Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topbnd Structured version   Visualization version   GIF version

Theorem topbnd 36266
Description: Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009.)
Hypothesis
Ref Expression
topbnd.1 𝑋 = 𝐽
Assertion
Ref Expression
topbnd ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))

Proof of Theorem topbnd
StepHypRef Expression
1 topbnd.1 . . . . 5 𝑋 = 𝐽
21clsdif 23026 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴)))
32ineq2d 4202 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∩ (𝑋 ∖ ((int‘𝐽)‘𝐴))))
4 indif2 4263 . . 3 (((cls‘𝐽)‘𝐴) ∩ (𝑋 ∖ ((int‘𝐽)‘𝐴))) = ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴))
53, 4eqtrdi 2785 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴)))
61clsss3 23032 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
7 dfss2 3951 . . . 4 (((cls‘𝐽)‘𝐴) ⊆ 𝑋 ↔ (((cls‘𝐽)‘𝐴) ∩ 𝑋) = ((cls‘𝐽)‘𝐴))
86, 7sylib 218 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ 𝑋) = ((cls‘𝐽)‘𝐴))
98difeq1d 4107 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴)) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))
105, 9eqtrd 2769 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cdif 3930  cin 3932  wss 3933   cuni 4889  cfv 6542  Topctop 22866  intcnt 22990  clsccl 22991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-top 22867  df-cld 22992  df-ntr 22993  df-cls 22994
This theorem is referenced by:  opnbnd  36267
  Copyright terms: Public domain W3C validator