Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rrv Structured version   Visualization version   GIF version

Theorem 0rrv 34449
Description: The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017.) (Revised by Thierry Arnoux, 30-Jan-2017.)
Hypothesis
Ref Expression
0rrv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
0rrv (𝜑 → (𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃))
Distinct variable group:   𝑥,𝑃
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 0rrv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 11183 . . . . 5 0 ∈ ℝ
21rgenw 3049 . . . 4 𝑥 dom 𝑃0 ∈ ℝ
3 eqid 2730 . . . . 5 (𝑥 dom 𝑃 ↦ 0) = (𝑥 dom 𝑃 ↦ 0)
43fmpt 7085 . . . 4 (∀𝑥 dom 𝑃0 ∈ ℝ ↔ (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ)
52, 4mpbi 230 . . 3 (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ
65a1i 11 . 2 (𝜑 → (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ)
7 fconstmpt 5703 . . . . . . . . . 10 ( dom 𝑃 × {0}) = (𝑥 dom 𝑃 ↦ 0)
87cnveqi 5841 . . . . . . . . 9 ( dom 𝑃 × {0}) = (𝑥 dom 𝑃 ↦ 0)
9 cnvxp 6133 . . . . . . . . 9 ( dom 𝑃 × {0}) = ({0} × dom 𝑃)
108, 9eqtr3i 2755 . . . . . . . 8 (𝑥 dom 𝑃 ↦ 0) = ({0} × dom 𝑃)
1110imaeq1i 6031 . . . . . . 7 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = (({0} × dom 𝑃) “ 𝑦)
12 df-ima 5654 . . . . . . 7 (({0} × dom 𝑃) “ 𝑦) = ran (({0} × dom 𝑃) ↾ 𝑦)
13 df-rn 5652 . . . . . . 7 ran (({0} × dom 𝑃) ↾ 𝑦) = dom (({0} × dom 𝑃) ↾ 𝑦)
1411, 12, 133eqtri 2757 . . . . . 6 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = dom (({0} × dom 𝑃) ↾ 𝑦)
15 df-res 5653 . . . . . . . . 9 (({0} × dom 𝑃) ↾ 𝑦) = (({0} × dom 𝑃) ∩ (𝑦 × V))
16 inxp 5798 . . . . . . . . 9 (({0} × dom 𝑃) ∩ (𝑦 × V)) = (({0} ∩ 𝑦) × ( dom 𝑃 ∩ V))
17 inv1 4364 . . . . . . . . . 10 ( dom 𝑃 ∩ V) = dom 𝑃
1817xpeq2i 5668 . . . . . . . . 9 (({0} ∩ 𝑦) × ( dom 𝑃 ∩ V)) = (({0} ∩ 𝑦) × dom 𝑃)
1915, 16, 183eqtri 2757 . . . . . . . 8 (({0} × dom 𝑃) ↾ 𝑦) = (({0} ∩ 𝑦) × dom 𝑃)
2019cnveqi 5841 . . . . . . 7 (({0} × dom 𝑃) ↾ 𝑦) = (({0} ∩ 𝑦) × dom 𝑃)
2120dmeqi 5871 . . . . . 6 dom (({0} × dom 𝑃) ↾ 𝑦) = dom (({0} ∩ 𝑦) × dom 𝑃)
22 cnvxp 6133 . . . . . . 7 (({0} ∩ 𝑦) × dom 𝑃) = ( dom 𝑃 × ({0} ∩ 𝑦))
2322dmeqi 5871 . . . . . 6 dom (({0} ∩ 𝑦) × dom 𝑃) = dom ( dom 𝑃 × ({0} ∩ 𝑦))
2414, 21, 233eqtri 2757 . . . . 5 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = dom ( dom 𝑃 × ({0} ∩ 𝑦))
25 xpeq2 5662 . . . . . . . . . 10 (({0} ∩ 𝑦) = ∅ → ( dom 𝑃 × ({0} ∩ 𝑦)) = ( dom 𝑃 × ∅))
26 xp0 6134 . . . . . . . . . 10 ( dom 𝑃 × ∅) = ∅
2725, 26eqtrdi 2781 . . . . . . . . 9 (({0} ∩ 𝑦) = ∅ → ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
2827dmeqd 5872 . . . . . . . 8 (({0} ∩ 𝑦) = ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom ∅)
29 dm0 5887 . . . . . . . 8 dom ∅ = ∅
3028, 29eqtrdi 2781 . . . . . . 7 (({0} ∩ 𝑦) = ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
3130adantl 481 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
32 0rrv.1 . . . . . . . 8 (𝜑𝑃 ∈ Prob)
33 domprobsiga 34409 . . . . . . . 8 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
34 0elsiga 34111 . . . . . . . 8 (dom 𝑃 ran sigAlgebra → ∅ ∈ dom 𝑃)
3532, 33, 343syl 18 . . . . . . 7 (𝜑 → ∅ ∈ dom 𝑃)
3635adantr 480 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → ∅ ∈ dom 𝑃)
3731, 36eqeltrd 2829 . . . . 5 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) ∈ dom 𝑃)
3824, 37eqeltrid 2833 . . . 4 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
39 dmxp 5895 . . . . . . 7 (({0} ∩ 𝑦) ≠ ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom 𝑃)
4039adantl 481 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom 𝑃)
4132unveldomd 34413 . . . . . . 7 (𝜑 dom 𝑃 ∈ dom 𝑃)
4241adantr 480 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom 𝑃 ∈ dom 𝑃)
4340, 42eqeltrd 2829 . . . . 5 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) ∈ dom 𝑃)
4424, 43eqeltrid 2833 . . . 4 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4538, 44pm2.61dane 3013 . . 3 (𝜑 → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4645ralrimivw 3130 . 2 (𝜑 → ∀𝑦 ∈ 𝔅 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4732isrrvv 34441 . 2 (𝜑 → ((𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃) ↔ ((𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)))
486, 46, 47mpbir2and 713 1 (𝜑 → (𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cin 3916  c0 4299  {csn 4592   cuni 4874  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  wf 6510  cfv 6514  cr 11074  0cc0 11075  sigAlgebracsiga 34105  𝔅cbrsiga 34178  Probcprb 34405  rRndVarcrrv 34438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-addrcl 11136  ax-rnegex 11146  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ioo 13317  df-topgen 17413  df-top 22788  df-bases 22840  df-esum 34025  df-siga 34106  df-sigagen 34136  df-brsiga 34179  df-meas 34193  df-mbfm 34247  df-prob 34406  df-rrv 34439
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator