Step | Hyp | Ref
| Expression |
1 | | caurcvgr.2 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
2 | | caurcvgr.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
3 | | reex 10659 |
. . . . . . . . 9
⊢ ℝ
∈ V |
4 | 3 | ssex 5192 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
5 | 2, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ V) |
6 | 3 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈
V) |
7 | | fex2 7644 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ V ∧ ℝ ∈ V) →
𝐹 ∈
V) |
8 | 1, 5, 6, 7 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ V) |
9 | | limsupcl 14871 |
. . . . . 6
⊢ (𝐹 ∈ V → (lim
sup‘𝐹) ∈
ℝ*) |
10 | 8, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) |
11 | 10 | adantr 485 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈
ℝ*) |
12 | 1 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ) |
13 | | simprl 771 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑗 ∈ 𝐴) |
14 | 12, 13 | ffvelrnd 6844 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (𝐹‘𝑗) ∈ ℝ) |
15 | | caucvgrlem.4 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
16 | 15 | rpred 12465 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ ℝ) |
17 | 16 | adantr 485 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑅 ∈ ℝ) |
18 | 14, 17 | readdcld 10701 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) + 𝑅) ∈ ℝ) |
19 | | mnfxr 10729 |
. . . . . 6
⊢ -∞
∈ ℝ* |
20 | 19 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → -∞ ∈
ℝ*) |
21 | 14, 17 | resubcld 11099 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) − 𝑅) ∈ ℝ) |
22 | 21 | rexrd 10722 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) − 𝑅) ∈
ℝ*) |
23 | 21 | mnfltd 12553 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → -∞ < ((𝐹‘𝑗) − 𝑅)) |
24 | 2 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝐴 ⊆ ℝ) |
25 | | ressxr 10716 |
. . . . . . . 8
⊢ ℝ
⊆ ℝ* |
26 | | fss 6513 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆
ℝ*) → 𝐹:𝐴⟶ℝ*) |
27 | 1, 25, 26 | sylancl 590 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
28 | 27 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ*) |
29 | | caurcvgr.3 |
. . . . . . 7
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
+∞) |
30 | 29 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → sup(𝐴, ℝ*, < ) =
+∞) |
31 | 24, 13 | sseldd 3894 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑗 ∈ ℝ) |
32 | | simprr 773 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
33 | | breq2 5037 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (𝑗 ≤ 𝑘 ↔ 𝑗 ≤ 𝑚)) |
34 | 33 | imbrov2fvoveq 7176 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → ((𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅) ↔ (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅))) |
35 | 34 | cbvralvw 3362 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅) ↔ ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅)) |
36 | 32, 35 | sylib 221 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅)) |
37 | 12 | ffvelrnda 6843 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝐹‘𝑚) ∈ ℝ) |
38 | 14 | adantr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝐹‘𝑗) ∈ ℝ) |
39 | 37, 38 | resubcld 11099 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((𝐹‘𝑚) − (𝐹‘𝑗)) ∈ ℝ) |
40 | 39 | recnd 10700 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((𝐹‘𝑚) − (𝐹‘𝑗)) ∈ ℂ) |
41 | 40 | abscld 14837 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ∈ ℝ) |
42 | 17 | adantr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → 𝑅 ∈ ℝ) |
43 | | ltle 10760 |
. . . . . . . . . . . . 13
⊢
(((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅)) |
44 | 41, 42, 43 | syl2anc 588 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅)) |
45 | 37, 38, 42 | absdifled 14835 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅 ↔ (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
46 | 44, 45 | sylibd 242 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
47 | | simpl 487 |
. . . . . . . . . . 11
⊢ ((((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)) → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)) |
48 | 46, 47 | syl6 35 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
49 | 48 | imim2d 57 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → ((𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅) → (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)))) |
50 | 49 | ralimdva 3109 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)))) |
51 | 36, 50 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
52 | | breq1 5036 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → (𝑛 ≤ 𝑚 ↔ 𝑗 ≤ 𝑚)) |
53 | 52 | rspceaimv 3547 |
. . . . . . 7
⊢ ((𝑗 ∈ ℝ ∧
∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
54 | 31, 51, 53 | syl2anc 588 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚))) |
55 | 24, 28, 22, 30, 54 | limsupbnd2 14881 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) − 𝑅) ≤ (lim sup‘𝐹)) |
56 | 20, 22, 11, 23, 55 | xrltletrd 12588 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → -∞ < (lim
sup‘𝐹)) |
57 | 18 | rexrd 10722 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((𝐹‘𝑗) + 𝑅) ∈
ℝ*) |
58 | 41 | adantrr 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ∈ ℝ) |
59 | 17 | adantr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑅 ∈ ℝ) |
60 | | simprr 773 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑗 ≤ 𝑚) |
61 | | simplrr 778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
62 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑚 ∈ 𝐴) |
63 | 34, 61, 62 | rspcdva 3544 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅)) |
64 | 60, 63 | mpd 15 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) < 𝑅) |
65 | 58, 59, 64 | ltled 10819 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅) |
66 | 37 | adantrr 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑚) ∈ ℝ) |
67 | 14 | adantr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑗) ∈ ℝ) |
68 | 66, 67, 59 | absdifled 14835 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((abs‘((𝐹‘𝑚) − (𝐹‘𝑗))) ≤ 𝑅 ↔ (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)))) |
69 | 65, 68 | mpbid 235 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ∧ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
70 | 69 | simprd 500 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅)) |
71 | 70 | expr 461 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
72 | 71 | ralrimiva 3114 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
73 | 52 | rspceaimv 3547 |
. . . . . 6
⊢ ((𝑗 ∈ ℝ ∧
∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
74 | 31, 72, 73 | syl2anc 588 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚 ∈ 𝐴 (𝑛 ≤ 𝑚 → (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
75 | 24, 28, 57, 74 | limsupbnd1 14880 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (lim sup‘𝐹) ≤ ((𝐹‘𝑗) + 𝑅)) |
76 | | xrre 12596 |
. . . 4
⊢ ((((lim
sup‘𝐹) ∈
ℝ* ∧ ((𝐹‘𝑗) + 𝑅) ∈ ℝ) ∧ (-∞ < (lim
sup‘𝐹) ∧ (lim
sup‘𝐹) ≤ ((𝐹‘𝑗) + 𝑅))) → (lim sup‘𝐹) ∈ ℝ) |
77 | 11, 18, 56, 75, 76 | syl22anc 838 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈ ℝ) |
78 | 77 | adantr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ∈ ℝ) |
79 | 66, 78 | resubcld 11099 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (lim sup‘𝐹)) ∈ ℝ) |
80 | 79 | recnd 10700 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (lim sup‘𝐹)) ∈ ℂ) |
81 | 80 | abscld 14837 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) ∈ ℝ) |
82 | | 2re 11741 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
83 | | remulcl 10653 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ 𝑅
∈ ℝ) → (2 · 𝑅) ∈ ℝ) |
84 | 82, 59, 83 | sylancr 591 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 · 𝑅) ∈ ℝ) |
85 | | 3re 11747 |
. . . . . . . 8
⊢ 3 ∈
ℝ |
86 | | remulcl 10653 |
. . . . . . . 8
⊢ ((3
∈ ℝ ∧ 𝑅
∈ ℝ) → (3 · 𝑅) ∈ ℝ) |
87 | 85, 59, 86 | sylancr 591 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (3 · 𝑅) ∈ ℝ) |
88 | 66 | recnd 10700 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑚) ∈ ℂ) |
89 | 78 | recnd 10700 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ∈ ℂ) |
90 | 88, 89 | abssubd 14854 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) = (abs‘((lim sup‘𝐹) − (𝐹‘𝑚)))) |
91 | 66, 84 | resubcld 11099 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) ∈ ℝ) |
92 | 21 | adantr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) − 𝑅) ∈ ℝ) |
93 | 59 | recnd 10700 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑅 ∈ ℂ) |
94 | 93 | 2timesd 11910 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 · 𝑅) = (𝑅 + 𝑅)) |
95 | 94 | oveq2d 7167 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) = ((𝐹‘𝑚) − (𝑅 + 𝑅))) |
96 | 88, 93, 93 | subsub4d 11059 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) − 𝑅) − 𝑅) = ((𝐹‘𝑚) − (𝑅 + 𝑅))) |
97 | 95, 96 | eqtr4d 2797 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) = (((𝐹‘𝑚) − 𝑅) − 𝑅)) |
98 | 66, 59 | resubcld 11099 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − 𝑅) ∈ ℝ) |
