Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rrv Structured version   Visualization version   GIF version

Theorem 0rrv 32463
Description: The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017.) (Revised by Thierry Arnoux, 30-Jan-2017.)
Hypothesis
Ref Expression
0rrv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
0rrv (𝜑 → (𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃))
Distinct variable group:   𝑥,𝑃
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 0rrv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 11023 . . . . 5 0 ∈ ℝ
21rgenw 3066 . . . 4 𝑥 dom 𝑃0 ∈ ℝ
3 eqid 2736 . . . . 5 (𝑥 dom 𝑃 ↦ 0) = (𝑥 dom 𝑃 ↦ 0)
43fmpt 7016 . . . 4 (∀𝑥 dom 𝑃0 ∈ ℝ ↔ (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ)
52, 4mpbi 229 . . 3 (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ
65a1i 11 . 2 (𝜑 → (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ)
7 fconstmpt 5660 . . . . . . . . . 10 ( dom 𝑃 × {0}) = (𝑥 dom 𝑃 ↦ 0)
87cnveqi 5796 . . . . . . . . 9 ( dom 𝑃 × {0}) = (𝑥 dom 𝑃 ↦ 0)
9 cnvxp 6075 . . . . . . . . 9 ( dom 𝑃 × {0}) = ({0} × dom 𝑃)
108, 9eqtr3i 2766 . . . . . . . 8 (𝑥 dom 𝑃 ↦ 0) = ({0} × dom 𝑃)
1110imaeq1i 5976 . . . . . . 7 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = (({0} × dom 𝑃) “ 𝑦)
12 df-ima 5613 . . . . . . 7 (({0} × dom 𝑃) “ 𝑦) = ran (({0} × dom 𝑃) ↾ 𝑦)
13 df-rn 5611 . . . . . . 7 ran (({0} × dom 𝑃) ↾ 𝑦) = dom (({0} × dom 𝑃) ↾ 𝑦)
1411, 12, 133eqtri 2768 . . . . . 6 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = dom (({0} × dom 𝑃) ↾ 𝑦)
15 df-res 5612 . . . . . . . . 9 (({0} × dom 𝑃) ↾ 𝑦) = (({0} × dom 𝑃) ∩ (𝑦 × V))
16 inxp 5754 . . . . . . . . 9 (({0} × dom 𝑃) ∩ (𝑦 × V)) = (({0} ∩ 𝑦) × ( dom 𝑃 ∩ V))
17 inv1 4334 . . . . . . . . . 10 ( dom 𝑃 ∩ V) = dom 𝑃
1817xpeq2i 5627 . . . . . . . . 9 (({0} ∩ 𝑦) × ( dom 𝑃 ∩ V)) = (({0} ∩ 𝑦) × dom 𝑃)
1915, 16, 183eqtri 2768 . . . . . . . 8 (({0} × dom 𝑃) ↾ 𝑦) = (({0} ∩ 𝑦) × dom 𝑃)
2019cnveqi 5796 . . . . . . 7 (({0} × dom 𝑃) ↾ 𝑦) = (({0} ∩ 𝑦) × dom 𝑃)
2120dmeqi 5826 . . . . . 6 dom (({0} × dom 𝑃) ↾ 𝑦) = dom (({0} ∩ 𝑦) × dom 𝑃)
22 cnvxp 6075 . . . . . . 7 (({0} ∩ 𝑦) × dom 𝑃) = ( dom 𝑃 × ({0} ∩ 𝑦))
2322dmeqi 5826 . . . . . 6 dom (({0} ∩ 𝑦) × dom 𝑃) = dom ( dom 𝑃 × ({0} ∩ 𝑦))
2414, 21, 233eqtri 2768 . . . . 5 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = dom ( dom 𝑃 × ({0} ∩ 𝑦))
25 xpeq2 5621 . . . . . . . . . 10 (({0} ∩ 𝑦) = ∅ → ( dom 𝑃 × ({0} ∩ 𝑦)) = ( dom 𝑃 × ∅))
26 xp0 6076 . . . . . . . . . 10 ( dom 𝑃 × ∅) = ∅
2725, 26eqtrdi 2792 . . . . . . . . 9 (({0} ∩ 𝑦) = ∅ → ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
2827dmeqd 5827 . . . . . . . 8 (({0} ∩ 𝑦) = ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom ∅)
29 dm0 5842 . . . . . . . 8 dom ∅ = ∅
3028, 29eqtrdi 2792 . . . . . . 7 (({0} ∩ 𝑦) = ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
3130adantl 483 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
32 0rrv.1 . . . . . . . 8 (𝜑𝑃 ∈ Prob)
33 domprobsiga 32423 . . . . . . . 8 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
34 0elsiga 32127 . . . . . . . 8 (dom 𝑃 ran sigAlgebra → ∅ ∈ dom 𝑃)
3532, 33, 343syl 18 . . . . . . 7 (𝜑 → ∅ ∈ dom 𝑃)
3635adantr 482 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → ∅ ∈ dom 𝑃)
3731, 36eqeltrd 2837 . . . . 5 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) ∈ dom 𝑃)
3824, 37eqeltrid 2841 . . . 4 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
39 dmxp 5850 . . . . . . 7 (({0} ∩ 𝑦) ≠ ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom 𝑃)
4039adantl 483 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom 𝑃)
4132unveldomd 32427 . . . . . . 7 (𝜑 dom 𝑃 ∈ dom 𝑃)
4241adantr 482 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom 𝑃 ∈ dom 𝑃)
4340, 42eqeltrd 2837 . . . . 5 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) ∈ dom 𝑃)
4424, 43eqeltrid 2841 . . . 4 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4538, 44pm2.61dane 3030 . . 3 (𝜑 → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4645ralrimivw 3144 . 2 (𝜑 → ∀𝑦 ∈ 𝔅 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4732isrrvv 32455 . 2 (𝜑 → ((𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃) ↔ ((𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)))
486, 46, 47mpbir2and 711 1 (𝜑 → (𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wne 2941  wral 3062  Vcvv 3437  cin 3891  c0 4262  {csn 4565   cuni 4844  cmpt 5164   × cxp 5598  ccnv 5599  dom cdm 5600  ran crn 5601  cres 5602  cima 5603  wf 6454  cfv 6458  cr 10916  0cc0 10917  sigAlgebracsiga 32121  𝔅cbrsiga 32194  Probcprb 32419  rRndVarcrrv 32452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-addrcl 10978  ax-rnegex 10988  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-ioo 13129  df-topgen 17199  df-top 22088  df-bases 22141  df-esum 32041  df-siga 32122  df-sigagen 32152  df-brsiga 32195  df-meas 32209  df-mbfm 32263  df-prob 32420  df-rrv 32453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator