Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rrv Structured version   Visualization version   GIF version

Theorem 0rrv 32360
Description: The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017.) (Revised by Thierry Arnoux, 30-Jan-2017.)
Hypothesis
Ref Expression
0rrv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
0rrv (𝜑 → (𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃))
Distinct variable group:   𝑥,𝑃
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 0rrv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 10924 . . . . 5 0 ∈ ℝ
21rgenw 3074 . . . 4 𝑥 dom 𝑃0 ∈ ℝ
3 eqid 2737 . . . . 5 (𝑥 dom 𝑃 ↦ 0) = (𝑥 dom 𝑃 ↦ 0)
43fmpt 6971 . . . 4 (∀𝑥 dom 𝑃0 ∈ ℝ ↔ (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ)
52, 4mpbi 229 . . 3 (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ
65a1i 11 . 2 (𝜑 → (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ)
7 fconstmpt 5645 . . . . . . . . . 10 ( dom 𝑃 × {0}) = (𝑥 dom 𝑃 ↦ 0)
87cnveqi 5777 . . . . . . . . 9 ( dom 𝑃 × {0}) = (𝑥 dom 𝑃 ↦ 0)
9 cnvxp 6054 . . . . . . . . 9 ( dom 𝑃 × {0}) = ({0} × dom 𝑃)
108, 9eqtr3i 2767 . . . . . . . 8 (𝑥 dom 𝑃 ↦ 0) = ({0} × dom 𝑃)
1110imaeq1i 5960 . . . . . . 7 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = (({0} × dom 𝑃) “ 𝑦)
12 df-ima 5598 . . . . . . 7 (({0} × dom 𝑃) “ 𝑦) = ran (({0} × dom 𝑃) ↾ 𝑦)
13 df-rn 5596 . . . . . . 7 ran (({0} × dom 𝑃) ↾ 𝑦) = dom (({0} × dom 𝑃) ↾ 𝑦)
1411, 12, 133eqtri 2769 . . . . . 6 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = dom (({0} × dom 𝑃) ↾ 𝑦)
15 df-res 5597 . . . . . . . . 9 (({0} × dom 𝑃) ↾ 𝑦) = (({0} × dom 𝑃) ∩ (𝑦 × V))
16 inxp 5735 . . . . . . . . 9 (({0} × dom 𝑃) ∩ (𝑦 × V)) = (({0} ∩ 𝑦) × ( dom 𝑃 ∩ V))
17 inv1 4330 . . . . . . . . . 10 ( dom 𝑃 ∩ V) = dom 𝑃
1817xpeq2i 5612 . . . . . . . . 9 (({0} ∩ 𝑦) × ( dom 𝑃 ∩ V)) = (({0} ∩ 𝑦) × dom 𝑃)
1915, 16, 183eqtri 2769 . . . . . . . 8 (({0} × dom 𝑃) ↾ 𝑦) = (({0} ∩ 𝑦) × dom 𝑃)
2019cnveqi 5777 . . . . . . 7 (({0} × dom 𝑃) ↾ 𝑦) = (({0} ∩ 𝑦) × dom 𝑃)
2120dmeqi 5807 . . . . . 6 dom (({0} × dom 𝑃) ↾ 𝑦) = dom (({0} ∩ 𝑦) × dom 𝑃)
22 cnvxp 6054 . . . . . . 7 (({0} ∩ 𝑦) × dom 𝑃) = ( dom 𝑃 × ({0} ∩ 𝑦))
2322dmeqi 5807 . . . . . 6 dom (({0} ∩ 𝑦) × dom 𝑃) = dom ( dom 𝑃 × ({0} ∩ 𝑦))
2414, 21, 233eqtri 2769 . . . . 5 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = dom ( dom 𝑃 × ({0} ∩ 𝑦))
25 xpeq2 5606 . . . . . . . . . 10 (({0} ∩ 𝑦) = ∅ → ( dom 𝑃 × ({0} ∩ 𝑦)) = ( dom 𝑃 × ∅))
26 xp0 6055 . . . . . . . . . 10 ( dom 𝑃 × ∅) = ∅
2725, 26eqtrdi 2793 . . . . . . . . 9 (({0} ∩ 𝑦) = ∅ → ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
2827dmeqd 5808 . . . . . . . 8 (({0} ∩ 𝑦) = ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom ∅)
29 dm0 5823 . . . . . . . 8 dom ∅ = ∅
3028, 29eqtrdi 2793 . . . . . . 7 (({0} ∩ 𝑦) = ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
3130adantl 481 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
32 0rrv.1 . . . . . . . 8 (𝜑𝑃 ∈ Prob)
33 domprobsiga 32320 . . . . . . . 8 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
34 0elsiga 32024 . . . . . . . 8 (dom 𝑃 ran sigAlgebra → ∅ ∈ dom 𝑃)
3532, 33, 343syl 18 . . . . . . 7 (𝜑 → ∅ ∈ dom 𝑃)
3635adantr 480 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → ∅ ∈ dom 𝑃)
3731, 36eqeltrd 2837 . . . . 5 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) ∈ dom 𝑃)
3824, 37eqeltrid 2841 . . . 4 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
39 dmxp 5832 . . . . . . 7 (({0} ∩ 𝑦) ≠ ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom 𝑃)
4039adantl 481 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom 𝑃)
4132unveldomd 32324 . . . . . . 7 (𝜑 dom 𝑃 ∈ dom 𝑃)
4241adantr 480 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom 𝑃 ∈ dom 𝑃)
4340, 42eqeltrd 2837 . . . . 5 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) ∈ dom 𝑃)
4424, 43eqeltrid 2841 . . . 4 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4538, 44pm2.61dane 3030 . . 3 (𝜑 → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4645ralrimivw 3107 . 2 (𝜑 → ∀𝑦 ∈ 𝔅 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4732isrrvv 32352 . 2 (𝜑 → ((𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃) ↔ ((𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)))
486, 46, 47mpbir2and 709 1 (𝜑 → (𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2941  wral 3062  Vcvv 3427  cin 3887  c0 4258  {csn 4563   cuni 4841  cmpt 5158   × cxp 5583  ccnv 5584  dom cdm 5585  ran crn 5586  cres 5587  cima 5588  wf 6419  cfv 6423  cr 10817  0cc0 10818  sigAlgebracsiga 32018  𝔅cbrsiga 32091  Probcprb 32316  rRndVarcrrv 32349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571  ax-cnex 10874  ax-resscn 10875  ax-1cn 10876  ax-addrcl 10879  ax-rnegex 10889  ax-cnre 10891  ax-pre-lttri 10892  ax-pre-lttrn 10893
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5485  df-po 5499  df-so 5500  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-f1 6428  df-fo 6429  df-f1o 6430  df-fv 6431  df-ov 7263  df-oprab 7264  df-mpo 7265  df-1st 7809  df-2nd 7810  df-er 8461  df-map 8580  df-en 8697  df-dom 8698  df-sdom 8699  df-pnf 10958  df-mnf 10959  df-xr 10960  df-ltxr 10961  df-le 10962  df-ioo 13028  df-topgen 17098  df-top 21987  df-bases 22040  df-esum 31938  df-siga 32019  df-sigagen 32049  df-brsiga 32092  df-meas 32106  df-mbfm 32160  df-prob 32317  df-rrv 32350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator