MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem Structured version   Visualization version   GIF version

Theorem caucvgrlem 15557
Description: Lemma for caurcvgr 15558. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvgr.1 (𝜑𝐴 ⊆ ℝ)
caurcvgr.2 (𝜑𝐹:𝐴⟶ℝ)
caurcvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caurcvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
caucvgrlem.4 (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
caucvgrlem (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑅,𝑗,𝑘,𝑥

Proof of Theorem caucvgrlem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caurcvgr.2 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ)
2 caurcvgr.1 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
3 reex 11142 . . . . . . . . 9 ℝ ∈ V
43ssex 5278 . . . . . . . 8 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
52, 4syl 17 . . . . . . 7 (𝜑𝐴 ∈ V)
63a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
7 fex2 7870 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ V ∧ ℝ ∈ V) → 𝐹 ∈ V)
81, 5, 6, 7syl3anc 1371 . . . . . 6 (𝜑𝐹 ∈ V)
9 limsupcl 15355 . . . . . 6 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
108, 9syl 17 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
1110adantr 481 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈ ℝ*)
121adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ)
13 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑗𝐴)
1412, 13ffvelcdmd 7036 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (𝐹𝑗) ∈ ℝ)
15 caucvgrlem.4 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
1615rpred 12957 . . . . . 6 (𝜑𝑅 ∈ ℝ)
1716adantr 481 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑅 ∈ ℝ)
1814, 17readdcld 11184 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) + 𝑅) ∈ ℝ)
19 mnfxr 11212 . . . . . 6 -∞ ∈ ℝ*
2019a1i 11 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ ∈ ℝ*)
2114, 17resubcld 11583 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ∈ ℝ)
2221rexrd 11205 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ∈ ℝ*)
2321mnfltd 13045 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ < ((𝐹𝑗) − 𝑅))
242adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐴 ⊆ ℝ)
25 ressxr 11199 . . . . . . . 8 ℝ ⊆ ℝ*
26 fss 6685 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℝ*) → 𝐹:𝐴⟶ℝ*)
271, 25, 26sylancl 586 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ*)
2827adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ*)
29 caurcvgr.3 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
3029adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → sup(𝐴, ℝ*, < ) = +∞)
3124, 13sseldd 3945 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑗 ∈ ℝ)
32 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
33 breq2 5109 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑗𝑘𝑗𝑚))
3433imbrov2fvoveq 7382 . . . . . . . . . 10 (𝑘 = 𝑚 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅) ↔ (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅)))
3534cbvralvw 3225 . . . . . . . . 9 (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅) ↔ ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
3632, 35sylib 217 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
3712ffvelcdmda 7035 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝐹𝑚) ∈ ℝ)
3814adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝐹𝑗) ∈ ℝ)
3937, 38resubcld 11583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝐹𝑚) − (𝐹𝑗)) ∈ ℝ)
4039recnd 11183 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝐹𝑚) − (𝐹𝑗)) ∈ ℂ)
4140abscld 15321 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ)
4217adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → 𝑅 ∈ ℝ)
43 ltle 11243 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅))
4441, 42, 43syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅))
4537, 38, 42absdifled 15319 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅 ↔ (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
4644, 45sylibd 238 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
47 simpl 483 . . . . . . . . . . 11 ((((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)) → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))
4846, 47syl6 35 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
4948imim2d 57 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅) → (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))))
5049ralimdva 3164 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅) → ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))))
5136, 50mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
52 breq1 5108 . . . . . . . 8 (𝑛 = 𝑗 → (𝑛𝑚𝑗𝑚))
5352rspceaimv 3585 . . . . . . 7 ((𝑗 ∈ ℝ ∧ ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
5431, 51, 53syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
5524, 28, 22, 30, 54limsupbnd2 15365 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ≤ (lim sup‘𝐹))
5620, 22, 11, 23, 55xrltletrd 13080 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ < (lim sup‘𝐹))
5718rexrd 11205 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) + 𝑅) ∈ ℝ*)
5841adantrr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ)
5917adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℝ)
60 simprr 771 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑗𝑚)
61 simplrr 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
62 simprl 769 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑚𝐴)
6334, 61, 62rspcdva 3582 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
6460, 63mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅)
6558, 59, 64ltled 11303 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅)
6637adantrr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ∈ ℝ)
6714adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑗) ∈ ℝ)
6866, 67, 59absdifled 15319 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅 ↔ (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
6965, 68mpbid 231 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7069simprd 496 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))
7170expr 457 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7271ralrimiva 3143 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7352rspceaimv 3585 . . . . . 6 ((𝑗 ∈ ℝ ∧ ∀𝑚𝐴 (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7431, 72, 73syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7524, 28, 57, 74limsupbnd1 15364 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))
