Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem Structured version   Visualization version   GIF version

Theorem caucvgrlem 14611
 Description: Lemma for caurcvgr 14612. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvgr.1 (𝜑𝐴 ⊆ ℝ)
caurcvgr.2 (𝜑𝐹:𝐴⟶ℝ)
caurcvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caurcvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
caucvgrlem.4 (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
caucvgrlem (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑅,𝑗,𝑘,𝑥

Proof of Theorem caucvgrlem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caurcvgr.2 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ)
2 caurcvgr.1 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
3 reex 10229 . . . . . . . . 9 ℝ ∈ V
43ssex 4936 . . . . . . . 8 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
52, 4syl 17 . . . . . . 7 (𝜑𝐴 ∈ V)
63a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
7 fex2 7268 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ V ∧ ℝ ∈ V) → 𝐹 ∈ V)
81, 5, 6, 7syl3anc 1476 . . . . . 6 (𝜑𝐹 ∈ V)
9 limsupcl 14412 . . . . . 6 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
108, 9syl 17 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
1110adantr 466 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈ ℝ*)
121adantr 466 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ)
13 simprl 754 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑗𝐴)
1412, 13ffvelrnd 6503 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (𝐹𝑗) ∈ ℝ)
15 caucvgrlem.4 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
1615rpred 12075 . . . . . 6 (𝜑𝑅 ∈ ℝ)
1716adantr 466 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑅 ∈ ℝ)
1814, 17readdcld 10271 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) + 𝑅) ∈ ℝ)
19 mnfxr 10298 . . . . . 6 -∞ ∈ ℝ*
2019a1i 11 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ ∈ ℝ*)
2114, 17resubcld 10660 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ∈ ℝ)
2221rexrd 10291 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ∈ ℝ*)
2321mnfltd 12163 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ < ((𝐹𝑗) − 𝑅))
242adantr 466 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐴 ⊆ ℝ)
25 ressxr 10285 . . . . . . . 8 ℝ ⊆ ℝ*
26 fss 6196 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℝ*) → 𝐹:𝐴⟶ℝ*)
271, 25, 26sylancl 574 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ*)
2827adantr 466 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ*)
29 caurcvgr.3 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
3029adantr 466 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → sup(𝐴, ℝ*, < ) = +∞)
3124, 13sseldd 3753 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑗 ∈ ℝ)
32 simprr 756 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
33 breq2 4790 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑗𝑘𝑗𝑚))
34 fveq2 6332 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3534fvoveq1d 6815 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑚) − (𝐹𝑗))))
3635breq1d 4796 . . . . . . . . . . 11 (𝑘 = 𝑚 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅 ↔ (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
3733, 36imbi12d 333 . . . . . . . . . 10 (𝑘 = 𝑚 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅) ↔ (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅)))
3837cbvralv 3320 . . . . . . . . 9 (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅) ↔ ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
3932, 38sylib 208 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
4012ffvelrnda 6502 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝐹𝑚) ∈ ℝ)
4114adantr 466 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝐹𝑗) ∈ ℝ)
4240, 41resubcld 10660 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝐹𝑚) − (𝐹𝑗)) ∈ ℝ)
4342recnd 10270 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝐹𝑚) − (𝐹𝑗)) ∈ ℂ)
4443abscld 14383 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ)
4517adantr 466 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → 𝑅 ∈ ℝ)
46 ltle 10328 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅))
4744, 45, 46syl2anc 573 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅))
4840, 41, 45absdifled 14381 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅 ↔ (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
4947, 48sylibd 229 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
50 simpl 468 . . . . . . . . . . 11 ((((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)) → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))
5149, 50syl6 35 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
5251imim2d 57 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅) → (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))))
