| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difopn | Structured version Visualization version GIF version | ||
| Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| difopn | ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∖ 𝐵) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4901 | . . . . . 6 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | iscld.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | sseqtrrdi 3988 | . . . . 5 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ 𝑋) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐴 ⊆ 𝑋) |
| 5 | dfss2 3932 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝐴 ∩ 𝑋) = 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ 𝑋) = 𝐴) |
| 7 | 6 | difeq1d 4088 | . 2 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴 ∩ 𝑋) ∖ 𝐵) = (𝐴 ∖ 𝐵)) |
| 8 | indif2 4244 | . . 3 ⊢ (𝐴 ∩ (𝑋 ∖ 𝐵)) = ((𝐴 ∩ 𝑋) ∖ 𝐵) | |
| 9 | cldrcl 22913 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) |
| 11 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐴 ∈ 𝐽) | |
| 12 | 2 | cldopn 22918 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
| 13 | 12 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
| 14 | inopn 22786 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ (𝑋 ∖ 𝐵) ∈ 𝐽) → (𝐴 ∩ (𝑋 ∖ 𝐵)) ∈ 𝐽) | |
| 15 | 10, 11, 13, 14 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ (𝑋 ∖ 𝐵)) ∈ 𝐽) |
| 16 | 8, 15 | eqeltrrid 2833 | . 2 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴 ∩ 𝑋) ∖ 𝐵) ∈ 𝐽) |
| 17 | 7, 16 | eqeltrrd 2829 | 1 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∖ 𝐵) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∪ cuni 4871 ‘cfv 6511 Topctop 22780 Clsdccld 22903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-top 22781 df-cld 22906 |
| This theorem is referenced by: bcthlem5 25228 cldssbrsiga 34177 pibt2 37405 poimirlem30 37644 dirkercncflem2 46102 fourierdlem62 46166 |
| Copyright terms: Public domain | W3C validator |