![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topbnd | Structured version Visualization version GIF version |
Description: Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009.) |
Ref | Expression |
---|---|
topbnd.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
topbnd | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topbnd.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clsdif 22548 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴))) |
3 | 2 | ineq2d 4211 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘𝐴) ∩ (𝑋 ∖ ((int‘𝐽)‘𝐴)))) |
4 | indif2 4269 | . . 3 ⊢ (((cls‘𝐽)‘𝐴) ∩ (𝑋 ∖ ((int‘𝐽)‘𝐴))) = ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴)) | |
5 | 3, 4 | eqtrdi 2788 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴))) |
6 | 1 | clsss3 22554 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
7 | df-ss 3964 | . . . 4 ⊢ (((cls‘𝐽)‘𝐴) ⊆ 𝑋 ↔ (((cls‘𝐽)‘𝐴) ∩ 𝑋) = ((cls‘𝐽)‘𝐴)) | |
8 | 6, 7 | sylib 217 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ 𝑋) = ((cls‘𝐽)‘𝐴)) |
9 | 8 | difeq1d 4120 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((((cls‘𝐽)‘𝐴) ∩ 𝑋) ∖ ((int‘𝐽)‘𝐴)) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) |
10 | 5, 9 | eqtrd 2772 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((cls‘𝐽)‘𝐴) ∩ ((cls‘𝐽)‘(𝑋 ∖ 𝐴))) = (((cls‘𝐽)‘𝐴) ∖ ((int‘𝐽)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 ∪ cuni 4907 ‘cfv 6540 Topctop 22386 intcnt 22512 clsccl 22513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-top 22387 df-cld 22514 df-ntr 22515 df-cls 22516 |
This theorem is referenced by: opnbnd 35198 |
Copyright terms: Public domain | W3C validator |