Step | Hyp | Ref
| Expression |
1 | | 0re 11212 |
. . . . 5
β’ 0 β
β |
2 | 1 | rgenw 3065 |
. . . 4
β’
βπ₯ β
βͺ dom π0 β β |
3 | | eqid 2732 |
. . . . 5
β’ (π₯ β βͺ dom π β¦ 0) = (π₯ β βͺ dom
π β¦
0) |
4 | 3 | fmpt 7106 |
. . . 4
β’
(βπ₯ β
βͺ dom π0 β β β (π₯ β βͺ dom
π β¦ 0):βͺ dom πβΆβ) |
5 | 2, 4 | mpbi 229 |
. . 3
β’ (π₯ β βͺ dom π β¦ 0):βͺ dom
πβΆβ |
6 | 5 | a1i 11 |
. 2
β’ (π β (π₯ β βͺ dom
π β¦ 0):βͺ dom πβΆβ) |
7 | | fconstmpt 5736 |
. . . . . . . . . 10
β’ (βͺ dom π Γ {0}) = (π₯ β βͺ dom
π β¦
0) |
8 | 7 | cnveqi 5872 |
. . . . . . . . 9
β’ β‘(βͺ dom π Γ {0}) = β‘(π₯ β βͺ dom
π β¦
0) |
9 | | cnvxp 6153 |
. . . . . . . . 9
β’ β‘(βͺ dom π Γ {0}) = ({0} Γ
βͺ dom π) |
10 | 8, 9 | eqtr3i 2762 |
. . . . . . . 8
β’ β‘(π₯ β βͺ dom
π β¦ 0) = ({0} Γ
βͺ dom π) |
11 | 10 | imaeq1i 6054 |
. . . . . . 7
β’ (β‘(π₯ β βͺ dom
π β¦ 0) β π¦) = (({0} Γ βͺ dom π) β π¦) |
12 | | df-ima 5688 |
. . . . . . 7
β’ (({0}
Γ βͺ dom π) β π¦) = ran (({0} Γ βͺ dom π) βΎ π¦) |
13 | | df-rn 5686 |
. . . . . . 7
β’ ran (({0}
Γ βͺ dom π) βΎ π¦) = dom β‘(({0} Γ βͺ
dom π) βΎ π¦) |
14 | 11, 12, 13 | 3eqtri 2764 |
. . . . . 6
β’ (β‘(π₯ β βͺ dom
π β¦ 0) β π¦) = dom β‘(({0} Γ βͺ
dom π) βΎ π¦) |
15 | | df-res 5687 |
. . . . . . . . 9
β’ (({0}
Γ βͺ dom π) βΎ π¦) = (({0} Γ βͺ dom π) β© (π¦ Γ V)) |
16 | | inxp 5830 |
. . . . . . . . 9
β’ (({0}
Γ βͺ dom π) β© (π¦ Γ V)) = (({0} β© π¦) Γ (βͺ dom
π β©
V)) |
17 | | inv1 4393 |
. . . . . . . . . 10
β’ (βͺ dom π β© V) = βͺ dom
π |
18 | 17 | xpeq2i 5702 |
. . . . . . . . 9
β’ (({0}
β© π¦) Γ (βͺ dom π β© V)) = (({0} β© π¦) Γ βͺ dom
π) |
19 | 15, 16, 18 | 3eqtri 2764 |
. . . . . . . 8
β’ (({0}
Γ βͺ dom π) βΎ π¦) = (({0} β© π¦) Γ βͺ dom
π) |
20 | 19 | cnveqi 5872 |
. . . . . . 7
β’ β‘(({0} Γ βͺ
dom π) βΎ π¦) = β‘(({0} β© π¦) Γ βͺ dom
π) |
21 | 20 | dmeqi 5902 |
. . . . . 6
β’ dom β‘(({0} Γ βͺ
dom π) βΎ π¦) = dom β‘(({0} β© π¦) Γ βͺ dom
π) |
22 | | cnvxp 6153 |
. . . . . . 7
β’ β‘(({0} β© π¦) Γ βͺ dom
π) = (βͺ dom π Γ ({0} β© π¦)) |
23 | 22 | dmeqi 5902 |
. . . . . 6
β’ dom β‘(({0} β© π¦) Γ βͺ dom
π) = dom (βͺ dom π Γ ({0} β© π¦)) |
24 | 14, 21, 23 | 3eqtri 2764 |
. . . . 5
β’ (β‘(π₯ β βͺ dom
π β¦ 0) β π¦) = dom (βͺ dom π Γ ({0} β© π¦)) |
25 | | xpeq2 5696 |
. . . . . . . . . 10
