Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topbnd Structured version   Visualization version   GIF version

Theorem topbnd 35798
Description: Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009.)
Hypothesis
Ref Expression
topbnd.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
topbnd ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ (((clsβ€˜π½)β€˜π΄) ∩ ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝐴))) = (((clsβ€˜π½)β€˜π΄) βˆ– ((intβ€˜π½)β€˜π΄)))

Proof of Theorem topbnd
StepHypRef Expression
1 topbnd.1 . . . . 5 𝑋 = βˆͺ 𝐽
21clsdif 22950 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝐴)) = (𝑋 βˆ– ((intβ€˜π½)β€˜π΄)))
32ineq2d 4208 . . 3 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ (((clsβ€˜π½)β€˜π΄) ∩ ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝐴))) = (((clsβ€˜π½)β€˜π΄) ∩ (𝑋 βˆ– ((intβ€˜π½)β€˜π΄))))
4 indif2 4266 . . 3 (((clsβ€˜π½)β€˜π΄) ∩ (𝑋 βˆ– ((intβ€˜π½)β€˜π΄))) = ((((clsβ€˜π½)β€˜π΄) ∩ 𝑋) βˆ– ((intβ€˜π½)β€˜π΄))
53, 4eqtrdi 2783 . 2 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ (((clsβ€˜π½)β€˜π΄) ∩ ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝐴))) = ((((clsβ€˜π½)β€˜π΄) ∩ 𝑋) βˆ– ((intβ€˜π½)β€˜π΄)))
61clsss3 22956 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ ((clsβ€˜π½)β€˜π΄) βŠ† 𝑋)
7 df-ss 3961 . . . 4 (((clsβ€˜π½)β€˜π΄) βŠ† 𝑋 ↔ (((clsβ€˜π½)β€˜π΄) ∩ 𝑋) = ((clsβ€˜π½)β€˜π΄))
86, 7sylib 217 . . 3 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ (((clsβ€˜π½)β€˜π΄) ∩ 𝑋) = ((clsβ€˜π½)β€˜π΄))
98difeq1d 4117 . 2 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ ((((clsβ€˜π½)β€˜π΄) ∩ 𝑋) βˆ– ((intβ€˜π½)β€˜π΄)) = (((clsβ€˜π½)β€˜π΄) βˆ– ((intβ€˜π½)β€˜π΄)))
105, 9eqtrd 2767 1 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ (((clsβ€˜π½)β€˜π΄) ∩ ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝐴))) = (((clsβ€˜π½)β€˜π΄) βˆ– ((intβ€˜π½)β€˜π΄)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099   βˆ– cdif 3941   ∩ cin 3943   βŠ† wss 3944  βˆͺ cuni 4903  β€˜cfv 6542  Topctop 22788  intcnt 22914  clsccl 22915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-top 22789  df-cld 22916  df-ntr 22917  df-cls 22918
This theorem is referenced by:  opnbnd  35799
  Copyright terms: Public domain W3C validator