MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difopn Structured version   Visualization version   GIF version

Theorem difopn 22234
Description: The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
difopn ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ 𝐽)

Proof of Theorem difopn
StepHypRef Expression
1 elssuni 4877 . . . . . 6 (𝐴𝐽𝐴 𝐽)
2 iscld.1 . . . . . 6 𝑋 = 𝐽
31, 2sseqtrrdi 3977 . . . . 5 (𝐴𝐽𝐴𝑋)
43adantr 482 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → 𝐴𝑋)
5 df-ss 3909 . . . 4 (𝐴𝑋 ↔ (𝐴𝑋) = 𝐴)
64, 5sylib 217 . . 3 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝑋) = 𝐴)
76difeq1d 4062 . 2 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → ((𝐴𝑋) ∖ 𝐵) = (𝐴𝐵))
8 indif2 4210 . . 3 (𝐴 ∩ (𝑋𝐵)) = ((𝐴𝑋) ∖ 𝐵)
9 cldrcl 22226 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
109adantl 483 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
11 simpl 484 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → 𝐴𝐽)
122cldopn 22231 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
1312adantl 483 . . . 4 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝑋𝐵) ∈ 𝐽)
14 inopn 22097 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽 ∧ (𝑋𝐵) ∈ 𝐽) → (𝐴 ∩ (𝑋𝐵)) ∈ 𝐽)
1510, 11, 13, 14syl3anc 1371 . . 3 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ (𝑋𝐵)) ∈ 𝐽)
168, 15eqeltrrid 2842 . 2 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → ((𝐴𝑋) ∖ 𝐵) ∈ 𝐽)
177, 16eqeltrrd 2838 1 ((𝐴𝐽𝐵 ∈ (Clsd‘𝐽)) → (𝐴𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  cdif 3889  cin 3891  wss 3892   cuni 4844  cfv 6458  Topctop 22091  Clsdccld 22216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fn 6461  df-fv 6466  df-top 22092  df-cld 22219
This theorem is referenced by:  bcthlem5  24541  cldssbrsiga  32204  pibt2  35636  poimirlem30  35855  dirkercncflem2  43874  fourierdlem62  43938
  Copyright terms: Public domain W3C validator