99 | 66, 59, 67 | lesubaddd 11268 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) − 𝑅) ≤ (𝐹‘𝑗) ↔ (𝐹‘𝑚) ≤ ((𝐹‘𝑗) + 𝑅))) |
100 | 70, 99 | mpbird 260 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − 𝑅) ≤ (𝐹‘𝑗)) |
101 | 98, 67, 59, 100 | lesub1dd 11287 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) − 𝑅) − 𝑅) ≤ ((𝐹‘𝑗) − 𝑅)) |
102 | 97, 101 | eqbrtrd 5055 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) ≤ ((𝐹‘𝑗) − 𝑅)) |
103 | 55 | adantr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) − 𝑅) ≤ (lim sup‘𝐹)) |
104 | 91, 92, 78, 102, 103 | letrd 10828 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹)) |
105 | 18 | adantr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) + 𝑅) ∈ ℝ) |
106 | 66, 84 | readdcld 10701 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) + (2 · 𝑅)) ∈ ℝ) |
107 | 75 | adantr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ≤ ((𝐹‘𝑗) + 𝑅)) |
108 | 66, 59 | readdcld 10701 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) + 𝑅) ∈ ℝ) |
109 | 69, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚)) |
110 | 67, 59, 66 | lesubaddd 11268 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑗) − 𝑅) ≤ (𝐹‘𝑚) ↔ (𝐹‘𝑗) ≤ ((𝐹‘𝑚) + 𝑅))) |
111 | 109, 110 | mpbid 235 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (𝐹‘𝑗) ≤ ((𝐹‘𝑚) + 𝑅)) |
112 | 67, 108, 59, 111 | leadd1dd 11285 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) + 𝑅) ≤ (((𝐹‘𝑚) + 𝑅) + 𝑅)) |
113 | 88, 93, 93 | addassd 10694 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) + 𝑅) + 𝑅) = ((𝐹‘𝑚) + (𝑅 + 𝑅))) |
114 | 94 | oveq2d 7167 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑚) + (2 · 𝑅)) = ((𝐹‘𝑚) + (𝑅 + 𝑅))) |
115 | 113, 114 | eqtr4d 2797 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (((𝐹‘𝑚) + 𝑅) + 𝑅) = ((𝐹‘𝑚) + (2 · 𝑅))) |
116 | 112, 115 | breqtrd 5059 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((𝐹‘𝑗) + 𝑅) ≤ ((𝐹‘𝑚) + (2 · 𝑅))) |
117 | 78, 105, 106, 107, 116 | letrd 10828 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (lim sup‘𝐹) ≤ ((𝐹‘𝑚) + (2 · 𝑅))) |
118 | 78, 66, 84 | absdifled 14835 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → ((abs‘((lim sup‘𝐹) − (𝐹‘𝑚))) ≤ (2 · 𝑅) ↔ (((𝐹‘𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹) ∧ (lim sup‘𝐹) ≤ ((𝐹‘𝑚) + (2 · 𝑅))))) |
119 | 104, 117,
118 | mpbir2and 713 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((lim sup‘𝐹) − (𝐹‘𝑚))) ≤ (2 · 𝑅)) |
120 | 90, 119 | eqbrtrd 5055 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) ≤ (2 · 𝑅)) |
121 | | 2lt3 11839 |
. . . . . . . 8
⊢ 2 <
3 |
122 | 82 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 2 ∈ ℝ) |
123 | 85 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 3 ∈ ℝ) |
124 | 15 | adantr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → 𝑅 ∈
ℝ+) |
125 | 124 | adantr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → 𝑅 ∈
ℝ+) |
126 | 122, 123,
125 | ltmul1d 12506 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 < 3 ↔ (2 · 𝑅) < (3 · 𝑅))) |
127 | 121, 126 | mpbii 236 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (2 · 𝑅) < (3 · 𝑅)) |
128 | 81, 84, 87, 120, 127 | lelttrd 10829 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ (𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚)) → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)) |
129 | 128 | expr 461 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) ∧ 𝑚 ∈ 𝐴) → (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))) |
130 | 129 | ralrimiva 3114 |
. . . 4
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))) |
131 | 33 | imbrov2fvoveq 7176 |
. . . . 5
⊢ (𝑘 = 𝑚 → ((𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))) |
132 | 131 | cbvralvw 3362 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ ∀𝑚 ∈ 𝐴 (𝑗 ≤ 𝑚 → (abs‘((𝐹‘𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))) |
133 | 130, 132 | sylibr 237 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))) |
134 | 77, 133 | jca 516 |
. 2
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) → ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)))) |
135 | | breq2 5037 |
. . . . 5
⊢ (𝑥 = 𝑅 → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
136 | 135 | imbi2d 345 |
. . . 4
⊢ (𝑥 = 𝑅 → ((𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) |
137 | 136 | rexralbidv 3226 |
. . 3
⊢ (𝑥 = 𝑅 → (∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅))) |
138 | | caurcvgr.4 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
139 | 137, 138,
15 | rspcdva 3544 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑅)) |
140 | 134, 139 | reximddv 3200 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)))) |