76 xrre 13088 . . . 4 ((((lim sup‘𝐹) ∈ ℝ* ∧ ((𝐹𝑗) + 𝑅) ∈ ℝ) ∧ (-∞ < (lim sup‘𝐹) ∧ (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))) → (lim sup‘𝐹) ∈ ℝ)
7711, 18, 56, 75, 76syl22anc 837 . . 3 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈ ℝ)
7877adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ∈ ℝ)
7966, 78resubcld 11583 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (lim sup‘𝐹)) ∈ ℝ)
8079recnd 11183 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (lim sup‘𝐹)) ∈ ℂ)
8180abscld 15321 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) ∈ ℝ)
82 2re 12227 . . . . . . . 8 2 ∈ ℝ
83 remulcl 11136 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (2 · 𝑅) ∈ ℝ)
8482, 59, 83sylancr 587 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) ∈ ℝ)
85 3re 12233 . . . . . . . 8 3 ∈ ℝ
86 remulcl 11136 . . . . . . . 8 ((3 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (3 · 𝑅) ∈ ℝ)
8785, 59, 86sylancr 587 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (3 · 𝑅) ∈ ℝ)
8866recnd 11183 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ∈ ℂ)
8978recnd 11183 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ∈ ℂ)
9088, 89abssubd 15338 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) = (abs‘((lim sup‘𝐹) − (𝐹𝑚))))
9166, 84resubcld 11583 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ∈ ℝ)
9221adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ∈ ℝ)
9359recnd 11183 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℂ)
94932timesd 12396 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) = (𝑅 + 𝑅))
9594oveq2d 7373 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) = ((𝐹𝑚) − (𝑅 + 𝑅)))
9688, 93, 93subsub4d 11543 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) − 𝑅) = ((𝐹𝑚) − (𝑅 + 𝑅)))
9795, 96eqtr4d 2779 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) = (((𝐹𝑚) − 𝑅) − 𝑅))
9866, 59resubcld 11583 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − 𝑅) ∈ ℝ)
9966, 59, 67lesubaddd 11752 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) ≤ (𝐹𝑗) ↔ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
10070, 99mpbird 256 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − 𝑅) ≤ (𝐹𝑗))
10198, 67, 59, 100lesub1dd 11771 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) − 𝑅) ≤ ((𝐹𝑗) − 𝑅))
10297, 101eqbrtrd 5127 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ≤ ((𝐹𝑗) − 𝑅))
10355adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ≤ (lim sup‘𝐹))
10491, 92, 78, 102, 103letrd 11312 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹))
10518adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ∈ ℝ)
10666, 84readdcld 11184 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + (2 · 𝑅)) ∈ ℝ)
10775adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))
10866, 59readdcld 11184 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + 𝑅) ∈ ℝ)
10969, 47syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))
11067, 59, 66lesubaddd 11752 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ↔ (𝐹𝑗) ≤ ((𝐹𝑚) + 𝑅)))
111109, 110mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑗) ≤ ((𝐹𝑚) + 𝑅))
11267, 108, 59, 111leadd1dd 11769 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ≤ (((𝐹𝑚) + 𝑅) + 𝑅))
11388, 93, 93addassd 11177 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) + 𝑅) + 𝑅) = ((𝐹𝑚) + (𝑅 + 𝑅)))
11494oveq2d 7373 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + (2 · 𝑅)) = ((𝐹𝑚) + (𝑅 + 𝑅)))
115113, 114eqtr4d 2779 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) + 𝑅) + 𝑅) = ((𝐹𝑚) + (2 · 𝑅)))
116112, 115breqtrd 5131 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ≤ ((𝐹𝑚) + (2 · 𝑅)))
11778, 105, 106, 107, 116letrd 11312 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ≤ ((𝐹𝑚) + (2 · 𝑅)))
11878, 66, 84absdifled 15319 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((abs‘((lim sup‘𝐹) − (𝐹𝑚))) ≤ (2 · 𝑅) ↔ (((𝐹𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹) ∧ (lim sup‘𝐹) ≤ ((𝐹𝑚) + (2 · 𝑅)))))
119104, 117, 118mpbir2and 711 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((lim sup‘𝐹) − (𝐹𝑚))) ≤ (2 · 𝑅))
12090, 119eqbrtrd 5127 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) ≤ (2 · 𝑅))
121 2lt3 12325 . . . . . . . 8 2 < 3
12282a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 2 ∈ ℝ)
12385a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 3 ∈ ℝ)
12415adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑅 ∈ ℝ+)
125124adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℝ+)
126122, 123, 125ltmul1d 12998 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 < 3 ↔ (2 · 𝑅) < (3 · 𝑅)))
127121, 126mpbii 232 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) < (3 · 𝑅))
12881, 84, 87, 120, 127lelttrd 11313 . . . . . 6 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))
129128expr 457 . . . . 5 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
130129ralrimiva 3143 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
13133imbrov2fvoveq 7382 . . . . 5 (𝑘 = 𝑚 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))))
132131cbvralvw 3225 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
133130, 132sylibr 233 . . 3 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)))
13477, 133jca 512 . 2 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
135 breq2 5109 . . . . 5 (𝑥 = 𝑅 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
136135imbi2d 340 . . . 4 (𝑥 = 𝑅 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅)))
137136rexralbidv 3214 . . 3 (𝑥 = 𝑅 → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅)))
138 caurcvgr.4 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
139137, 138, 15rspcdva 3582 . 2 (𝜑 → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
140134, 139reximddv 3168 1 (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  wss 3910   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  cr 11050   + caddc 11054   · cmul 11056  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  cmin 11385  2c2 12208  3c3 12209  +crp 12915  abscabs 15119  lim supclsp 15352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353
This theorem is referenced by:  caurcvgr  15558
  Copyright terms: Public domain W3C validator