MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem Structured version   Visualization version   GIF version

Theorem caucvgrlem 15706
Description: Lemma for caurcvgr 15707. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvgr.1 (𝜑𝐴 ⊆ ℝ)
caurcvgr.2 (𝜑𝐹:𝐴⟶ℝ)
caurcvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caurcvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
caucvgrlem.4 (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
caucvgrlem (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑅,𝑗,𝑘,𝑥

Proof of Theorem caucvgrlem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caurcvgr.2 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ)
2 caurcvgr.1 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
3 reex 11244 . . . . . . . . 9 ℝ ∈ V
43ssex 5327 . . . . . . . 8 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
52, 4syl 17 . . . . . . 7 (𝜑𝐴 ∈ V)
63a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
7 fex2 7957 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ V ∧ ℝ ∈ V) → 𝐹 ∈ V)
81, 5, 6, 7syl3anc 1370 . . . . . 6 (𝜑𝐹 ∈ V)
9 limsupcl 15506 . . . . . 6 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
108, 9syl 17 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
1110adantr 480 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈ ℝ*)
121adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ)
13 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑗𝐴)
1412, 13ffvelcdmd 7105 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (𝐹𝑗) ∈ ℝ)
15 caucvgrlem.4 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
1615rpred 13075 . . . . . 6 (𝜑𝑅 ∈ ℝ)
1716adantr 480 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑅 ∈ ℝ)
1814, 17readdcld 11288 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) + 𝑅) ∈ ℝ)
19 mnfxr 11316 . . . . . 6 -∞ ∈ ℝ*
2019a1i 11 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ ∈ ℝ*)
2114, 17resubcld 11689 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ∈ ℝ)
2221rexrd 11309 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ∈ ℝ*)
2321mnfltd 13164 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ < ((𝐹𝑗) − 𝑅))
242adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐴 ⊆ ℝ)
25 ressxr 11303 . . . . . . . 8 ℝ ⊆ ℝ*
26 fss 6753 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℝ*) → 𝐹:𝐴⟶ℝ*)
271, 25, 26sylancl 586 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ*)
2827adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ*)
29 caurcvgr.3 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
3029adantr 480 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → sup(𝐴, ℝ*, < ) = +∞)
3124, 13sseldd 3996 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑗 ∈ ℝ)
32 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
33 breq2 5152 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑗𝑘𝑗𝑚))
3433imbrov2fvoveq 7456 . . . . . . . . . 10 (𝑘 = 𝑚 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅) ↔ (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅)))
3534cbvralvw 3235 . . . . . . . . 9 (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅) ↔ ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
3632, 35sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
3712ffvelcdmda 7104 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝐹𝑚) ∈ ℝ)
3814adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝐹𝑗) ∈ ℝ)
3937, 38resubcld 11689 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝐹𝑚) − (𝐹𝑗)) ∈ ℝ)
4039recnd 11287 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝐹𝑚) − (𝐹𝑗)) ∈ ℂ)
4140abscld 15472 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ)
4217adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → 𝑅 ∈ ℝ)
43 ltle 11347 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅))
4441, 42, 43syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅))
4537, 38, 42absdifled 15470 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅 ↔ (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
4644, 45sylibd 239 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
47 simpl 482 . . . . . . . . . . 11 ((((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)) → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))
4846, 47syl6 35 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
4948imim2d 57 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅) → (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))))
5049ralimdva 3165 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅) → ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))))
5136, 50mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
52 breq1 5151 . . . . . . . 8 (𝑛 = 𝑗 → (𝑛𝑚𝑗𝑚))
5352rspceaimv 3628 . . . . . . 7 ((𝑗 ∈ ℝ ∧ ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
5431, 51, 53syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
5524, 28, 22, 30, 54limsupbnd2 15516 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ≤ (lim sup‘𝐹))
5620, 22, 11, 23, 55xrltletrd 13200 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ < (lim sup‘𝐹))
5718rexrd 11309 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) + 𝑅) ∈ ℝ*)
5841adantrr 717 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ)
5917adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℝ)
60 simprr 773 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑗𝑚)
61 simplrr 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
62 simprl 771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑚𝐴)
6334, 61, 62rspcdva 3623 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
6460, 63mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅)
6558, 59, 64ltled 11407 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅)
6637adantrr 717 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ∈ ℝ)
6714adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑗) ∈ ℝ)
6866, 67, 59absdifled 15470 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅 ↔ (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
6965, 68mpbid 232 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7069simprd 495 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))
7170expr 456 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7271ralrimiva 3144 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7352rspceaimv 3628 . . . . . 6 ((𝑗 ∈ ℝ ∧ ∀𝑚𝐴 (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7431, 72, 73syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7524, 28, 57, 74limsupbnd1 15515 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))
