MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem Structured version   Visualization version   GIF version

Theorem caucvgrlem 15022
Description: Lemma for caurcvgr 15023. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
caurcvgr.1 (𝜑𝐴 ⊆ ℝ)
caurcvgr.2 (𝜑𝐹:𝐴⟶ℝ)
caurcvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caurcvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
caucvgrlem.4 (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
caucvgrlem (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑅,𝑗,𝑘,𝑥

Proof of Theorem caucvgrlem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caurcvgr.2 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ)
2 caurcvgr.1 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
3 reex 10620 . . . . . . . . 9 ℝ ∈ V
43ssex 5221 . . . . . . . 8 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
52, 4syl 17 . . . . . . 7 (𝜑𝐴 ∈ V)
63a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
7 fex2 7629 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ V ∧ ℝ ∈ V) → 𝐹 ∈ V)
81, 5, 6, 7syl3anc 1365 . . . . . 6 (𝜑𝐹 ∈ V)
9 limsupcl 14823 . . . . . 6 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
108, 9syl 17 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
1110adantr 481 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈ ℝ*)
121adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ)
13 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑗𝐴)
1412, 13ffvelrnd 6847 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (𝐹𝑗) ∈ ℝ)
15 caucvgrlem.4 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
1615rpred 12424 . . . . . 6 (𝜑𝑅 ∈ ℝ)
1716adantr 481 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑅 ∈ ℝ)
1814, 17readdcld 10662 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) + 𝑅) ∈ ℝ)
19 mnfxr 10690 . . . . . 6 -∞ ∈ ℝ*
2019a1i 11 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ ∈ ℝ*)
2114, 17resubcld 11060 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ∈ ℝ)
2221rexrd 10683 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ∈ ℝ*)
2321mnfltd 12512 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ < ((𝐹𝑗) − 𝑅))
242adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐴 ⊆ ℝ)
25 ressxr 10677 . . . . . . . 8 ℝ ⊆ ℝ*
26 fss 6523 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℝ*) → 𝐹:𝐴⟶ℝ*)
271, 25, 26sylancl 586 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ*)
2827adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝐹:𝐴⟶ℝ*)
29 caurcvgr.3 . . . . . . 7 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
3029adantr 481 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → sup(𝐴, ℝ*, < ) = +∞)
3124, 13sseldd 3971 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑗 ∈ ℝ)
32 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
33 breq2 5066 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑗𝑘𝑗𝑚))
3433imbrov2fvoveq 7176 . . . . . . . . . 10 (𝑘 = 𝑚 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅) ↔ (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅)))
3534cbvralvw 3454 . . . . . . . . 9 (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅) ↔ ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
3632, 35sylib 219 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
3712ffvelrnda 6846 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝐹𝑚) ∈ ℝ)
3814adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝐹𝑗) ∈ ℝ)
3937, 38resubcld 11060 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝐹𝑚) − (𝐹𝑗)) ∈ ℝ)
4039recnd 10661 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝐹𝑚) − (𝐹𝑗)) ∈ ℂ)
4140abscld 14789 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ)
4217adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → 𝑅 ∈ ℝ)
43 ltle 10721 . . . . . . . . . . . . 13 (((abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅))
4441, 42, 43syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅))
4537, 38, 42absdifled 14787 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅 ↔ (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
4644, 45sylibd 240 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
47 simpl 483 . . . . . . . . . . 11 ((((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)) → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))
4846, 47syl6 35 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
4948imim2d 57 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → ((𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅) → (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))))