β’ (({0}
β© π¦) = β
β
(βͺ dom π Γ ({0} β© π¦)) = (βͺ dom π Γ
β
)) |
26 | | xp0 6154 |
. . . . . . . . . 10
β’ (βͺ dom π Γ β
) = β
|
27 | 25, 26 | eqtrdi 2788 |
. . . . . . . . 9
β’ (({0}
β© π¦) = β
β
(βͺ dom π Γ ({0} β© π¦)) = β
) |
28 | 27 | dmeqd 5903 |
. . . . . . . 8
β’ (({0}
β© π¦) = β
β
dom (βͺ dom π Γ ({0} β© π¦)) = dom β
) |
29 | | dm0 5918 |
. . . . . . . 8
β’ dom
β
= β
|
30 | 28, 29 | eqtrdi 2788 |
. . . . . . 7
β’ (({0}
β© π¦) = β
β
dom (βͺ dom π Γ ({0} β© π¦)) = β
) |
31 | 30 | adantl 482 |
. . . . . 6
β’ ((π β§ ({0} β© π¦) = β
) β dom (βͺ dom π Γ ({0} β© π¦)) = β
) |
32 | | 0rrv.1 |
. . . . . . . 8
β’ (π β π β Prob) |
33 | | domprobsiga 33398 |
. . . . . . . 8
β’ (π β Prob β dom π β βͺ ran sigAlgebra) |
34 | | 0elsiga 33100 |
. . . . . . . 8
β’ (dom
π β βͺ ran sigAlgebra β β
β dom π) |
35 | 32, 33, 34 | 3syl 18 |
. . . . . . 7
β’ (π β β
β dom π) |
36 | 35 | adantr 481 |
. . . . . 6
β’ ((π β§ ({0} β© π¦) = β
) β β
β dom π) |
37 | 31, 36 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ ({0} β© π¦) = β
) β dom (βͺ dom π Γ ({0} β© π¦)) β dom π) |
38 | 24, 37 | eqeltrid 2837 |
. . . 4
β’ ((π β§ ({0} β© π¦) = β
) β (β‘(π₯ β βͺ dom
π β¦ 0) β π¦) β dom π) |
39 | | dmxp 5926 |
. . . . . . 7
β’ (({0}
β© π¦) β β
β dom (βͺ dom π Γ ({0} β© π¦)) = βͺ dom π) |
40 | 39 | adantl 482 |
. . . . . 6
β’ ((π β§ ({0} β© π¦) β β
) β dom
(βͺ dom π Γ ({0} β© π¦)) = βͺ dom π) |
41 | 32 | unveldomd 33402 |
. . . . . . 7
β’ (π β βͺ dom π β dom π) |
42 | 41 | adantr 481 |
. . . . . 6
β’ ((π β§ ({0} β© π¦) β β
) β βͺ dom π β dom π) |
43 | 40, 42 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ ({0} β© π¦) β β
) β dom
(βͺ dom π Γ ({0} β© π¦)) β dom π) |
44 | 24, 43 | eqeltrid 2837 |
. . . 4
β’ ((π β§ ({0} β© π¦) β β
) β (β‘(π₯ β βͺ dom
π β¦ 0) β π¦) β dom π) |
45 | 38, 44 | pm2.61dane 3029 |
. . 3
β’ (π β (β‘(π₯ β βͺ dom
π β¦ 0) β π¦) β dom π) |
46 | 45 | ralrimivw 3150 |
. 2
β’ (π β βπ¦ β π
β (β‘(π₯ β βͺ dom
π β¦ 0) β π¦) β dom π) |
47 | 32 | isrrvv 33430 |
. 2
β’ (π β ((π₯ β βͺ dom
π β¦ 0) β
(rRndVarβπ) β
((π₯ β βͺ dom π β¦ 0):βͺ dom
πβΆβ β§
βπ¦ β
π
β (β‘(π₯ β βͺ dom π β¦ 0) β π¦) β dom π))) |
48 | 6, 46, 47 | mpbir2and 711 |
1
β’ (π β (π₯ β βͺ dom
π β¦ 0) β
(rRndVarβπ)) |