5352ralimdva 3111 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅) → ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))))
5439, 53mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
55 breq1 4789 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛𝑚𝑗𝑚))
5655imbi1d 330 . . . . . . . . 9 (𝑛 = 𝑗 → ((𝑛𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)) ↔ (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))))
5756ralbidv 3135 . . . . . . . 8 (𝑛 = 𝑗 → (∀𝑚𝐴 (𝑛𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)) ↔ ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))))
5857rspcev 3460 . . . . . . 7 ((𝑗 ∈ ℝ ∧ ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
5931, 54, 58syl2anc 573 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
6024, 28, 22, 30, 59limsupbnd2 14422 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ≤ (lim sup‘𝐹))
6120, 22, 11, 23, 60xrltletrd 12197 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ < (lim sup‘𝐹))
6218rexrd 10291 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) + 𝑅) ∈ ℝ*)
6344adantrr 696 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ)
6417adantr 466 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℝ)
65 simprr 756 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑗𝑚)
66 simplrr 763 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
67 simprl 754 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑚𝐴)
6837, 66, 67rspcdva 3466 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
6965, 68mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅)
7063, 64, 69ltled 10387 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅)
7140adantrr 696 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ∈ ℝ)
7214adantr 466 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑗) ∈ ℝ)
7371, 72, 64absdifled 14381 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅 ↔ (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
7470, 73mpbid 222 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7574simprd 483 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))
7675expr 444 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7776ralrimiva 3115 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7855imbi1d 330 . . . . . . . 8 (𝑛 = 𝑗 → ((𝑛𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)) ↔ (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
7978ralbidv 3135 . . . . . . 7 (𝑛 = 𝑗 → (∀𝑚𝐴 (𝑛𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)) ↔ ∀𝑚𝐴 (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
8079rspcev 3460 . . . . . 6 ((𝑗 ∈ ℝ ∧ ∀𝑚𝐴 (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
8131, 77, 80syl2anc 573 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
8224, 28, 62, 81limsupbnd1 14421 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))
83 xrre 12205 . . . 4 ((((lim sup‘𝐹) ∈ ℝ* ∧ ((𝐹𝑗) + 𝑅) ∈ ℝ) ∧ (-∞ < (lim sup‘𝐹) ∧ (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))) → (lim sup‘𝐹) ∈ ℝ)
8411, 18, 61, 82, 83syl22anc 1477 . . 3 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈ ℝ)
8584adantr 466 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ∈ ℝ)
8671, 85resubcld 10660 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (lim sup‘𝐹)) ∈ ℝ)
8786recnd 10270 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (lim sup‘𝐹)) ∈ ℂ)
8887abscld 14383 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) ∈ ℝ)
89 2re 11292 . . . . . . . 8 2 ∈ ℝ
90 remulcl 10223 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (2 · 𝑅) ∈ ℝ)
9189, 64, 90sylancr 575 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) ∈ ℝ)
92 3re 11296 . . . . . . . 8 3 ∈ ℝ
93 remulcl 10223 . . . . . . . 8 ((3 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (3 · 𝑅) ∈ ℝ)
9492, 64, 93sylancr 575 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (3 · 𝑅) ∈ ℝ)
9571recnd 10270 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ∈ ℂ)
9685recnd 10270 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ∈ ℂ)
9795, 96abssubd 14400 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) = (abs‘((lim sup‘𝐹) − (𝐹𝑚))))
9871, 91resubcld 10660 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ∈ ℝ)
9921adantr 466 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ∈ ℝ)
10064recnd 10270 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℂ)
1011002timesd 11477 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) = (𝑅 + 𝑅))
102101oveq2d 6809 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) = ((𝐹𝑚) − (𝑅 + 𝑅)))
10395, 100, 100subsub4d 10625 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) − 𝑅) = ((𝐹𝑚) − (𝑅 + 𝑅)))
104102, 103eqtr4d 2808 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) = (((𝐹𝑚) − 𝑅) − 𝑅))