76 xrre 13208 . . . 4 ((((lim sup‘𝐹) ∈ ℝ* ∧ ((𝐹𝑗) + 𝑅) ∈ ℝ) ∧ (-∞ < (lim sup‘𝐹) ∧ (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))) → (lim sup‘𝐹) ∈ ℝ)
7711, 18, 56, 75, 76syl22anc 839 . . 3 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈ ℝ)
7877adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ∈ ℝ)
7966, 78resubcld 11689 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (lim sup‘𝐹)) ∈ ℝ)
8079recnd 11287 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (lim sup‘𝐹)) ∈ ℂ)
8180abscld 15472 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) ∈ ℝ)
82 2re 12338 . . . . . . . 8 2 ∈ ℝ
83 remulcl 11238 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (2 · 𝑅) ∈ ℝ)
8482, 59, 83sylancr 587 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) ∈ ℝ)
85 3re 12344 . . . . . . . 8 3 ∈ ℝ
86 remulcl 11238 . . . . . . . 8 ((3 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (3 · 𝑅) ∈ ℝ)
8785, 59, 86sylancr 587 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (3 · 𝑅) ∈ ℝ)
8866recnd 11287 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ∈ ℂ)
8978recnd 11287 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ∈ ℂ)
9088, 89abssubd 15489 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) = (abs‘((lim sup‘𝐹) − (𝐹𝑚))))
9166, 84resubcld 11689 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ∈ ℝ)
9221adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ∈ ℝ)
9359recnd 11287 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℂ)
94932timesd 12507 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) = (𝑅 + 𝑅))
9594oveq2d 7447 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) = ((𝐹𝑚) − (𝑅 + 𝑅)))
9688, 93, 93subsub4d 11649 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) − 𝑅) = ((𝐹𝑚) − (𝑅 + 𝑅)))
9795, 96eqtr4d 2778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) = (((𝐹𝑚) − 𝑅) − 𝑅))
9866, 59resubcld 11689 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − 𝑅) ∈ ℝ)
9966, 59, 67lesubaddd 11858 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) ≤ (𝐹𝑗) ↔ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
10070, 99mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − 𝑅) ≤ (𝐹𝑗))
10198, 67, 59, 100lesub1dd 11877 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) − 𝑅) ≤ ((𝐹𝑗) − 𝑅))
10297, 101eqbrtrd 5170 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ≤ ((𝐹𝑗) − 𝑅))
10355adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ≤ (lim sup‘𝐹))
10491, 92, 78, 102, 103letrd 11416 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹))
10518adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ∈ ℝ)
10666, 84readdcld 11288 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + (2 · 𝑅)) ∈ ℝ)
10775adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))
10866, 59readdcld 11288 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + 𝑅) ∈ ℝ)
10969, 47syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))
11067, 59, 66lesubaddd 11858 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ↔ (𝐹𝑗) ≤ ((𝐹𝑚) + 𝑅)))
111109, 110mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑗) ≤ ((𝐹𝑚) + 𝑅))
11267, 108, 59, 111leadd1dd 11875 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ≤ (((𝐹𝑚) + 𝑅) + 𝑅))
11388, 93, 93addassd 11281 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) + 𝑅) + 𝑅) = ((𝐹𝑚) + (𝑅 + 𝑅)))
11494oveq2d 7447 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + (2 · 𝑅)) = ((𝐹𝑚) + (𝑅 + 𝑅)))
115113, 114eqtr4d 2778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) + 𝑅) + 𝑅) = ((𝐹𝑚) + (2 · 𝑅)))
116112, 115breqtrd 5174 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ≤ ((𝐹𝑚) + (2 · 𝑅)))
11778, 105, 106, 107, 116letrd 11416 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ≤ ((𝐹𝑚) + (2 · 𝑅)))
11878, 66, 84absdifled 15470 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((abs‘((lim sup‘𝐹) − (𝐹𝑚))) ≤ (2 · 𝑅) ↔ (((𝐹𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹) ∧ (lim sup‘𝐹) ≤ ((𝐹𝑚) + (2 · 𝑅)))))
119104, 117, 118mpbir2and 713 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((lim sup‘𝐹) − (𝐹𝑚))) ≤ (2 · 𝑅))
12090, 119eqbrtrd 5170 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) ≤ (2 · 𝑅))
121 2lt3 12436 . . . . . . . 8 2 < 3
12282a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 2 ∈ ℝ)
12385a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 3 ∈ ℝ)
12415adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑅 ∈ ℝ+)
125124adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℝ+)
126122, 123, 125ltmul1d 13116 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 < 3 ↔ (2 · 𝑅) < (3 · 𝑅)))
127121, 126mpbii 233 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) < (3 · 𝑅))
12881, 84, 87, 120, 127lelttrd 11417 . . . . . 6 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))
129128expr 456 . . . . 5 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
130129ralrimiva 3144 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
13133imbrov2fvoveq 7456 . . . . 5 (𝑘 = 𝑚 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))))
132131cbvralvw 3235 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
133130, 132sylibr 234 . . 3 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)))
13477, 133jca 511 . 2 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
135 breq2 5152 . . . . 5 (𝑥 = 𝑅 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
136135imbi2d 340 . . . 4 (𝑥 = 𝑅 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅)))
137136rexralbidv 3221 . . 3 (𝑥 = 𝑅 → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅)))
138 caurcvgr.4 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
139137, 138, 15rspcdva 3623 . 2 (𝜑 → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
140134, 139reximddv 3169 1 (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  wss 3963   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  supcsup 9478  cr 11152   + caddc 11156   · cmul 11158  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  cmin 11490  2c2 12319  3c3 12320  +crp 13032  abscabs 15270  lim supclsp 15503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504
This theorem is referenced by:  caurcvgr  15707
  Copyright terms: Public domain W3C validator