5049ralimdva 3181 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅) → ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))))
5136, 50mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
52 breq1 5065 . . . . . . . 8 (𝑛 = 𝑗 → (𝑛𝑚𝑗𝑚))
5352rspceaimv 3631 . . . . . . 7 ((𝑗 ∈ ℝ ∧ ∀𝑚𝐴 (𝑗𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
5431, 51, 53syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚)))
5524, 28, 22, 30, 54limsupbnd2 14833 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) − 𝑅) ≤ (lim sup‘𝐹))
5620, 22, 11, 23, 55xrltletrd 12547 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → -∞ < (lim sup‘𝐹))
5718rexrd 10683 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((𝐹𝑗) + 𝑅) ∈ ℝ*)
5841adantrr 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ∈ ℝ)
5917adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℝ)
60 simprr 769 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑗𝑚)
61 simplrr 774 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
62 simprl 767 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑚𝐴)
6334, 61, 62rspcdva 3628 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝑗𝑚 → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅))
6460, 63mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑅)
6558, 59, 64ltled 10780 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅)
6637adantrr 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ∈ ℝ)
6714adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑗) ∈ ℝ)
6866, 67, 59absdifled 14787 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((abs‘((𝐹𝑚) − (𝐹𝑗))) ≤ 𝑅 ↔ (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))))
6965, 68mpbid 233 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ∧ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7069simprd 496 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))
7170expr 457 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7271ralrimiva 3186 . . . . . 6 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7352rspceaimv 3631 . . . . . 6 ((𝑗 ∈ ℝ ∧ ∀𝑚𝐴 (𝑗𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7431, 72, 73syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∃𝑛 ∈ ℝ ∀𝑚𝐴 (𝑛𝑚 → (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
7524, 28, 57, 74limsupbnd1 14832 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))
76 xrre 12555 . . . 4 ((((lim sup‘𝐹) ∈ ℝ* ∧ ((𝐹𝑗) + 𝑅) ∈ ℝ) ∧ (-∞ < (lim sup‘𝐹) ∧ (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))) → (lim sup‘𝐹) ∈ ℝ)
7711, 18, 56, 75, 76syl22anc 836 . . 3 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → (lim sup‘𝐹) ∈ ℝ)
7877adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ∈ ℝ)
7966, 78resubcld 11060 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (lim sup‘𝐹)) ∈ ℝ)
8079recnd 10661 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (lim sup‘𝐹)) ∈ ℂ)
8180abscld 14789 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) ∈ ℝ)
82 2re 11703 . . . . . . . 8 2 ∈ ℝ
83 remulcl 10614 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (2 · 𝑅) ∈ ℝ)
8482, 59, 83sylancr 587 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) ∈ ℝ)
85 3re 11709 . . . . . . . 8 3 ∈ ℝ
86 remulcl 10614 . . . . . . . 8 ((3 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (3 · 𝑅) ∈ ℝ)
8785, 59, 86sylancr 587 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (3 · 𝑅) ∈ ℝ)
8866recnd 10661 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑚) ∈ ℂ)
8978recnd 10661 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ∈ ℂ)
9088, 89abssubd 14806 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) = (abs‘((lim sup‘𝐹) − (𝐹𝑚))))
9166, 84resubcld 11060 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ∈ ℝ)
9221adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ∈ ℝ)
9359recnd 10661 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℂ)
94932timesd 11872 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) = (𝑅 + 𝑅))
9594oveq2d 7167 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) = ((𝐹𝑚) − (𝑅 + 𝑅)))
9688, 93, 93subsub4d 11020 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) − 𝑅) = ((𝐹𝑚) − (𝑅 + 𝑅)))
9795, 96eqtr4d 2863 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) = (((𝐹𝑚) − 𝑅) − 𝑅))
9866, 59resubcld 11060 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − 𝑅) ∈ ℝ)
9966, 59, 67lesubaddd 11229 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) ≤ (𝐹𝑗) ↔ (𝐹𝑚) ≤ ((𝐹𝑗) + 𝑅)))
10070, 99mpbird 258 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − 𝑅) ≤ (𝐹𝑗))
10198, 67, 59, 100lesub1dd 11248 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) − 𝑅) − 𝑅) ≤ ((𝐹𝑗) − 𝑅))