10571, 64resubcld 10660 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − 𝑅) ∈ ℝ)
10671, 64, 72lesubaddd 10826 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) ≤ (𝐹𝑗) ↔ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
10775, 106mpbird 247 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − 𝑅) ≤ (𝐹𝑗))
108105, 72, 64, 107lesub1dd 10845 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) − 𝑅) ≤ ((𝐹𝑗) − 𝑅))
109104, 108eqbrtrd 4808 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ≤ ((𝐹𝑗) − 𝑅))
11060adantr 466 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ≤ (lim sup‘𝐹))
11198, 99, 85, 109, 110letrd 10396 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹))
11218adantr 466 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ∈ ℝ)
11371, 91readdcld 10271 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + (2 · 𝑅)) ∈ ℝ)
11482adantr 466 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))
11571, 64readdcld 10271 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + 𝑅) ∈ ℝ)
11674, 50syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))
11772, 64, 71lesubaddd 10826 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ↔ (𝐹𝑗) ≤ ((𝐹𝑚) + 𝑅)))
118116, 117mpbid 222 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑗) ≤ ((𝐹𝑚) + 𝑅))
11972, 115, 64, 118leadd1dd 10843 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ≤ (((𝐹𝑚) + 𝑅) + 𝑅))
12095, 100, 100addassd 10264 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) + 𝑅) + 𝑅) = ((𝐹𝑚) + (𝑅 + 𝑅)))
121101oveq2d 6809 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + (2 · 𝑅)) = ((𝐹𝑚) + (𝑅 + 𝑅)))
122120, 121eqtr4d 2808 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) + 𝑅) + 𝑅) = ((𝐹𝑚) + (2 · 𝑅)))
123119, 122breqtrd 4812 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ≤ ((𝐹𝑚) + (2 · 𝑅)))
12485, 112, 113, 114, 123letrd 10396 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ≤ ((𝐹𝑚) + (2 · 𝑅)))
12585, 71, 91absdifled 14381 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((abs‘((lim sup‘𝐹) − (𝐹𝑚))) ≤ (2 · 𝑅) ↔ (((𝐹𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹) ∧ (lim sup‘𝐹) ≤ ((𝐹𝑚) + (2 · 𝑅)))))
126111, 124, 125mpbir2and 692 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((lim sup‘𝐹) − (𝐹𝑚))) ≤ (2 · 𝑅))
12797, 126eqbrtrd 4808 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) ≤ (2 · 𝑅))
128 2lt3 11397 . . . . . . . 8 2 < 3
12989a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 2 ∈ ℝ)
13092a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 3 ∈ ℝ)
13115adantr 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑅 ∈ ℝ+)
132131adantr 466 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℝ+)
133129, 130, 132ltmul1d 12116 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 < 3 ↔ (2 · 𝑅) < (3 · 𝑅)))
134128, 133mpbii 223 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) < (3 · 𝑅))
13588, 91, 94, 127, 134lelttrd 10397 . . . . . 6 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))
136135expr 444 . . . . 5 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
137136ralrimiva 3115 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
13834fvoveq1d 6815 . . . . . . 7 (𝑘 = 𝑚 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) = (abs‘((𝐹𝑚) − (lim sup‘𝐹))))
139138breq1d 4796 . . . . . 6 (𝑘 = 𝑚 → ((abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅) ↔ (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
14033, 139imbi12d 333 . . . . 5 (𝑘 = 𝑚 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))))
141140cbvralv 3320 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
142137, 141sylibr 224 . . 3 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)))
14384, 142jca 501 . 2 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
144 breq2 4790 . . . . 5 (𝑥 = 𝑅 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
145144imbi2d 329 . . . 4 (𝑥 = 𝑅 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅)))
146145rexralbidv 3206 . . 3 (𝑥 = 𝑅 → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅)))
147 caurcvgr.4 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
148146, 147, 15rspcdva 3466 . 2 (𝜑 → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
149143, 148reximddv 3166 1 (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∀wral 3061  ∃wrex 3062  Vcvv 3351   ⊆ wss 3723   class class class wbr 4786  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793  supcsup 8502  ℝcr 10137   + caddc 10141   · cmul 10143  +∞cpnf 10273  -∞cmnf 10274  ℝ*cxr 10275   < clt 10276   ≤ cle 10277   − cmin 10468  2c2 11272  3c3 11273  ℝ+crp 12035  abscabs 14182  lim supclsp 14409 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-ico 12386  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410 This theorem is referenced by:  caurcvgr  14612
 Copyright terms: Public domain W3C validator