Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > topbnd | Structured version Visualization version GIF version |
Description: Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009.) |
Ref | Expression |
---|---|
topbnd.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
topbnd | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topbnd.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clsdif 21806 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴))) |
3 | 2 | ineq2d 4103 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘𝐴) ∩ (𝑋 ∖ ((int‘𝐽)‘𝐴)))) |
4 | indif2 4161 | . . 3 ⊢ (((cls‘𝐽)‘𝐴) ∩ (𝑋 ∖ ((int‘𝐽)‘𝐴))) = ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴)) | |
5 | 3, 4 | eqtrdi 2789 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴))) |
6 | 1 | clsss3 21812 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
7 | df-ss 3860 | . . . 4 ⊢ (((cls‘𝐽)‘𝐴) ⊆ 𝑋 ↔ (((cls‘𝐽)‘𝐴) ∩ 𝑋) = ((cls‘𝐽)‘𝐴)) | |
8 | 6, 7 | sylib 221 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ 𝑋) = ((cls‘𝐽)‘𝐴)) |
9 | 8 | difeq1d 4012 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴)) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) |
10 | 5, 9 | eqtrd 2773 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∖ cdif 3840 ∩ cin 3842 ⊆ wss 3843 ∪ cuni 4796 ‘cfv 6339 Topctop 21646 intcnt 21770 clsccl 21771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-top 21647 df-cld 21772 df-ntr 21773 df-cls 21774 |
This theorem is referenced by: opnbnd 34159 |
Copyright terms: Public domain | W3C validator |