MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1lem6 Structured version   Visualization version   GIF version

Theorem ftc1lem6 24630
Description: Lemma for ftc1 24631. (Contributed by Mario Carneiro, 14-Aug-2014.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ftc1.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1.a (𝜑𝐴 ∈ ℝ)
ftc1.b (𝜑𝐵 ∈ ℝ)
ftc1.le (𝜑𝐴𝐵)
ftc1.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
ftc1.d (𝜑𝐷 ⊆ ℝ)
ftc1.i (𝜑𝐹 ∈ 𝐿1)
ftc1.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
ftc1.f (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
ftc1.j 𝐽 = (𝐿t ℝ)
ftc1.k 𝐾 = (𝐿t 𝐷)
ftc1.l 𝐿 = (TopOpen‘ℂfld)
ftc1.h 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
Assertion
Ref Expression
ftc1lem6 (𝜑 → (𝐹𝐶) ∈ (𝐻 lim 𝐶))
Distinct variable groups:   𝑥,𝑡,𝑧,𝐶   𝑡,𝐷,𝑥,𝑧   𝑧,𝐺   𝑡,𝐴,𝑥,𝑧   𝑡,𝐵,𝑥,𝑧   𝜑,𝑡,𝑥,𝑧   𝑡,𝐹,𝑥,𝑧   𝑥,𝐿,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑧,𝑡)   𝐽(𝑥,𝑧,𝑡)   𝐾(𝑥,𝑧,𝑡)   𝐿(𝑡)

Proof of Theorem ftc1lem6
Dummy variables 𝑠 𝑢 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc1.g . . . 4 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
2 ftc1.a . . . 4 (𝜑𝐴 ∈ ℝ)
3 ftc1.b . . . 4 (𝜑𝐵 ∈ ℝ)
4 ftc1.le . . . 4 (𝜑𝐴𝐵)
5 ftc1.s . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
6 ftc1.d . . . 4 (𝜑𝐷 ⊆ ℝ)
7 ftc1.i . . . 4 (𝜑𝐹 ∈ 𝐿1)
8 ftc1.c . . . 4 (𝜑𝐶 ∈ (𝐴(,)𝐵))
9 ftc1.f . . . 4 (𝜑𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
10 ftc1.j . . . 4 𝐽 = (𝐿t ℝ)
11 ftc1.k . . . 4 𝐾 = (𝐿t 𝐷)
12 ftc1.l . . . 4 𝐿 = (TopOpen‘ℂfld)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ftc1lem3 24627 . . 3 (𝜑𝐹:𝐷⟶ℂ)
145, 8sseldd 3966 . . 3 (𝜑𝐶𝐷)
1513, 14ffvelrnd 6845 . 2 (𝜑 → (𝐹𝐶) ∈ ℂ)
16 cnxmet 23373 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
17 ax-resscn 10586 . . . . . . . 8 ℝ ⊆ ℂ
186, 17sstrdi 3977 . . . . . . 7 (𝜑𝐷 ⊆ ℂ)
1918adantr 483 . . . . . 6 ((𝜑𝑤 ∈ ℝ+) → 𝐷 ⊆ ℂ)
20 xmetres2 22963 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2116, 19, 20sylancr 589 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
2216a1i 11 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
23 eqid 2819 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
2412cnfldtopn 23382 . . . . . . . . . . . 12 𝐿 = (MetOpen‘(abs ∘ − ))
25 eqid 2819 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
2623, 24, 25metrest 23126 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐿t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2716, 18, 26sylancr 589 . . . . . . . . . 10 (𝜑 → (𝐿t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2811, 27syl5eq 2866 . . . . . . . . 9 (𝜑𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
2928oveq1d 7163 . . . . . . . 8 (𝜑 → (𝐾 CnP 𝐿) = ((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿))
3029fveq1d 6665 . . . . . . 7 (𝜑 → ((𝐾 CnP 𝐿)‘𝐶) = (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
319, 30eleqtrd 2913 . . . . . 6 (𝜑𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
3231adantr 483 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶))
33 simpr 487 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
3425, 24metcnpi2 23147 . . . . 5 (((((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) CnP 𝐿)‘𝐶) ∧ 𝑤 ∈ ℝ+)) → ∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤))
3521, 22, 32, 33, 34syl22anc 836 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤))
36 simpr 487 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝑦𝐷)
3714ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝐶𝐷)
3836, 37ovresd 7307 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) = (𝑦(abs ∘ − )𝐶))
3918adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐷 ⊆ ℂ)
4039sselda 3965 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝑦 ∈ ℂ)
41 iccssre 12810 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
422, 3, 41syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
4342, 17sstrdi 3977 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
44 ioossicc 12814 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
4544, 8sseldi 3963 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (𝐴[,]𝐵))
4643, 45sseldd 3966 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℂ)
4746ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → 𝐶 ∈ ℂ)
48 eqid 2819 . . . . . . . . . . . . 13 (abs ∘ − ) = (abs ∘ − )
4948cnmetdval 23371 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑦(abs ∘ − )𝐶) = (abs‘(𝑦𝐶)))
5040, 47, 49syl2anc 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦(abs ∘ − )𝐶) = (abs‘(𝑦𝐶)))
5138, 50eqtrd 2854 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) = (abs‘(𝑦𝐶)))
5251breq1d 5067 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 ↔ (abs‘(𝑦𝐶)) < 𝑣))
5313adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → 𝐹:𝐷⟶ℂ)
5453ffvelrnda 6844 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝐹𝑦) ∈ ℂ)
5515ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (𝐹𝐶) ∈ ℂ)
5648cnmetdval 23371 . . . . . . . . . . 11 (((𝐹𝑦) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) = (abs‘((𝐹𝑦) − (𝐹𝐶))))
5754, 55, 56syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) = (abs‘((𝐹𝑦) − (𝐹𝐶))))
5857breq1d 5067 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤 ↔ (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))
5952, 58imbi12d 347 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑦𝐷) → (((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) ↔ ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)))
