Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topbnd Structured version   Visualization version   GIF version

Theorem topbnd 34158
Description: Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009.)
Hypothesis
Ref Expression
topbnd.1 𝑋 = 𝐽
Assertion
Ref Expression
topbnd ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))

Proof of Theorem topbnd
StepHypRef Expression
1 topbnd.1 . . . . 5 𝑋 = 𝐽
21clsdif 21806 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴)))
32ineq2d 4103 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∩ (𝑋 ∖ ((int‘𝐽)‘𝐴))))
4 indif2 4161 . . 3 (((cls‘𝐽)‘𝐴) ∩ (𝑋 ∖ ((int‘𝐽)‘𝐴))) = ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴))
53, 4eqtrdi 2789 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴)))
61clsss3 21812 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
7 df-ss 3860 . . . 4 (((cls‘𝐽)‘𝐴) ⊆ 𝑋 ↔ (((cls‘𝐽)‘𝐴) ∩ 𝑋) = ((cls‘𝐽)‘𝐴))
86, 7sylib 221 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ 𝑋) = ((cls‘𝐽)‘𝐴))
98difeq1d 4012 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴)) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))
105, 9eqtrd 2773 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  cdif 3840  cin 3842  wss 3843   cuni 4796  cfv 6339  Topctop 21646  intcnt 21770  clsccl 21771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-top 21647  df-cld 21772  df-ntr 21773  df-cls 21774
This theorem is referenced by:  opnbnd  34159
  Copyright terms: Public domain W3C validator