Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0rrv Structured version   Visualization version   GIF version

Theorem 0rrv 34453
Description: The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017.) (Revised by Thierry Arnoux, 30-Jan-2017.)
Hypothesis
Ref Expression
0rrv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
0rrv (𝜑 → (𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃))
Distinct variable group:   𝑥,𝑃
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 0rrv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 11263 . . . . 5 0 ∈ ℝ
21rgenw 3065 . . . 4 𝑥 dom 𝑃0 ∈ ℝ
3 eqid 2737 . . . . 5 (𝑥 dom 𝑃 ↦ 0) = (𝑥 dom 𝑃 ↦ 0)
43fmpt 7130 . . . 4 (∀𝑥 dom 𝑃0 ∈ ℝ ↔ (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ)
52, 4mpbi 230 . . 3 (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ
65a1i 11 . 2 (𝜑 → (𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ)
7 fconstmpt 5747 . . . . . . . . . 10 ( dom 𝑃 × {0}) = (𝑥 dom 𝑃 ↦ 0)
87cnveqi 5885 . . . . . . . . 9 ( dom 𝑃 × {0}) = (𝑥 dom 𝑃 ↦ 0)
9 cnvxp 6177 . . . . . . . . 9 ( dom 𝑃 × {0}) = ({0} × dom 𝑃)
108, 9eqtr3i 2767 . . . . . . . 8 (𝑥 dom 𝑃 ↦ 0) = ({0} × dom 𝑃)
1110imaeq1i 6075 . . . . . . 7 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = (({0} × dom 𝑃) “ 𝑦)
12 df-ima 5698 . . . . . . 7 (({0} × dom 𝑃) “ 𝑦) = ran (({0} × dom 𝑃) ↾ 𝑦)
13 df-rn 5696 . . . . . . 7 ran (({0} × dom 𝑃) ↾ 𝑦) = dom (({0} × dom 𝑃) ↾ 𝑦)
1411, 12, 133eqtri 2769 . . . . . 6 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = dom (({0} × dom 𝑃) ↾ 𝑦)
15 df-res 5697 . . . . . . . . 9 (({0} × dom 𝑃) ↾ 𝑦) = (({0} × dom 𝑃) ∩ (𝑦 × V))
16 inxp 5842 . . . . . . . . 9 (({0} × dom 𝑃) ∩ (𝑦 × V)) = (({0} ∩ 𝑦) × ( dom 𝑃 ∩ V))
17 inv1 4398 . . . . . . . . . 10 ( dom 𝑃 ∩ V) = dom 𝑃
1817xpeq2i 5712 . . . . . . . . 9 (({0} ∩ 𝑦) × ( dom 𝑃 ∩ V)) = (({0} ∩ 𝑦) × dom 𝑃)
1915, 16, 183eqtri 2769 . . . . . . . 8 (({0} × dom 𝑃) ↾ 𝑦) = (({0} ∩ 𝑦) × dom 𝑃)
2019cnveqi 5885 . . . . . . 7 (({0} × dom 𝑃) ↾ 𝑦) = (({0} ∩ 𝑦) × dom 𝑃)
2120dmeqi 5915 . . . . . 6 dom (({0} × dom 𝑃) ↾ 𝑦) = dom (({0} ∩ 𝑦) × dom 𝑃)
22 cnvxp 6177 . . . . . . 7 (({0} ∩ 𝑦) × dom 𝑃) = ( dom 𝑃 × ({0} ∩ 𝑦))
2322dmeqi 5915 . . . . . 6 dom (({0} ∩ 𝑦) × dom 𝑃) = dom ( dom 𝑃 × ({0} ∩ 𝑦))
2414, 21, 233eqtri 2769 . . . . 5 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) = dom ( dom 𝑃 × ({0} ∩ 𝑦))
25 xpeq2 5706 . . . . . . . . . 10 (({0} ∩ 𝑦) = ∅ → ( dom 𝑃 × ({0} ∩ 𝑦)) = ( dom 𝑃 × ∅))
26 xp0 6178 . . . . . . . . . 10 ( dom 𝑃 × ∅) = ∅
2725, 26eqtrdi 2793 . . . . . . . . 9 (({0} ∩ 𝑦) = ∅ → ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
2827dmeqd 5916 . . . . . . . 8 (({0} ∩ 𝑦) = ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom ∅)
29 dm0 5931 . . . . . . . 8 dom ∅ = ∅
3028, 29eqtrdi 2793 . . . . . . 7 (({0} ∩ 𝑦) = ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
3130adantl 481 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = ∅)
32 0rrv.1 . . . . . . . 8 (𝜑𝑃 ∈ Prob)
33 domprobsiga 34413 . . . . . . . 8 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
34 0elsiga 34115 . . . . . . . 8 (dom 𝑃 ran sigAlgebra → ∅ ∈ dom 𝑃)
3532, 33, 343syl 18 . . . . . . 7 (𝜑 → ∅ ∈ dom 𝑃)
3635adantr 480 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → ∅ ∈ dom 𝑃)
3731, 36eqeltrd 2841 . . . . 5 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) ∈ dom 𝑃)
3824, 37eqeltrid 2845 . . . 4 ((𝜑 ∧ ({0} ∩ 𝑦) = ∅) → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
39 dmxp 5939 . . . . . . 7 (({0} ∩ 𝑦) ≠ ∅ → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom 𝑃)
4039adantl 481 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) = dom 𝑃)
4132unveldomd 34417 . . . . . . 7 (𝜑 dom 𝑃 ∈ dom 𝑃)
4241adantr 480 . . . . . 6 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom 𝑃 ∈ dom 𝑃)
4340, 42eqeltrd 2841 . . . . 5 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → dom ( dom 𝑃 × ({0} ∩ 𝑦)) ∈ dom 𝑃)
4424, 43eqeltrid 2845 . . . 4 ((𝜑 ∧ ({0} ∩ 𝑦) ≠ ∅) → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4538, 44pm2.61dane 3029 . . 3 (𝜑 → ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4645ralrimivw 3150 . 2 (𝜑 → ∀𝑦 ∈ 𝔅 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)
4732isrrvv 34445 . 2 (𝜑 → ((𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃) ↔ ((𝑥 dom 𝑃 ↦ 0): dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 ((𝑥 dom 𝑃 ↦ 0) “ 𝑦) ∈ dom 𝑃)))
486, 46, 47mpbir2and 713 1 (𝜑 → (𝑥 dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cin 3950  c0 4333  {csn 4626   cuni 4907  cmpt 5225   × cxp 5683  ccnv 5684  dom cdm 5685  ran crn 5686  cres 5687  cima 5688  wf 6557  cfv 6561  cr 11154  0cc0 11155  sigAlgebracsiga 34109  𝔅cbrsiga 34182  Probcprb 34409  rRndVarcrrv 34442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-addrcl 11216  ax-rnegex 11226  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ioo 13391  df-topgen 17488  df-top 22900  df-bases 22953  df-esum 34029  df-siga 34110  df-sigagen 34140  df-brsiga 34183  df-meas 34197  df-mbfm 34251  df-prob 34410  df-rrv 34443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator