| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difopn | Structured version Visualization version GIF version | ||
| Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| difopn | ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∖ 𝐵) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4936 | . . . . . 6 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 2 | iscld.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 1, 2 | sseqtrrdi 4024 | . . . . 5 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ 𝑋) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐴 ⊆ 𝑋) |
| 5 | dfss2 3968 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝐴 ∩ 𝑋) = 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ 𝑋) = 𝐴) |
| 7 | 6 | difeq1d 4124 | . 2 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴 ∩ 𝑋) ∖ 𝐵) = (𝐴 ∖ 𝐵)) |
| 8 | indif2 4280 | . . 3 ⊢ (𝐴 ∩ (𝑋 ∖ 𝐵)) = ((𝐴 ∩ 𝑋) ∖ 𝐵) | |
| 9 | cldrcl 23035 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top) |
| 11 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → 𝐴 ∈ 𝐽) | |
| 12 | 2 | cldopn 23040 | . . . . 5 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
| 13 | 12 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
| 14 | inopn 22906 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ (𝑋 ∖ 𝐵) ∈ 𝐽) → (𝐴 ∩ (𝑋 ∖ 𝐵)) ∈ 𝐽) | |
| 15 | 10, 11, 13, 14 | syl3anc 1372 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ (𝑋 ∖ 𝐵)) ∈ 𝐽) |
| 16 | 8, 15 | eqeltrrid 2845 | . 2 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → ((𝐴 ∩ 𝑋) ∖ 𝐵) ∈ 𝐽) |
| 17 | 7, 16 | eqeltrrd 2841 | 1 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∖ 𝐵) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3947 ∩ cin 3949 ⊆ wss 3950 ∪ cuni 4906 ‘cfv 6560 Topctop 22900 Clsdccld 23025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fn 6563 df-fv 6568 df-top 22901 df-cld 23028 |
| This theorem is referenced by: bcthlem5 25363 cldssbrsiga 34189 pibt2 37419 poimirlem30 37658 dirkercncflem2 46124 fourierdlem62 46188 |
| Copyright terms: Public domain | W3C validator |