10297, 101eqbrtrd 5084 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ≤ ((𝐹𝑗) − 𝑅))
10355adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ≤ (lim sup‘𝐹))
10491, 92, 78, 102, 103letrd 10789 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹))
10518adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ∈ ℝ)
10666, 84readdcld 10662 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + (2 · 𝑅)) ∈ ℝ)
10775adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ≤ ((𝐹𝑗) + 𝑅))
10866, 59readdcld 10662 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + 𝑅) ∈ ℝ)
10969, 47syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚))
11067, 59, 66lesubaddd 11229 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑗) − 𝑅) ≤ (𝐹𝑚) ↔ (𝐹𝑗) ≤ ((𝐹𝑚) + 𝑅)))
111109, 110mpbid 233 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (𝐹𝑗) ≤ ((𝐹𝑚) + 𝑅))
11267, 108, 59, 111leadd1dd 11246 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ≤ (((𝐹𝑚) + 𝑅) + 𝑅))
11388, 93, 93addassd 10655 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) + 𝑅) + 𝑅) = ((𝐹𝑚) + (𝑅 + 𝑅)))
11494oveq2d 7167 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑚) + (2 · 𝑅)) = ((𝐹𝑚) + (𝑅 + 𝑅)))
115113, 114eqtr4d 2863 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (((𝐹𝑚) + 𝑅) + 𝑅) = ((𝐹𝑚) + (2 · 𝑅)))
116112, 115breqtrd 5088 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((𝐹𝑗) + 𝑅) ≤ ((𝐹𝑚) + (2 · 𝑅)))
11778, 105, 106, 107, 116letrd 10789 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (lim sup‘𝐹) ≤ ((𝐹𝑚) + (2 · 𝑅)))
11878, 66, 84absdifled 14787 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → ((abs‘((lim sup‘𝐹) − (𝐹𝑚))) ≤ (2 · 𝑅) ↔ (((𝐹𝑚) − (2 · 𝑅)) ≤ (lim sup‘𝐹) ∧ (lim sup‘𝐹) ≤ ((𝐹𝑚) + (2 · 𝑅)))))
119104, 117, 118mpbir2and 709 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((lim sup‘𝐹) − (𝐹𝑚))) ≤ (2 · 𝑅))
12090, 119eqbrtrd 5084 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) ≤ (2 · 𝑅))
121 2lt3 11801 . . . . . . . 8 2 < 3
12282a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 2 ∈ ℝ)
12385a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 3 ∈ ℝ)
12415adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → 𝑅 ∈ ℝ+)
125124adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → 𝑅 ∈ ℝ+)
126122, 123, 125ltmul1d 12465 . . . . . . . 8 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 < 3 ↔ (2 · 𝑅) < (3 · 𝑅)))
127121, 126mpbii 234 . . . . . . 7 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (2 · 𝑅) < (3 · 𝑅))
12881, 84, 87, 120, 127lelttrd 10790 . . . . . 6 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ (𝑚𝐴𝑗𝑚)) → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))
129128expr 457 . . . . 5 (((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) ∧ 𝑚𝐴) → (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
130129ralrimiva 3186 . . . 4 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
13133imbrov2fvoveq 7176 . . . . 5 (𝑘 = 𝑚 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅))))
132131cbvralvw 3454 . . . 4 (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)) ↔ ∀𝑚𝐴 (𝑗𝑚 → (abs‘((𝐹𝑚) − (lim sup‘𝐹))) < (3 · 𝑅)))
133130, 132sylibr 235 . . 3 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅)))
13477, 133jca 512 . 2 ((𝜑 ∧ (𝑗𝐴 ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))) → ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
135 breq2 5066 . . . . 5 (𝑥 = 𝑅 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
136135imbi2d 342 . . . 4 (𝑥 = 𝑅 → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅)))
137136rexralbidv 3305 . . 3 (𝑥 = 𝑅 → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅)))
138 caurcvgr.4 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
139137, 138, 15rspcdva 3628 . 2 (𝜑 → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑅))
140134, 139reximddv 3279 1 (𝜑 → ∃𝑗𝐴 ((lim sup‘𝐹) ∈ ℝ ∧ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (lim sup‘𝐹))) < (3 · 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2106  wral 3142  wrex 3143  Vcvv 3499  wss 3939   class class class wbr 5062  wf 6347  cfv 6351  (class class class)co 7151  supcsup 8896  cr 10528   + caddc 10532   · cmul 10534  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666   < clt 10667  cle 10668  cmin 10862  2c2 11684  3c3 11685  +crp 12382  abscabs 14586  lim supclsp 14820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-ico 12737  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821
This theorem is referenced by:  caurcvgr  15023
  Copyright terms: Public domain W3C validator