6059ralbidva 3194 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) ↔ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)))
61 simprll 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}))
62 eldifsni 4714 . . . . . . . . . . . . 13 (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) → 𝑠𝐶)
6361, 62syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠𝐶)
642ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐴 ∈ ℝ)
653ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐵 ∈ ℝ)
664ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐴𝐵)
675ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (𝐴(,)𝐵) ⊆ 𝐷)
686ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐷 ⊆ ℝ)
697ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐹 ∈ 𝐿1)
708ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐶 ∈ (𝐴(,)𝐵))
719ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝐹 ∈ ((𝐾 CnP 𝐿)‘𝐶))
72 ftc1.h . . . . . . . . . . . . 13 𝐻 = (𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
73 simplrl 775 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑤 ∈ ℝ+)
74 simplrr 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑣 ∈ ℝ+)
75 simprlr 778 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))
76 fvoveq1 7171 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (abs‘(𝑦𝐶)) = (abs‘(𝑢𝐶)))
7776breq1d 5067 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → ((abs‘(𝑦𝐶)) < 𝑣 ↔ (abs‘(𝑢𝐶)) < 𝑣))
7877imbrov2fvoveq 7173 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) ↔ ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤)))
7978rspccva 3620 . . . . . . . . . . . . . 14 ((∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) ∧ 𝑢𝐷) → ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤))
8075, 79sylan 582 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) ∧ 𝑢𝐷) → ((abs‘(𝑢𝐶)) < 𝑣 → (abs‘((𝐹𝑢) − (𝐹𝐶))) < 𝑤))
8161eldifad 3946 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → 𝑠 ∈ (𝐴[,]𝐵))
82 simprr 771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (abs‘(𝑠𝐶)) < 𝑣)
831, 64, 65, 66, 67, 68, 69, 70, 71, 10, 11, 12, 72, 73, 74, 80, 81, 82ftc1lem5 24629 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) ∧ 𝑠𝐶) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)
8463, 83mpdan 685 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ ((𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤)) ∧ (abs‘(𝑠𝐶)) < 𝑣)) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)
8584expr 459 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))) → ((abs‘(𝑠𝐶)) < 𝑣 → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
8685adantld 493 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ (𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶}) ∧ ∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤))) → ((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
8786expr 459 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) ∧ 𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) → ((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
8887ralrimdva 3187 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑣 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
8960, 88sylbid 242 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ ℝ+𝑣 ∈ ℝ+)) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9089anassrs 470 . . . . 5 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑣 ∈ ℝ+) → (∀𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∀𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9190reximdva 3272 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑣 ∈ ℝ+𝑦𝐷 ((𝑦((abs ∘ − ) ↾ (𝐷 × 𝐷))𝐶) < 𝑣 → ((𝐹𝑦)(abs ∘ − )(𝐹𝐶)) < 𝑤) → ∃𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤)))
9235, 91mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
9392ralrimiva 3180 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))
941, 2, 3, 4, 5, 6, 7, 13ftc1lem2 24625 . . . . 5 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
9594, 43, 45dvlem 24486 . . . 4 ((𝜑𝑧 ∈ ((𝐴[,]𝐵) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
9695, 72fmptd 6871 . . 3 (𝜑𝐻:((𝐴[,]𝐵) ∖ {𝐶})⟶ℂ)
9743ssdifssd 4117 . . 3 (𝜑 → ((𝐴[,]𝐵) ∖ {𝐶}) ⊆ ℂ)
9896, 97, 46ellimc3 24469 . 2 (𝜑 → ((𝐹𝐶) ∈ (𝐻 lim 𝐶) ↔ ((𝐹𝐶) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑣 ∈ ℝ+𝑠 ∈ ((𝐴[,]𝐵) ∖ {𝐶})((𝑠𝐶 ∧ (abs‘(𝑠𝐶)) < 𝑣) → (abs‘((𝐻𝑠) − (𝐹𝐶))) < 𝑤))))
9915, 93, 98mpbir2and 711 1 (𝜑 → (𝐹𝐶) ∈ (𝐻 lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wne 3014  wral 3136  wrex 3137  cdif 3931  wss 3934  {csn 4559   class class class wbr 5057  cmpt 5137   × cxp 5546  cres 5550  ccom 5552  wf 6344  cfv 6348  (class class class)co 7148  cc 10527  cr 10528   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  +crp 12381  (,)cioo 12730  [,]cicc 12733  abscabs 14585  t crest 16686  TopOpenctopn 16687  ∞Metcxmet 20522  MetOpencmopn 20527  fldccnfld 20537   CnP ccnp 21825  𝐿1cibl 24210  citg 24211   lim climc 24452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-symdif 4217  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-ofr 7402  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-omul 8099  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cn 21827  df-cnp 21828  df-cmp 21987  df-tx 22162  df-hmeo 22355  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-ovol 24057  df-vol 24058  df-mbf 24212  df-itg1 24213  df-itg2 24214  df-ibl 24215  df-itg 24216  df-0p 24263  df-limc 24456
This theorem is referenced by:  ftc1  24631
  Copyright terms: Public domain W3C validator