . . . 14 ((∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) ∧ 𝑢𝐷) → ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤))
8375, 82sylan 569 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) ∧ 𝑢𝐷) → ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤))
8461eldifad 3735 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠 ∈ (𝐴[,]𝐵))
85 simprr 756 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (abs‘(𝑠𝐶)) < 𝑣)
861, 64, 65, 66, 67, 68, 69, 70, 71, 10, 11, 12, 72, 73, 74, 83, 84, 85ftc1lem5 24016 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) ∧ 𝑠𝐶) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)
8763, 86mpdan 667 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)
8887expr 444 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))) → ((abs‘(𝑠𝐶)) < 𝑣 → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
8988adantld 478 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))) → ((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
9089expr 444 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) → ((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9190ralrimdva 3118 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9260, 91sylbid 230 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9392anassrs 453 . . . . 5 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑣 ∈ ℝ+) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9493reximdva 3165 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∃𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9535, 94mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
9695ralrimiva 3115 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
971, 2, 3, 4, 5, 6, 7, 13ftc1lem2 24012 . . . . 5 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
9897, 43, 45dvlem 23873 . . . 4 ((𝜑𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
9998, 72fmptd 6525 . . 3 (𝜑𝐻:((𝐴[,]𝐵) ∖ {𝐶})⟶ℂ)
10043ssdifssd 3899 . . 3 (𝜑 → ((𝐴[,]𝐵) ∖ {𝐶}) ⊆ ℂ)
10199, 100, 46ellimc3 23856 . 2 (𝜑 → ((𝐹𝐶) ∈ (𝐻 lim 𝐶) ↔ ((𝐹𝐶) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))))
10215, 96, 101mpbir2and 692 1 (𝜑 → (𝐹𝐶) ∈ (𝐻 lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  cdif 3720  wss 3723  {csn 4316   class class class wbr 4786  cmpt 4863   × cxp 5247  cres 5251  ccom 5253  wf 6025  cfv 6029  (class class class)co 6791  cc 10134  cr 10135   < clt 10274  cle 10275  cmin 10466   / cdiv 10884  +crp 12028  (,)cioo 12373  [,]cicc 12376  abscabs 14175  t crest 16282  TopOpenctopn 16283  ∞Metcxmt 19939  MetOpencmopn 19944  fldccnfld 19954   CnP ccnp 21243  𝐿1cibl 23598  citg 23599   lim climc 23839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cc 9457  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-ofr 7043  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-omul 7716  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-acn 8966  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ioc 12378  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-rlim 14421  df-sum 14618  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cn 21245  df-cnp 21246  df-cmp 21404  df-tx 21579  df-hmeo 21772  df-xms 22338  df-ms 22339  df-tms 22340  df-cncf 22894  df-ovol 23445  df-vol 23446  df-mbf 23600  df-itg1 23601  df-itg2 23602  df-ibl 23603  df-itg 23604  df-0p 23650  df-limc 23843
This theorem is referenced by:  ftc1  24018
  Copyright terms: Public domain W3C validator